Reduced Basis ANOVA for PDEs with

 High-Dimensional Random InputsQifeng Liao ${ }^{+}$and Guang Lin*
+School of Information Science and Technology, ShanghaiTech University
*Department of Mathematics, Purdue University

Outline

(1) ANOVA decomposition for stochastic PDEs
(2) Reduced Basis ANOVA
(3) Numerical Study

Outline

(1) ANOVA decomposition for stochastic PDEs
(2) Reduced Basis ANOVA
(3) Numerical Study

Partial Differential Equations with Uncertain Coefficients

Let $\xi \in I^{M}$ be a random vector. We find a random function $u(x, \xi)$:

$$
\begin{array}{ll}
\mathcal{L}(x, \xi ; u(x, \xi))=f(x, \xi), & (x, \xi) \in D \times I^{M} \\
\mathfrak{b}(x, \xi ; u(x, \xi))=g(x, \xi), & (x, \xi) \in \partial D \times I^{M}
\end{array}
$$

- \mathcal{L} : a partial differential operator.
- b: a boundary operator.
- Both of \mathcal{L} and \mathfrak{b} can have random coefficients.
- The random source ξ is high dimensional.

ANOVA decomposition (Cao, Chen, Gunzburger, Gao, Hesthaven, ...

$$
\begin{aligned}
\mathcal{L}(x, \xi ; u(x, \xi)) & =f(x, \xi), & (x, \xi) \in D \times I^{M} \\
\mathfrak{b}(x, \xi ; u(x, \xi)) & =g(x, \xi), & (x, \xi) \in \partial D \times I^{M}
\end{aligned}
$$

Decompose the (global) random solution $u(x, \xi)$ w.r.t ξ :

$$
u(x, \xi)=u_{\emptyset}(x)+u_{1}\left(x, \xi_{1}\right)+\ldots+u_{1,2}\left(x, \xi_{1,2}\right)+\ldots=\sum_{t \in \mathcal{P}} u_{t}\left(x, \xi_{t}\right)
$$

Given anchor point $c=\left(c_{1}, \ldots, c_{M}\right) \in I^{M} \quad \mathcal{P}_{0}:\{\emptyset\}$
Define index set $\mathcal{P}:=\left\{\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{M}\right\} \rightarrow \begin{aligned} & \mathcal{P}_{1}:\{1, \ldots, M\} \\ & \mathcal{P}_{2}:\{(1,2),(1,3), \ldots,(2,3), \ldots\}\end{aligned}$

- $u_{\emptyset}(x):=u(x, c)$
$\mathcal{P}_{M}:\{(1,2, \ldots, M)\}$
- $u_{1}\left(x, \xi_{1}\right):=u\left(x,\left(\xi_{1}, c_{2}, \ldots, c_{M}\right)\right)-u_{\emptyset}(x)$
- Define a local solution for $t \in \mathcal{P}: u\left(x, c, \xi_{t}\right):=u\left(x,\left(c_{1}, . ., \xi_{t_{1}}, \ldots \xi_{t_{2}}, \ldots\right)\right)$
- $u_{t}\left(x, \xi_{t}\right):=u\left(x, c, \xi_{t}\right)-\sum_{s \subset t} u_{s}\left(x, \xi_{s}\right)$

Stochastic collocation for each ANOVA term

$u(x, \xi)=\sum_{t \in \mathcal{P}} u_{t}\left(x, \xi_{t}\right), \quad u_{t}\left(x, \xi_{t}\right):=u\left(x, c, \xi_{t}\right)-\sum_{s \subset t} u_{s}\left(x, \xi_{s}\right)$

$$
u\left(x, c, \xi_{t}\right):=u\left(x,\left(c_{1}, . ., \xi_{t_{1}}, \ldots \xi_{t_{2}}, \ldots\right)\right)
$$

$u\left(x, c, \xi_{t}\right)$ satisfies: $\begin{cases}\mathcal{L}\left(x, \xi_{t} ; u\left(x, c, \xi_{t}\right)\right)=f(x), & \left(x, \xi_{t}\right) \in D \times I^{|t|}, \\ \mathfrak{b}\left(x, \xi_{t} ; u\left(x, c, \xi_{t}\right)\right)=g(x), & \left(x, \xi_{t}\right) \in \partial D \times I^{|t|} .\end{cases}$

- $|t|$ (dimension of t) is expected to be $\ll M$.
- Approximate $u\left(x, c, \xi_{t}\right)$ using stochastic collocation:

$$
u^{q}\left(x, c, \xi_{t}\right):=\sum_{\xi_{t}^{(k)} \in \Theta_{q}^{|t|}} u\left(x, c, \xi_{t}^{(k)}\right) \Phi_{\xi_{t}^{(k)}}\left(\xi_{t}\right) \quad \approx u\left(x, c, \xi_{t}\right)
$$

- Overall approximation:

$$
\begin{aligned}
u(x, \xi) \approx u^{q}(x, \xi) & :=\sum_{t \in \mathcal{P}} u_{t}^{q}\left(x, \xi_{t}\right) \\
u_{t}^{q}\left(x, \xi_{t}\right) & :=u^{q}\left(x, c, \xi_{t}\right)-\sum_{s \subset t} u_{s}\left(x, \xi_{s}\right) .
\end{aligned}
$$

■ Stochastic collocation: Xiu, Hesthaven, Babuška, Nobile, Tempone, Webster ...
■ ANOVA-Collocation: Ma, Zabaras, Yang, Lin, Karniadakis ...

Computational aspects of ANOVA-Collocation approximation

ANOVA-Collocation: $u(x, \xi) \approx u^{q}(x, \xi):=\sum_{t \in \mathcal{P}} u_{t}^{q}\left(x, \xi_{t}\right)$,

$$
\begin{aligned}
& u_{t}^{q}\left(x, \xi_{t}\right):=u^{q}\left(x, c, \xi_{t}\right)-\sum_{s \subset t} u_{s}\left(x, \xi_{s}\right), \\
& u^{q}\left(x, c, \xi_{t}\right):=\sum_{\xi_{t}^{(k)} \in \Theta_{q}^{|t|}} u\left(x, c, \xi_{t}^{(k)}\right) \Phi_{\xi_{t}^{(k)}}\left(\xi_{t}\right) .
\end{aligned}
$$

$$
\mathcal{P}:=\left\{\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{M}\right\}
$$

Computation challenges

- Many ANOVA terms ($|\mathcal{P}|$ is large $)$

$$
\mathcal{P}_{0}:\{\emptyset\}
$$

Adaptive ANOVA (selecting important terms) $\mathcal{P}_{2}:\{(1,2),(1,3), \ldots,(2,3), \ldots\}$
$■$ Ma, Zabaras (2010); Yang, et al. (2012) $\mathcal{P}_{M}:\{(1,2, \ldots, M)\}$

- Spatial d.o.f can be very large (computing each collocation coefficient $u\left(x, c, \xi_{t}^{(k)}\right)$ is expensive).
Reduced basis collocation:
■ Elman, Liao (2013)

Adaptive ANOVA-selecting important terms (indices)

ANOVA-Collocation: $u(x, \xi) \approx u^{q}(x, \xi):=\sum_{t \in \mathcal{P}} u_{t}^{q}\left(x, \xi_{t}\right)$

$\mathcal{P}_{0}:$	$\{\emptyset\}$
$\mathcal{P}_{1}:$	$\{1, \quad 2, \quad 3, \quad 4, \quad 5\}$
$\mathcal{P}_{2}:$	$\{(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)\}$
$\mathcal{P}_{3}:$	$\{(1,3,5)\}$
$\mathcal{P}_{4}:$	No 4 th order terms.

Figure: A example of adaptive index selection.
Selecting criterion:

- Relative mean value \rightarrow

$$
\text { relative-mean }_{t}:=\frac{\left\|\mathbb{E}\left(u_{t}^{q}\right)\right\|}{\left\|\mathbb{E}\left(\sum_{s \in \mathcal{P},|s| \leq|t|-1} u_{s}^{q}\right)\right\|}
$$

■ Adaptive ANOVA: Ma and Zabaras (2010); Yang, et al. (2012).

Outline

(1) ANOVA decomposition for stochastic PDEs
(2) Reduced Basis ANOVA
(3) Numerical Study

Reduced Basis Methods for Parameter Dependent PDEs

$$
\begin{aligned}
u^{q}(x, \xi):=\sum_{t \in \mathcal{P}} u_{t}^{q}\left(x, \xi_{t}\right), \quad u_{t}^{q}\left(x, \xi_{t}\right) & :=u^{q}\left(x, c, \xi_{t}\right)-\sum_{s \subset t} u_{s}\left(x, \xi_{s}\right) \\
u^{q}\left(x, c, \xi_{t}\right) & :=\sum_{\xi_{t}^{(k)} \in \Theta_{q}^{|t|}} u\left(x, c, \xi_{t}^{(k)}\right) \Phi_{\xi_{t}^{(k)}}\left(\xi_{t}\right)
\end{aligned}
$$

Finite element methods

- Let $\mathfrak{B}_{\xi_{t}}(\cdot, \cdot)=l(\cdot)$ denote a weak form, and X^{h} a FEM space.
- Seek $u_{h}\left(\cdot, c, \xi_{t}\right) \in X^{h} \rightarrow \quad \mathfrak{B}_{\xi}\left(u_{h}\left(\cdot, c, \xi_{t}\right), v\right)=l(v), \quad \forall v \in X^{h}$. Each FEM solution $u_{h}\left(\cdot, c, \xi_{t}\right)$ is called a snapshot.

Reduced basis approximation

- Introduce a reduced basis Q with a small size, $\operatorname{span}(Q) \subset X^{h}$.
- Seek $u_{r}\left(\cdot, c, \xi_{t}\right) \in \operatorname{span}(Q) \rightarrow \mathfrak{B}_{\xi}\left(u_{r}\left(\cdot, c, \xi_{t}\right), v\right)=l(v), \forall v \in \operatorname{span}(Q)$. Each $u_{r}\left(\cdot, c, \xi_{t}\right)$ is called a reduced solution.
What information should Q contain, and how large is it?
- Ideally, $\operatorname{span}(Q) \supset\left\{u_{h}\left(\cdot, c, \xi_{t}\right), \xi_{t} \in I^{|t|}\right\}, \quad$ (the full snapshot set).
- Size of $Q=$ rank of $\left\{u_{h}\left(\cdot, c, \xi_{t}\right), \xi_{t} \in I^{|t|}\right\} \ll N_{h}$? (N_{h} : FEM d.o.f $)_{0 / 22}$

Algebraic Issue and Error Indicator, Linear PDEs

Original finite element approximation: $\mathbf{A}_{\xi_{t}} \in \mathbb{R}^{N_{h} \times N_{h}} \rightarrow$

$$
\mathbf{A}_{\xi_{t}} \mathbf{u}_{h}=\mathbf{f}
$$

Reduced basis approximation: $\mathbf{Q} \in \mathbb{R}^{N_{h} \times N_{r}}$ with $N_{r} \ll N_{h} \rightarrow$

$$
\mathbf{Q}^{T} \mathbf{A}_{\xi_{t}} \mathbf{Q} \mathbf{u}_{r}=\mathbf{Q}^{T} \mathbf{f}
$$

Reduced basis approximation is a projection:

- projects a large $N_{h} \times N_{h}$ system to a small $N_{r} \times N_{r}$ system \rightarrow very cheap to solve.

To estimate the error $e=\mathbf{u}_{h}-\mathbf{Q} \mathbf{u}_{r}$, we use the residual indicator:

$$
\text { error-indicator }_{\xi_{t}}=\left\|\mathbf{A}_{\xi_{t}} \mathbf{Q} \mathbf{u}_{r}-\mathbf{f}\right\|
$$

- The cost of this residual indicator is $O\left(N_{r}^{2}\right)$, independent of N_{h}.

Greedy Algorithm (Patera, Boyaval, Bris, Lelièvre, Maday, Nguyen, ...)

Goal for reduced solution: $u_{r} \approx u_{h}, \leftrightarrow \operatorname{span}(Q) \approx\left\{u_{h}\left(\cdot, c, \xi_{t}\right), \xi_{t} \in I^{|t|}\right\}$.

- SVD approach: get Q from $\operatorname{SVD}\left\{u_{h}\left(\cdot, c, \xi_{t}\right), \xi_{t} \in I^{|t|}\right\}$, but may expensive.
- Greedy approach: find most important samples $\rightarrow Q$.

Given: a set of candidate parameters $\chi=\left\{\xi_{t}\right\}$, an initial choice $\xi_{t}^{(1)} \in \chi$, and compute the snapshot $u_{h}\left(\cdot, c, \xi_{t}^{(1)}\right)$. Initialize: $Q=\left\{u_{h}\left(\cdot, c, \xi_{t}^{(1)}\right)\right\}$
for each $\xi_{t} \in \chi$
compute reduced solution $u_{r}\left(\cdot, c, \xi_{t}\right)$
compute error-indicator $\xi_{\xi_{t}}$ (an error indicator for $\left\|u_{h}-u_{r}\right\|$)
If error-indicator ${ }_{\xi}>$ tol

$$
\text { compute } u_{h}\left(\cdot, c, \xi_{t}\right) \text {, and update } Q=\left\{Q, u_{h}\left(\cdot, c, \xi_{t}\right)\right\}
$$

endif

endfor

- Greedy on sparse grids: Elman and Liao (2013); Chen et al. (2015)

Reduced bases for ANVOA-Collocation terms

ANOVA-Collocation: $u(x, \xi) \approx u^{q}(x, \xi):=\sum_{t \in \mathcal{P}} u_{t}^{q}\left(x, \xi_{t}\right)$,

$$
\begin{aligned}
& u_{t}^{q}\left(x, \xi_{t}\right):=u^{q}\left(x, c, \xi_{t}\right)-\sum_{s \subset t} u_{s}\left(x, \xi_{s}\right), \\
& u^{q}\left(x, c, \xi_{t}\right):=\sum_{\xi_{t}^{(k)} \in \Theta_{q}^{|t|} u} u\left(x, c, \xi_{t}^{(k)}\right) \Phi_{\xi_{t}^{(k)}}\left(\xi_{t}\right) .
\end{aligned}
$$

(1) Use collocation points $\Theta_{q}^{|t|}$ as candidate set χ.
(2) Use reduced solution $u_{r} \rightarrow u_{c}:=u\left(x, c, \xi_{t}^{(k)}\right)$ whenever possible.
(3) Different reduced basis Q_{t} for different t, but use them hierarchically \rightarrow

$\mathcal{P}_{0}:$	$\{\emptyset\}$
$\mathcal{P}_{1}:$	$\{1, \quad 2, \quad 3, \quad 4, \quad 5\}$
$\mathcal{P}_{2}:$	$\{(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)\}$
$\mathcal{P}_{3}:$	$\{(1,3,5)\}$

Algorithm (Reduced Basis ANOVA)

(1) Start with ANOVA level $i=0$, initialize the index set $\mathcal{P}_{0}=\{\emptyset\}$.
(2) Set $Q_{\emptyset}:=\left\{u_{h}(\cdot, c)\right\}$.
(3) Set $\mathcal{P}_{1}=\{1, \ldots, M\}$.
(4) Update ANOVA level $i=i+1$.
(5) Loop over each $t \in \mathcal{P}_{i}$, i.e. $|t|=i$

- Initialize local reduced basis: $Q_{t}:=S V D\left\{q \mid q \in \cup_{s \subset t} Q_{s}\right\}$.
- For each $\xi_{t}^{(k)} \in \Theta_{q}^{|t|}$ (collocation points), compute the reduced solution $u_{r}\left(\cdot, c, \xi_{t}^{(k)}\right)$ and error-indicator $\xi^{(k)}$.
If error-indicator $\xi_{\xi^{(k)}}<t o l, u_{c} \leftarrow u_{r}\left(\cdot, c, \xi_{t}^{(k)}\right)$.
If error-indicator $\xi^{(k)} \geq t o l, u_{c} \leftarrow u_{h}\left(\cdot, c, \xi_{t}^{(k)}\right)$ and $Q_{t}:=\left\{Q_{t}, u_{h}\right\}$.
- Compute relative-mean ${ }_{t}$.
- If relative-mean ${ }_{t}<t o l_{A N O V A}$, remove the index $t: \mathcal{P}_{i}=\mathcal{P}_{i} \backslash t$.
(6) Generate \mathcal{P}_{i+1} based on \mathcal{P}_{i}, and repeat step 5 for next level $i=i+1$.

Outline

(1) ANOVA decomposition for stochastic PDEs

(2) Reduced Basis ANOVA
(3) Numerical Study

Test Problem

Diffusion equation: $-\nabla \cdot(a \nabla u)=f$ in $[0,1]^{2}$
The permeability coefficient a is a random field:

- mean function: $a_{0}(x)=1$, standard deviation: $\sigma=0.25$
- covariance function $C(x, y)$:

$$
C(x, y)=\sigma^{2} \exp \left(-\frac{\left|x_{1}-y_{1}\right|}{c}-\frac{\left|x_{2}-y_{2}\right|}{c}\right),
$$

where c is the correlation length.
Parameterizing a using truncated KL expansion:

$$
a(x, \xi) \approx a_{0}(x)+\sum_{k=1}^{M} \sqrt{\lambda_{k}} a_{k}(x) \xi_{k},
$$

random vector $\xi=\left(\xi_{1}, \cdots, \xi_{M}\right)$ is uniformly distributed in $\Gamma=[-1,1]^{M}$.

- Small correlation length c leads to many KL terms.
- We consider small c situations (high-dimensional problems).

Rank of
$\left\{u_{h}(\cdot, \xi), \xi \in I^{|M|}\right\}$

- FEM d.o.f : $N_{h}=1089$
- Directly applying reduced basis methods may not be efficient for $c \leq 0.625$ 17/22

Direct combination of MC and reduced basis (for comparison)

For each MC input sample $\xi^{(k)}$, compute reduced solution $u_{r}\left(\cdot, \xi^{(k)}\right)$ and error-indicator $\xi_{\xi^{(k)}}$:
if error-indicator $\xi_{\xi^{(k)}}<$ tol, MC sample $\leftarrow u_{r}\left(\cdot, \xi^{(k)}\right)$;
if error-indicator $\xi_{\xi^{(k)}} \geq$ tol, MC sample $\leftarrow u_{h}\left(\cdot, \xi^{(k)}\right)$ and $Q:=\left\{Q, u_{h}\right\}$.
Computational cost assessment model:

- Cost unit: 1 FEM system solve.
- Cost of a reduced system solve: N_{r} / N_{h},
(N_{r} : reduced basis size; N_{h} : FEM d.o.f).
- Cost of a full MC with N samples: N.
- Cost of a reduced basis MC with N samples and \tilde{N} FEM solves:

$$
\tilde{N}+\sum_{k=1}^{N} \frac{N_{r}\left(\xi^{(k)}\right)}{N_{h}}
$$

reduced basis size $N_{r}\left(\xi^{(k)}\right)$ is dependent on $\xi^{(k)}$ in the greedy procedure.

Direct reduced MC test, for $c=0.3125, M=367$; rank $\approx N_{h}=1089$.

For this test, comparing MC and reduced basis MC (rMC),

- costs of the reduced basis MC are still large.

ANOVA vs MC, for $c=0.3125, M=367 ;$ rank $\approx N_{h}=1089$.

For this test,

- ANOVA has very small mean errors.

Reduced basis ANOVA, for $c=0.3125, M=367$; rank $\approx N_{h}=1089$.

For this test,

- Reduced basis ANOVA (rANOVA) is very cheap.

Summary

- ANOVA methods have been designed to solve PDEs with high-dimensional random inputs.
- Many PDE solves can be involved for generating ANOVA-Collocation approximation.
- Our hierarchically-generated reduced bases can reduce the computational costs of ANOVA methods.

