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Optimizing (Almost) Everything!

0. Simulation-based and derivative-free optimization?

I. Optimization of black boxes

⋄ Empirical performance tuning of HPC codes

⋄ Model-based algorithms

II. Exploiting structure in functions of black boxes

⋄ Least squares - calibrating DFT sims

⋄ Nonsmoothness - bioremediation

⋄ Some partials - multilevel energy functionals

⋄ Constraints

AN16, Boston 1



Optimizing (Almost) Everything!

0. Simulation-based and derivative-free optimization?

I. Optimization of black boxes

⋄ Empirical performance tuning of HPC codes

⋄ Model-based algorithms

II. Exploiting structure in functions of black boxes

⋄ Least squares - calibrating DFT sims

⋄ Nonsmoothness - bioremediation

⋄ Some partials - multilevel energy functionals

⋄ Constraints

Doing

something

with

little

Doing

better

with

little

more

AN16, Boston 1



0. SBO and DFO



Simulation-Based Optimization

min
x∈Rn

{f(x) = F [x, S(x)] : cI [x, S(x)] ≤ 0, cE [x, S(x)] = 0}

≈ “parameter estimation” ≈ “model calibration” ≈ “design optimization” ≈ . . .

⋄ S : Rn → Cp simulation output, often “noisy” (even when deterministic)
⋄ Derivatives ∇xS often unavailable or

prohibitively expensive to obtain/approximate directly
⋄ S can contribute to objective and/or constraints
⋄ Single evaluation of S could take seconds/minutes/hours/. . .

⇒ Evaluation is a bottleneck for optimization

Functions of complex (numerical) simulations arise everywhere
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Blame Computing!

. . . for pervasiveness of
simulations in sci&eng

⋄ Parallel/multi-core
environments common

⋄ Simulations (“forward
problem”) faster, more
realistic/complex

Argonne’s AVIDAC

(1953 vacuum tubes)

Argonne’s BlueGene/Q

(2012 0.8M cores)

Sunway
TaihuLight

(2016 11M cores)
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TaihuLight

(2016 11M cores)

. . . for the challenges in SBO

⋄ Optimization, UQ often an afterthought

⋄ Obstacles for Algorithmic Differentiation
(coupled legacy/proprietary codes, memory)

→ [Coleman & Xu; SIAM 2016], [Griewank & Walther; SIAM 2008]

→ MS76 today!

⋄ Computational noise can complicate everything
→[Moré & W.; SISC 2011]

⋄ Finite differences noisy, possibly expensive
→ [Moré & W.; TOMS 2012]

⋄ Computational budget limits # f evals
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Derivative-Free Optimization

“Some derivatives (∇xS(x)) unavailable for optimization purposes”
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Derivative-Free Optimization

“Some derivatives (∇xS(x)) unavailable for optimization purposes”

The Challenge:
Optimization is tightly coupled with derivatives

Typical optimality (no noise, smooth functions)

∇xf(x∗) + λ⊤∇xcE(x∗) = 0, cE(x∗) = 0

William Karush [Optimization Stories, 2012]

(sub)gradients ∇xf, ∇xc enable:

⋄ Faster feasibility
⋄ Faster convergence

� Guaranteed descent
� Approximation of nonlinearities

⋄ Better termination
� Measure of criticality

‖∇xf‖, ‖PΩ(∇xf)‖

⋄ Sensitivity analysis
� Correlations, standard errors, UQ, . . .
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The Price of Algorithm Choice: Solvers in PETSc/TAO

chwirut1 (n = 6)
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Toolkit for Advanced Optimization

[Munson et al.; mcs.anl.gov/tao]

Increasing level of user input:

nm Assumes ∇xf
unavailable, black box

pounders Assumes ∇xf
unavailable, exploits
problem structure

lmvm Uses available ∇xf
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Increasing level of user input:

nm Assumes ∇xf
unavailable, black box

pounders Assumes ∇xf
unavailable, exploits
problem structure

THIS TALK

lmvm Uses available ∇xf

DFO methods should be designed to
beat finite-difference-based methods

Observe: Constrained by budget on #evals, method limits solution accuracy/problem size
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I. Black-Box Optimization



Black-Box Optimization

min
x∈Rn

f(x)

Only access to f = S is through sampling

⋄ (Scalar) Output of an experiment

⋄ Proprietary libraries/closed codes

⋄ Often discrete/compact domains
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Black-Box Optimization

min
x∈Rn

f(x)

Only access to f = S is through sampling

⋄ (Scalar) Output of an experiment

⋄ Proprietary libraries/closed codes

⋄ Often discrete/compact domains

Throughout this talk:
“Black box” is both good and evil
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A Black Box: Automating Empirical Performance Tuning

Given semantically equivalent codes
x1, x2, . . ., minimize run time subject to
energy consumption

min {f(x) : (xC , xI , xB) ∈ ΩC × ΩI × ΩB}

x multidimensional parameterization (compiler type, compiler flags, unroll/tiling
factors, internal tolerances, . . . )

Ω search domain (feasible transformation, no errors)

f quantifiable performance objective (requires a run)

→ [Audet & Orban; SIOPT 2006], [Balaprakash, W., Hovland; ICCS 2011], [Porcelli & Toint; 2016]

Numerical Linear Algebra → [N. Higham; SIMAX 1993], . . .
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Black-Box Algorithms: Stochastic Methods

Random search

Repeat:

1. Randomly generate direction dk ∈ Rn

2. Evaluate “gradient-free oracle” g(xk; hk) =
f(xk+hk dk)−f(xk)

hk
dk

(≈ directional derivative)

3. Compute xk+1 = xk − δkg(xk ;hk), evaluate f(xk+1)

Convergence (for different types of f) tends to be probabilistic
[Kiefer & Wolfowitz; AnnMS 1952], [Polyak; 1987], [Ghadimi & Lan; SIOPT 2013], [Nesterov & Spokoiny; FoCM

2015], . . .
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Black-Box Algorithms: Stochastic Methods

Random search

Repeat:

1. Randomly generate direction dk ∈ Rn

2. Evaluate “gradient-free oracle” g(xk; hk) =
f(xk+hk dk)−f(xk)

hk
dk

(≈ directional derivative)

3. Compute xk+1 = xk − δkg(xk ;hk), evaluate f(xk+1)

Convergence (for different types of f) tends to be probabilistic
[Kiefer & Wolfowitz; AnnMS 1952], [Polyak; 1987], [Ghadimi & Lan; SIOPT 2013], [Nesterov & Spokoiny; FoCM

2015], . . .

Stochastic heuristics (nature-inspired methods, etc.)

⋄ Popular in practice, especially in engineering

⋄ Typically global in nature

⋄ Require many f evaluations
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Black-Box Algorithms: Direct Search Methods

Pattern Search + Variants
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Popularized by Numerical Recipes

⋄ Rely on indicator functions: [f(xk + s) <? f(xk)]

⋄ Work with black-box f(x), do not exploit structure F [x,S(x)]

⋄ Convergence results for variety of settings

Survey → [Kolda, Lewis, Torczon; SIREV 2003]

Newer NM → [Lagarias, Poonen, Wright; SIOPT 2012]

Tools → DFL [Liuzzi et al.], NOMAD [Audet et al.], . . .
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Making the Most of Little Information About Smooth f

⋄ Overhead of the optimization routine is minimal (negligible?) relative to cost of
evaluating simulation
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Model-Based Trust-Region Algorithms

Substitute min {qk(x) : x ∈ Bk} for min f(x)

qk(x) = f(xk) + g⊤k (x− xk) +
1

2
(x− xk)

⊤Hk(x− xk)

f expensive, no ∇f

qk cheap, analytic
derivatives
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5 Trust region:
Bk = {x ∈ Ω : ‖x− xk‖ ≤ ∆k}

⋄ Trust qk ≈ f in Bk

⋄ Update based on ρk =
f(xk)−f(x+)

qk(xk)−qk(x+)

Typical models

⋄ Only need (occasional) local
approximation

⋄ Taylor-based: gk = ∇f(xk),
Hk ≈ ∇2f(xk)

→ [Conn, Gould, Toint; SIAM 2000]
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Black-Box Algorithms: Building Models Without Derivatives

Given data (Xk, f (Xk)) and basis Φ, “solve”

Φ(Xk)z =
[

Φc Φg ΦH

]





zc
zg
zH



 = f = f (Xk)

n = 2, |Xk| = 4

Full quadratics, |Xk| =
(n+1)(n+2)

2

⋄ Interpolation: qk(yi) = f(yi), ∀yi ∈ Xk

⋄ Geometric conditions on points in Xk

Undetermined interp., |Xk| <
(n+1)(n+2)

2

⋄ Use (Powell) Hessian updates
mingk,Hk

‖Hk −Hk−1‖
2
F

s.t. qk = f on Xk

Regression, |Xk| >
(n+1)(n+2)

2

⋄ Solve minz ‖Φz − f‖
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Multivariate (Scattered Data) Interpolation is a Different Kind of Animal

m(yi) = f(yi) ∀yi ∈ X

n = 1 Given distinct points, can find a unique degree |X | − 1 polynomial m

n > 1 Not true! (see Mairhuber-Curtis Theorem)
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→ [Wendland; CUP 2010]
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Convergence to Stationary Points & Software

limk→∞ ∇f(xk) = 0 provided:

0. f is sufficiently smooth and regular (e.g., bounded level sets)

1. Control Bk based on model quality

2. (Occasional) approximation within Bk

Our quadratics satisfy
� |qk(x) − f(x)| ≤ κ1(γf + ‖Hk‖)∆

2
k, ∀x ∈ Bk

� ‖gk + Hk(x − xk) − ∇f(x)‖ ≤ κ2(γf + ‖Hk‖)∆k, ∀x ∈ Bk

3. Sufficient decrease

Michael J.D. Powell, 1936-2015

Survey →[Conn, Scheinberg, Vicente; SIAM 2009]

Methods →[Powell: COBYLA, UOBYQA, NEWUOA, BOBYQA, LINCOA],

. . .

Line search methods also work →[Kelley et al; IFFCO]

RBF models also work →[W. & Shoemaker; SIREV 2013]

Probabilistic models→[Bandeira, Scheinberg, Vicente; SIOPT 2014]
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II. Exploiting Structure



Structure in Simulation-Based Optimization, min f(x) = F [x, S(x)]

f is often not a black box S

NLS Nonlinear least squares

f(x) =
∑

i

(Si(x)− di)
2

CNO Composite (nonsmooth) optimization

f(x) = h(S(x))

SKP Not all variables enter simulation

f(x) = g(xI , xJ) + h(S(xJ ))

SCO Only some constraints depend on simulation

min{f(x) : c1(x) = 0, cS(x) = 0}

+ Slack variables

ΩS = {(xI , xJ) : S(xJ) + xI = 0, xI ≥ 0}

. . .

Model-based methods offer one way to exploit such structure
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General Setting – Modeling Smooth S1(x), S2(x), . . . , Sp(x)

Assume:

⋄ each Si is continuously differentiable, available

⋄ each ∇Si is Lipschitz continuous, unavailable
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General Setting – Modeling Smooth S1(x), S2(x), . . . , Sp(x)

Assume:

⋄ each Si is continuously differentiable, available

⋄ each ∇Si is Lipschitz continuous, unavailable

mSi : Rn → R approximates Si on B(x,∆) i = 1, . . . , p

Fully Linear Models

mSi fully linear on B(x,∆) if there exist constants κi,ef and κi,eg independent of x
and ∆ so that

|Si(x+ s)−mSi(x+ s)| ≤ κi,ef∆
2 ∀s ∈ B(0,∆)

‖∇Si(x+ s)−∇mSi(x+ s)‖ ≤ κi,eg∆ ∀s ∈ B(0,∆)
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NLS– Nonlinear Least Squares f(x) = 1
2

∑
iRi(x)

2

Obtain a vector of output R1(x), . . . , Rp(x)

⋄ Model each Ri

Ri(x) ≈ m
Ri
k

(x) = Ri(xk) + (x− xk)
⊤g

(i)
k

+
1

2
(x− xk)

⊤H
(i)
k

(x− xk)

⋄ Approximate:

∇f(x) =
∑

i

∇Ri(x)Ri(x) −→
∑

i

∇m
Ri
k (x)Ri(x)

∇2f(x) =
∑

i

∇Ri(x)∇Ri(x)
⊤ +

∑

i

Ri(x)∇
2Ri(x)

−→
∑

i

∇m
Ri
k (x)∇m

Ri
k (x)⊤ +

∑

i

Ri(x)∇
2m

Ri
k (x)

⋄ Model f via Gauss-Newton or similar

regularized Hessians →DFLS [Zhang, Conn, Scheinberg]

full Newton →POUNDERS [W., Moré]
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NLS– Consequences for f(x) = 1
2

∑
i Ri(x)

2

Pay a (negligible for expensive S) price in terms of p models

⋄ Save linear algebra using interpolation set Xk common to all models
� Single system solve, multiple right hand sides

Φ(Xk)
[

z(1) · · · z(p)
]

=
[

R1 · · · Rp

]

� mR1 quality ⇒ quality of all mRi

+ (nearly) exact gradients for Ri (nearly) linear

- No longer interpolate function at data points

m(xk + δ) = f(xk)

+δ⊤
∑

i g
(i)
k

Ri(xk)

+ 1
2
δ⊤

∑

i

(

g
(i)
k

(g
(i)
k

)⊤ + Ri(xk)H
(i)
k

)

δ

+ missing h.o. terms
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NLS– POUNDERS in Practice: DFT Calibration/MLE

minx
p
∑

i=1
wi (Si(x)− di)

2

Si(x) Simulated (DFT) nucleus property

di Experimental data i

wi Weight for data type i

p Parallel simulations (12 wallclock mins)

50 150 250
0
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15

20

Day 1 Day 2 Day 3

Number of 12min. Evaluations

Le
as

t f
 V

al
ue

 

 

nelder−mead
pounders

→[Kortelainen et al., PhysRevC 2010]
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CNO– Composite Nonsmooth Optimization Examples

Ex.- Groundwater remediation

Determine rates x for
extraction/injection wells

⋄ Regulator’s simulator returns
flow Si(x) in/out of cell i

⋄ Minimize plume fluxes
(e.g., regulatory $ penalties)
f(x) =

∑

i

|Si(x)|

→ See MS90 later today Lockwood Solvent Ground Water Plume Site (LSGPS)

Ex.- Particle accelerator design

Minimize particle losses: f(x) = max
ti∈T1

S(x; ti)− min
ti∈T2(x)

S(x; ti)
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CNO– Composite Nonsmooth Optimization f(x) = h(S(x);x)

nonsmooth (algebraically available) function h : Rp × Rn → R

of a smooth (blackbox) mapping S : Rn → Rp
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CNO– Composite Nonsmooth Optimization f(x) = h(S(x);x)

nonsmooth (algebraically available) function h : Rp × Rn → R

of a smooth (blackbox) mapping S : Rn → Rp

Basic Idea: Knowledge of vector S(xk) & potential nondifferentiability at S(xk)
should enhance (theoretical and practical) progress to a stationary point

Ex.- f1(x) = ‖S(x)‖1 =
∑p

i=1 |Si(x)|

∂f1(x) =
∑

i:Si(x) 6=0

sgn(Si(x))∇Si(x) +
∑

i:Si(x)=0

co {−∇Si(x),∇Si(x)}

⋄ Dc = {x : ∃i with Si(x) = 0,∇Si(x) 6= 0}

+ Compact ∂f(x)

- Dc depends on ∇Si(x)
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CNO– The Nuisance Set, N

Relaxation N ⊆ Dc using only zero-order
information

f1:
N = {x : ∃i with Si(x) = 0}

f∞:

N =

{

x : f∞(x) = 0 or

∣

∣

∣

∣

argmax
i

|Si(x)|

∣

∣

∣

∣

> 1

}

|x 3 |

x3

-x 3

f1(x) = |x3|

||S(x)||
∞

S
1
(x)

S
2
(x)

f∞(x) = max{|S1(x)|, |S2(x)|}
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Relaxation N ⊆ Dc using only zero-order
information

f1:
N = {x : ∃i with Si(x) = 0}

f∞:

N =

{

x : f∞(x) = 0 or

∣

∣

∣

∣

argmax
i

|Si(x)|

∣

∣

∣

∣

> 1

}

Observe

When xk /∈ N ,

∂f(xk) = ∇f(xk)
= ∇xS(xk)⊤∇Sh(S(x

k))
≈ ∇xM(xk)⊤∇Sh(S(x

k))

and smooth approximation is justified

|x 3 |

x3

-x 3

f1(x) = |x3|

||S(x)||
∞

S
1
(x)

S
2
(x)

f∞(x) = max{|S1(x)|, |S2(x)|}
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CNO– Subdifferential Approximation

⋄ xk ∈ N , we build a set of generators G(xk) based on ∂Sh(S(x
k)).

� co

{

G(xk)
}

approximates ∂f(xk)

Ex.- f1(x) = ‖S(x)‖1

G(xk) = ∇M(xk)⊤

{

sgn(S(xk)) + ∪
i:Si(x

k)=0
{−ei, 0, ei}

}
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CNO– Subdifferential Approximation

⋄ xk ∈ N , we build a set of generators G(xk) based on ∂Sh(S(x
k)).

� co

{

G(xk)
}

approximates ∂f(xk)

Ex.- f1(x) = ‖S(x)‖1

G(xk) = ∇M(xk)⊤

{

sgn(S(xk)) + ∪
i:Si(x

k)=0
{−ei, 0, ei}

}

Nearby data X ⊂ B(xk ,∆k) informs models M = mS and generator set

⋄ Manifold sampling method uses manifold(s) of X

∇M(xk)⊤ ∪
yi∈X

mani
(

S(yi)
)

⋄ Traditional gradient sampling → [Burke, Lewis, Overton; SIOPT 2005]

∪
yi∈X

∇M(yi)⊤mani
(

S(yi)
)
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CNO– Smooth Trust-Region Subproblem

Smooth master model from minimum-norm element

mf (xk + s) = f(xk) +
〈

s,proj
(

0, co
{

G(xk)
})〉

+ · · ·
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CNO– Smooth Trust-Region Subproblem

Smooth master model from minimum-norm element

mf (xk + s) = f(xk) +
〈

s,proj
(

0, co
{

G(xk)
})〉

+ · · ·

⇒ smooth subproblems

min
{

mf (xk + s) : s ∈ B(0,∆k)
} vs.

Nonsmooth subproblems

min
{

h
(

M
(

xk + s
))

: s ∈ B(0,∆k)
}

⋄ Convex h (e.g., ‖S(x)‖1) and
∇Si is Lipschitz
⇒ every cluster point of
{xk}k is Clarke stationary

→ [Larson, Menickelly, W.; Preprint

2016]

⋄ OK to sample at xk ∈ DC

⋄ More general (piecewise
differentiable f) results:

→ [Larson, Khan, W.; in prog. 2016]

(yesterday in MS155!)

⋄ Requires
convex h

→ [Fletcher;

MathProgStudy 1982]

→ [Grapiglia, Yuan,

Yuan; C&A Math.

2016]

Complexity results

→ [Garmanjani,

Júdice, Vicente; SIOPT

2016]

Roger Fletcher
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CNO– Example Performance on L1 Test Problems

Function Value
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Smooth black-box methods can fail in practice, even when DC has measure zero

Numerical tests: → [Larson, Menickelly, W.; Preprint 2016]
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SKP– Some Known Partials Example

Ex.- Bi-level model calibration structure

min
x

{

f(x) =

p
∑

i=1

(Si(x)− di)
2

}

Si(x) solution to lower-level problem depending only on xJ

Si(x) = gi(x) + min
y

{hi(xJ ; y) : y ∈ Di}

= gi(x) + hi(xJ ; yi,∗[xJ ])

For x = (xI , xJ )

⋄ ∇xI
Si(xI , xJ) available

⋄ ∇xJ
Si(x) ≈ ∇xJ

gi(x) +∇xJ
mS̃i(xJ )

⋄ Si(x) continuous and smooth in xI

⋄ gi(x) cheap to compute!

⋄ No noise/errors introduced in gi(x)

General bi-level →[Conn & Vicente, OMS 2012]
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SKP– Some Known Partials

x = (xI , xJ ); have
∂f
∂xI

but not ∂f
∂xJ

“Solve”
Φz = f

with known zg,I , zH,I

[

Φc Φg,J ΦH,J

]





zc
zg,J
zH,J



 = f −Φg,Izg,I − ΦH,IzH,I

⋄ Still have interpolation where required
⋄ Effectively lowers dimension to |J | = n− |I| for

� approximation
� model-improving evaluations
� linear algebra

⋄ limk→∞ ∇f(xk) = 0 as before:
� Guaranteed descent in some directions
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SKP– Numerical Results With Some Partials
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Three approaches:

- black box

s exploit least squares

m use ∇xI
derivatives

⋄ n = 16, |I| = 3

⋄ 5-10 secs/evaluation

Same algorithmic framework, performance advantages from exploiting structure

→[Bertolli, Papenbrock, W., PRC 2012]
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SCO- General Constraints

min{f(x) : c1(x) = 0, cS(x) = 0}

⋄ Lagrangian (key to optimality conditions):

∇L = ∇f + λ⊤
1 ∇c1 + λ⊤

2 ∇cS

→ ∇f + λ⊤
1 ∇c1 + λ⊤

2 ∇m

⋄ Use favorite method: filters, augmented Lagrangian, . . .
⋄ Slack variables

� Do not increase effective dimension
� Subproblems can treat separately
� Know derivatives

→[Lewis & Torczon; 2010]

Modified AL methods →[Diniz-Ehrhardt, Mart́ınez, Pedroso; C&A Math. 2011]

SBO constraints have unique properties →[Le Digabel & W.; ANL/MCS-P5350-0515 2016]
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SCO– What Constraint Derivatives Buy You

Ex.- Augmented Lagrangian methods, LA(x, λ;µ) = f(x)− λ⊤c(x) + 1
µ
‖c(x)‖2

minx {f(x) : c(x) = 0}

Four approaches:

1. Penalize constraints

2. Treat c and f both as
(separate) black boxes

3. Work with f and ∇xc

4. Have both ∇xf and ∇xc
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OPTIMIZE EVERYTHING

Mathematically unwrap problems to expose (the deepest) black boxes

⋄ Structure is everywhere, even in legacy-code-driven optimization problems

⋄ Exploiting structure is one way to expand range of optimization to solve
grand-challenge problems

⋄ Sacrifice little in convenience
� Output & model residuals {ri(x)}i, not ‖r(x)‖
� Output & model constraints {ci(x)}i, not a penalty P (c(x))
� Explicitly handle nonsmoothness (and noise, . . . )

⋄ Papers and links at www.mcs.anl.gov/~wild

⋄ Collaborators in this work:
Awesome opportunities for students
Aswin Kannan (UIUC), Slava Kungurtsev (UCSD),
Jeff Larson (UC-Denver), Matt Menickelly (Lehigh)
. . . and postdocs!
Prasanna Balaprakash (UL Bruxelles), Kamil Khan (MIT)

AN16, Boston 31



OPTIMIZE EVERYTHING

Mathematically unwrap problems to expose (the deepest) black boxes

⋄ Structure is everywhere, even in legacy-code-driven optimization problems

⋄ Exploiting structure is one way to expand range of optimization to solve
grand-challenge problems

⋄ Sacrifice little in convenience
� Output & model residuals {ri(x)}i, not ‖r(x)‖
� Output & model constraints {ci(x)}i, not a penalty P (c(x))
� Explicitly handle nonsmoothness (and noise, . . . )

⋄ Papers and links at www.mcs.anl.gov/~wild

⋄ Collaborators in this work:
Awesome opportunities for students
Aswin Kannan (UIUC), Slava Kungurtsev (UCSD),
Jeff Larson (UC-Denver), Matt Menickelly (Lehigh)
. . . and postdocs!
Prasanna Balaprakash (UL Bruxelles), Kamil Khan (MIT)

Thank YOU!
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