
Reduced Basis ANOVA for PDEs with

High-Dimensional Random Inputs

Qifeng Liao+ and Guang Lin∗

+School of Information Science and Technology, ShanghaiTech University
∗Department of Mathematics, Purdue University

1 / 22
Qifeng Liao+ and Guang Lin∗ +ShanghaiTech University, ∗Purdue University



Outline

1 ANOVA decomposition for stochastic PDEs

2 Reduced Basis ANOVA

3 Numerical Study

2 / 22
Qifeng Liao+ and Guang Lin∗ +ShanghaiTech University, ∗Purdue University



Outline

1 ANOVA decomposition for stochastic PDEs

2 Reduced Basis ANOVA

3 Numerical Study

3 / 22
Qifeng Liao+ and Guang Lin∗ +ShanghaiTech University, ∗Purdue University



Partial Differential Equations with Uncertain Coefficients
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Let ξ ∈ I M be a random vector. We find a random function u (x, ξ):

L (x, ξ; u (x, ξ)) = f (x, ξ), (x, ξ) ∈ D × I M ,

b (x, ξ; u (x, ξ)) = g(x, ξ), (x, ξ) ∈ ∂D × I M .

• L: a partial differential operator.

• b: a boundary operator.

• Both of L and b can have random coefficients.

• The random source ξ is high dimensional.



ANOVA decomposition
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(Cao, Chen, Gunzburger, Gao, Hesthaven, ...)

L (x, ξ; u (x, ξ)) = f (x, ξ), (x, ξ) ∈ D × I M ,

b (x, ξ; u (x, ξ)) = g(x, ξ), (x, ξ) ∈ ∂D × I M .

Decompose the (global) random solution u(x, ξ) w.r.t ξ:

u(x, ξ) = u∅(x) + u1(x, ξ1) + . . .+ u1,2(x, ξ1,2) + . . . =
∑
t∈P

ut(x, ξt).

Given anchor point c = (c1, . . . , cM ) ∈ I M

Define index set P := {P0,P1, . . . ,PM} →

u∅(x) := u(x, c)

u1(x, ξ1) := u
(
x, (ξ1, c2, . . . , cM )

)
− u∅(x)

Define a local solution for t ∈ P: u(x, c, ξt) := u
(
x, (c1, .., ξt1 , ...ξt2 , ...)

)
ut(x, ξt) := u(x, c, ξt)−

∑
s⊂t us(x, ξs)

P0: {∅}
P1: {1, . . . ,M}
P2: {(1, 2), (1, 3), ..., (2, 3), ...}
· · ·
PM : {(1, 2, . . . ,M )}



Stochastic collocation for each ANOVA term
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u(x, ξ) =
∑

t∈P ut(x, ξt), ut(x, ξt) := u(x, c, ξt)−
∑

s⊂t us(x, ξs),

u(x, c, ξt) := u
(
x, (c1, .., ξt1 , ...ξt2 , ...)

)
.

u(x, c, ξt) satisfies:

 L (x, ξt ; u (x, c, ξt)) = f (x), (x, ξt) ∈ D × I |t|,

b (x, ξt ; u (x, c, ξt)) = g(x), (x, ξt) ∈ ∂D × I |t|.

|t| (dimension of t) is expected to be � M .
Approximate u(x, c, ξt) using stochastic collocation:

uq (x, c, ξt) :=
∑
ξ

(k)
t ∈Θ|t|q

u
(
x, c, ξ(k)

t

)
Φ
ξ

(k)
t

(ξt) ≈ u(x, c, ξt).

Overall approximation: u(x, ξ) ≈ uq(x, ξ) :=
∑

t∈P uq
t (x, ξt),

uq
t (x, ξt) := uq(x, c, ξt)−

∑
s⊂t us(x, ξs).

� Stochastic collocation: Xiu, Hesthaven, Babuška, Nobile, Tempone, Webster ...
� ANOVA-Collocation: Ma, Zabaras, Yang, Lin, Karniadakis ...



Computational aspects of ANOVA-Collocation approximation
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u(x, ξ) ≈ uq(x, ξ) :=
∑

t∈P uq
t (x, ξt),

uq
t (x, ξt) := uq(x, c, ξt)−

∑
s⊂t us(x, ξs),

uq (x, c, ξt) :=
∑
ξ

(k)
t ∈Θ|t|q

u
(
x, c, ξ(k)

t

)
Φ
ξ

(k)
t

(ξt) .

ANOVA-Collocation:

Computation challenges

Many ANOVA terms (|P| is large)

Adaptive ANOVA (selecting important terms)
� Ma, Zabaras (2010); Yang, et al. (2012)

Spatial d.o.f can be very large
(computing each collocation coefficient u

(
x, c, ξ(k)

t

)
is expensive).

Reduced basis collocation:
� Elman, Liao (2013)

P := {P0,P1, . . . ,PM}
P0: {∅}
P1: {1, . . . ,M}
P2: {(1, 2), (1, 3), ...,(2, 3), ...}
· · ·
PM : {(1, 2, . . . ,M )}



Adaptive ANOVA–selecting important terms (indices)
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u(x, ξ) ≈ uq(x, ξ) :=
∑

t∈P uq
t (x, ξt).ANOVA-Collocation:

{∅}

{1, 2, 3, 4, 5}

{(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}

{(1, 3, 5)}

P0 :

P1 :

P2 :

P3 :

P4 : No 4th order terms.
Figure: A example of adaptive index selection.

Selecting criterion:

Relative mean value →

relative-meant := ‖E(uq
t )‖∥∥∥E(∑s∈P,|s|≤|t|−1 uq

s

)∥∥∥
� Adaptive ANOVA: Ma and Zabaras (2010); Yang, et al. (2012).
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Reduced Basis Methods for Parameter Dependent PDEs
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uq(x, ξ) :=
∑

t∈P uq
t (x, ξt), uq

t (x, ξt) := uq(x, c, ξt)−
∑

s⊂t us(x, ξs),
uq (x, c, ξt) :=

∑
ξ

(k)
t ∈Θ|t|q

u
(
x, c, ξ(k)

t

)
Φ
ξ

(k)
t

(ξt) .

Finite element methods
Let Bξt (·, ·) = l(·) denote a weak form, and Xh a FEM space.
Seek uh(·, c, ξt) ∈ Xh → Bξ (uh (·, c, ξt), v) = l(v), ∀v ∈ Xh .

Each FEM solution uh(·, c, ξt) is called a snapshot.

Reduced basis approximation
Introduce a reduced basis Q with a small size, span(Q) ⊂ Xh .
Seek ur (·, c, ξt) ∈ span(Q) → Bξ (ur (·, c, ξt), v) = l(v), ∀v ∈ span(Q).

Each ur (·, c, ξt) is called a reduced solution.
What information should Q contain, and how large is it?

Ideally, span(Q) ⊃ {uh (·, c, ξt), ξt ∈ I |t|}, (the full snapshot set).
Size of Q = rank of {uh (·, c, ξt) , ξt ∈ I |t|} � Nh? (Nh : FEM d.o.f ).



Algebraic Issue and Error Indicator, Linear PDEs
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Original finite element approximation: Aξt ∈ RNh×Nh →

Aξt uh = f .

Reduced basis approximation: Q ∈ RNh×Nr with Nr � Nh →

QT Aξt Qur = QT f .

Reduced basis approximation is a projection:
projects a large Nh ×Nh system to a small Nr ×Nr system →

very cheap to solve.

To estimate the error e = uh −Qur , we use the residual indicator:

error-indicatorξt = ‖Aξt Qur − f‖.

� The cost of this residual indicator is O(N 2
r ), independent of Nh .



Greedy Algorithm (Patera, Boyaval, Bris, Lelièvre, Maday, Nguyen, . . .)
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Goal for reduced solution: ur ≈ uh , ↔ span(Q) ≈ {uh (·, c, ξt) , ξt ∈ I |t|}.
SVD approach: get Q from SVD{uh (·, c, ξt) , ξt ∈ I |t|}, but may expensive.
Greedy approach: find most important samples → Q.
Given: a set of candidate parameters χ = {ξt},

an initial choice ξ(1)
t ∈ χ, and compute the snapshot uh(·, c, ξ(1)

t ).

Initialize: Q = {uh(·, c, ξ(1)
t )}

for each ξt ∈ χ
compute reduced solution ur(·, c, ξt)
compute error-indicatorξt (an error indicator for ‖uh − ur‖)
If error-indicatorξ> tol

compute uh(·, c, ξt), and update Q = {Q, uh(·, c, ξt)}
endif

endfor
� Greedy on sparse grids: Elman and Liao (2013); Chen et al. (2015)



Reduced bases for ANVOA-Collocation terms
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u(x, ξ) ≈ uq(x, ξ) :=
∑

t∈P uq
t (x, ξt),

uq
t (x, ξt) := uq(x, c, ξt)−

∑
s⊂t us(x, ξs),

uq (x, c, ξt) :=
∑
ξ

(k)
t ∈Θ|t|q

u
(
x, c, ξ(k)

t

)
Φ
ξ

(k)
t

(ξt) .

ANOVA-Collocation:

1 Use collocation points Θ|t|q as candidate set χ.

2 Use reduced solution ur → uc := u
(
x, c, ξ(k)

t

)
whenever possible.

3 Different reduced basis Qt for different t, but use them hierarchically →
{∅}

{1, 2, 3, 4, 5}

{(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}

{(1, 3, 5)}

P0 :

P1 :

P2 :

P3 :

... ...
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Algorithm (Reduced Basis ANOVA)
1 Start with ANOVA level i = 0, initialize the index set P0 = {∅}.
2 Set Q∅ := {uh(·, c)}.
3 Set P1 = {1, . . . ,M}.
4 Update ANOVA level i = i + 1.

5 Loop over each t ∈ Pi , i.e. |t| = i

Initialize local reduced basis: Qt := SVD {q | q ∈ ∪s⊂tQs }.

For each ξ(k)
t ∈ Θ|t|q (collocation points),

compute the reduced solution ur(·, c, ξ(k)
t ) and error-indicatorξ(k) .

If error-indicatorξ(k)< tol, uc ← ur(·, c, ξ(k)
t ).

If error-indicatorξ(k)≥ tol, uc ← uh(·, c, ξ(k)
t ) and Qt := {Qt , uh}.

Compute relative-meant .

If relative-meant < tolANOVA, remove the index t: Pi = Pi \ t.
6 Generate Pi+1 based on Pi , and repeat step 5 for next level i = i + 1.
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Test Problem
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Diffusion equation: −∇ · (a∇u) = f in [0, 1]2

The permeability coefficient a is a random field:
mean function: a0(x) = 1, standard deviation: σ = 0.25
covariance function C (x, y):

C (x, y) = σ2 exp
(
−|x1 − y1|

c − |x2 − y2|
c

)
,

where c is the correlation length.
Parameterizing a using truncated KL expansion:

a(x, ξ) ≈ a0(x) +
M∑

k=1

√
λkak(x)ξk ,

random vector ξ = (ξ1, · · · , ξM ) is uniformly distributed in Γ = [−1, 1]M .
Small correlation length c leads to many KL terms.
We consider small c situations (high-dimensional problems).
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FEM d.o.f : Nh = 1089
Directly applying reduced basis methods may not be efficient for c ≤ 0.625

# of KL modes (M )
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the total variance

Rank of
{uh (·, ξ) , ξ ∈ I |M|}



Direct combination of MC and reduced basis (for comparison)
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For each MC input sample ξ(k),
compute reduced solution ur(·, ξ(k)) and error-indicatorξ(k) :

if error-indicatorξ(k)< tol, MC sample ←ur(·, ξ(k));
if error-indicatorξ(k)≥ tol, MC sample ←uh(·, ξ(k)) and Q := {Q, uh}.

Computational cost assessment model:
Cost unit: 1 FEM system solve.
Cost of a reduced system solve: Nr/Nh ,

(Nr : reduced basis size; Nh: FEM d.o.f ).

Cost of a full MC with N samples: N .
Cost of a reduced basis MC with N samples and Ñ FEM solves:

Ñ +
N∑

k=1

Nr(ξ(k))
Nh

,

reduced basis size Nr(ξ(k)) is dependent on ξ(k) in the greedy procedure.
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Direct reduced MC test, for c = 0.3125, M = 367; rank ≈ Nh = 1089.

Cost
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For this test, comparing MC and reduced basis MC (rMC),
costs of the reduced basis MC are still large.
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ANOVA vs MC, for c = 0.3125, M = 367; rank ≈ Nh = 1089.

Cost
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For this test,
ANOVA has very small mean errors.
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Reduced basis ANOVA, for c = 0.3125, M = 367; rank ≈ Nh = 1089.

Cost
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For this test,
Reduced basis ANOVA (rANOVA) is very cheap.



Summary
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ANOVA methods have been designed to solve PDEs with

high-dimensional random inputs.

Many PDE solves can be involved for generating ANOVA-Collocation

approximation.

Our hierarchically-generated reduced bases can reduce the

computational costs of ANOVA methods.
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