Argonne°

NATIONAL LABORATORY.

Beyond the Black Box
in Derivative-Free and Simulation-Based Optimization

Stefan Wild

Argonne National Laboratory
Mathematics and Computer Science Division

Joint work with Prasanna Balaprakash (Argonne), Aswin Kannan (IBM),
Kamil Khan (Argonne—McMaster), Slava Kungurtsev (Czech TU Prague),
Jeff Larson (Argonne), Matt Menickelly (Lehigh), Jorge Moré (Argonne)

July 13, 2016

(@ ENERGY



Optimizing (Almost) Everything!

0. Simulation-based and derivative-free optimization?

I. Optimization of black boxes
< Empirical performance tuning of HPC codes

< Model-based algorithms

1. Exploiting structure in functions of black boxes
© Least squares - calibrating DFT sims
© Nonsmoothness - bioremediation
© Some partials - multilevel energy functionals

< Constraints
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Simulation-Based Optimization

:?61]%}‘ {f(z) = Flz,S(2)]: cilz, S(x)] <0, cglz, S(x)] =0}

= “parameter estimation” &~ “model calibration” =~ ‘“design optimization” =~ ...

© S :R™ — CP simulation output, often “noisy” (even when deterministic)
< Derivatives VS often unavailable or
prohibitively expensive to obtain/approximate directly
© S can contribute to objective and/or constraints
< Single evaluation of S could take seconds/minutes/hours/. ..
= Evaluation is a bottleneck for optimization

cal) simulations arise everywhere

Y AN16, Boston



Blame Computing!

... for pervasiveness of

simulations in sci&eng

< Parallel /multi-core
environments common

< Simulations (“forward
problem™) faster, more
realistic/complex

Argonne's AVIDAC
(1953 vacuum tubes)
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Blame Computing!

... for pervasiveness of

simulations in sci&eng

< Parallel /multi-core
environments common

< Simulations (“forward

Sunway
problem™) faster, more Argonne's AVIDAC TaihuLight

Argonne’s BlueGene/Q

.. 2012 0.8M cores
realistic/complex (1953 vacuum tubes) ( ) (2016 11M cores)

... for the challenges in SBO

& Optimization, UQ often an afterthought

o Obstacles for Algorithmic Differentiation
(coupled legacy/proprietary codes, memory)

— [Coleman & Xu; SIAM 2016], [Griewank & Walther; SIAM 2008]
— MS76 today!

& Computational noise can complicate everything
—[Moré & W.; SISC 2011]

¢ Finite differences noisy, possibly expensive
— [Moré & W.; TOMS 2012]

¢ Computational budget limits # f evals

s Y AN16, Boston 3 0O



Derivative-Free Optimization

“Some derivatives (V;.S(z)) unavailable for optimization purposes”
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Derivative-Free Optimization

“Some derivatives (V,S(z)) unavailable for optimization purposes”

The Challenge:

Optimization is tightly coupled with derivatives

Typical optimality (no noise, smooth functions)

Vaef(@e) + AT Vecg(zs) =0,cp(@s) =0

William Karush [Optimization Stories, 2012]

(sub)gradients V. f, Vzc enable:

< Faster feasibility

< Faster convergence

¢ Guaranteed descent
¢ Approximation of nonlinearities

"~

< Better termination
¢ Measure of criticality

Ve fll 1P (Ve N
© Sensitivity analysis
¢ Correlations, standard errors, UQ, ...

Q?i AN16, Boston 4 B



The Price of Algorithm Choice: Solvers in PETSc/TAO
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Toolkit for Advanced Optimization

[Munson et al.; mcs.anl.gov/tao]

Increasing level of user input:

nm Assumes V f
unavailable, black box

pounders Assumes Vg f
unavailable, exploits
problem structure

Imvm Uses available V. f
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Toolkit for Advanced Optimization

[Munson et al.; mcs.anl.gov/tao]

Increasing level of user input:

nm Assumes V f
unavailable, black box
pounders Assumes Vg f
unavailable, exploits
problem structure
THIS TALK
Imvm Uses available V. f

DFO methods should be designed to
beat finite-difference-based methods

Observe: Constrained by budget on #evals, method limits solution accuracy/problem size
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Black-Box Optimization

min f(z)

S

(Scalar) Output of an experiment
Proprietary libraries/closed codes

Often discrete/compact domains
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Black-Box Optimization

Inputs

min f(z)

S

(Scalar) Output of an experiment
Proprietary libraries/closed codes

Often discrete/compact domains

Throughout this talk: ) -SIMULATOR-
“Black box” is both good and evil

s Y AN16, Boston



EEEEEEEEEEEEE—S—S
A Black Box: Automating Empirical Performance Tuning

. . . c
Given semantically equivalent codes ks} *
P . . [
r1,T2,..., minimize run time subject to L 29
energy consumption c g
(SIS
—
N v
L8]
() o
£s
o
c
2 2]
C s 20 25 3.0 35 4.0 45 5.0

Run time (s) on BG/P

min {f(x) : (xc,zz,28) € Qe x Oz x O}

2 multidimensional parameterization (compiler type, compiler flags, unroll/tiling
factors, internal tolerances, ...)

Q search domain (feasible transformation, no errors)

f quantifiable performance objective (requires a run)

— [Audet & Orban; SIOPT 2006], [Balaprakash, W., Hovland; ICCS 2011], [Porcelli & Toint; 2016]
Numerical Linear Algebra — [N. Higham; SIMAX 1993], ...

on AN16, Boston 7 B



Black-Box Algorithms: Stochastic Methods

Random search

Repeat:
1. Randomly generate direction dj € R"
2. Evaluate “gradient-free oracle” g(zy; hg) = %}de
(= directional derivative)
3. Compute zp 1 = @, — dkg(xg; hi), evaluate f(zjyq)
Convergence (for different types of f) tends to be probabilistic
[Kiefer & Wolfowitz; AnnMS 1952], [Polyak; 1987], [Ghadimi & Lan; SIOPT 2013], [Nesterov & Spokoiny; FoCM
2015], ...

Qgi AN16, Boston



Black-Box Algorithms: Stochastic Methods

Random search

Repeat:
1. Randomly generate direction dj € R"
2. Evaluate “gradient-free oracle” g(zy;hy) = %}de

(= directional derivative)

3. Compute zp 1 = @, — dkg(xg; hi), evaluate f(zjyq)

Convergence (for different types of f) tends to be probabilistic
[Kiefer & Wolfowitz; AnnMS 1952], [Polyak; 1987], [Ghadimi & Lan; SIOPT 2013], [Nesterov & Spokoiny; FoCM
2015], ...

Stochastic heuristics (nature-inspired methods, etc.)

< Popular in practice, especially in engineering
< Typically global in nature

< Require many f evaluations

QE AN16, Boston



Black-Box Algorithms: Direct Search Methods

Pattern Search + Variants Nelder-Mead + Variants

X
Easy to parallelize f evaluations Popularized by Numerical Recipes
© Rely on indicator functions: [f(zy + s) <7 f(xy)]
© Work with black-box f(x), do not exploit structure F'[z,S(x)]
< Convergence results for variety of settings

Survey — [Kolda, Lewis, Torczon; SIREV 2003]
Newer NM — [Lagarias, Poonen, Wright; SIOPT 2012]
Tools — DFL [Liuzzi et al.], NOMAD [Audet et al], ...

AN16, Boston 9 B



EEEEEEEEEEEEE—S—S
Making the Most of Little Information About Smooth f

© Overhead of the optimization routine is minimal (negligible?) relative to cost of
evaluating simulation

Bank of data, {x;, f(;z:qy)}f':l:

= Points (& function values) evaluated so
far

= Everything known about f
Goal:

© Make use of growing Bank as
optimization progresses

< Limit unnecessary evaluations

(geometry /approximation)

AN16, Boston 10 =2
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Making the Most of Little Information About Smooth f

© Overhead of the optimization routine is minimal (negligible?) relative to cost of
evaluating simulation

Bank of data, {x;, f(xi)}lez

20

Points (& function values) evaluated so
far

= Everything known about f
Goal:

o (L] g x// 3 © Make use of growing Bank as
4 . ) optimization progresses

< Limit unnecessary evaluations

(geometry /approximation)
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Model-Based Trust-Region Algorithms

Substitute min {g; () : © € By} for min f(x) f expensive, no V f
1 qir cheap, analytic
ai(z) = f(zr) + glj (x — k) + 5(30 - mk)THk(a? —Tk) derivatives

Trust region:

B, ={x € Q: ||z —ag|| <A}

© Trust g, = f in By,

flep)—flzy)
ak(zr)—ak (z4)

Typical models

© Only need (occasional) local
approximation
< Taylor-based: g = V f(z),
Hy, =~ V?f(xy)
— [Conn, Gould, Toint; SIAM 2000]

© Update based on pi =

Q?i AN16, Boston 11
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EEEEEEEEEEEEE—S—S
Black-Box Algorithms: Building Models Without Derivatives

Given data (X, f (Xk)) and basis ®, “solve”

P(X)z=[ ®c P9 Pu || zg | =f=f(Xk)

|| = Eint2)

Full quadratics,

© Interpolation: g1 (yi) = f(yi), Vi € X
< Geometric conditions on points in X},

Undetermined interp., |X)| < W

© Use (Powell) Hessian updates
mingk»Hk ”Hk - Hk—l”%"
st. qp =fon X}

Regression, | Xx| > %

© Solve min; ||®z — {||

QE; AN16, Boston 12 B



EEEEEEEEEE—————S
Multivariate (Scattered Data) Interpolation is a Different Kind of Animal

m(y:;) = f(yi) Yy eX

n =1 Given distinct points, can find a unique degree |X| — 1 polynomial m
n > 1 Not true! (see Mairhuber-Curtis Theorem)

S AN16, Boston 13 B



EEEEEEEEEE—————S
Multivariate (Scattered Data) Interpolation is a Different Kind of Animal

m(y:;) = f(yi) Yy eX

n =1 Given distinct points, can find a unique degree |X| — 1 polynomial m
n > 1 Not true! (see Mairhuber-Curtis Theorem)

Y \
o
SN *r
e
y x
X
6th point for a quadratic in R2 Nearby constraints affect geometry

— [Wendland; CUP 2010]

QL — AN16, Boston 13 B



Convergence to Stationary Points & Software

0. f is sufficiently smooth and regular (e.g., bounded level sets)
1. Control By based on model quality
2. (Occasional) approximation within By

Our quadratics satisfy

lax () = f(2)] < r1(yy + I HR|DAR, Yz € By
lgr + Hi(z — zx) — V(@) < k2(vs + | Hell) Ak, Vo € By

3. Sufficient decrease

Survey —[Conn, Scheinberg, Vicente; SIAM 2009]
Methods —[Powell: COBYLA, UOBYQA, NEWUOA, BOBYQA, LINCOA],

Line search methods also work — [Kelley et al; IFFCO]
RBF models also work —[W. & Shoemaker; SIREV 2013]
Probabilistic models— [Bandeira, Scheinberg, Vicente; SIOPT 2014]

Michael J.D. Powell, 1936-2015

AN16, Boston 14






R EEEEEEEEE———SSS
Structure in Simulation-Based Optimization, min f(z) = F[x, S(z)]

f is often not a black box S

NLS Nonlinear least squares
Fla) = (Si(x) = di)?
i
CNO Composite (nonsmooth) optimization

f(@) = h(5(z))

SKP Not all variables enter simulation

f@) =g(zr,25) + h(S(z)))

SCO Only some constraints depend on simulation

min{ /(@) : e1(@) = 0, cs(z) = 0}
+ Slack variables

Qs ={(zr,z5): S(xy)+xr =0,27 >0}
Model-based methods offer one way to exploit such structure

AN16, Boston 15 B



EEEEEEEEEEEE—S—S
General Setting — Modeling Smooth S;(z), S2(x), ..., Sp(x)

Assume:
< each S; is continuously differentiable, available

© each V.S, is Lipschitz continuous, unavailable

Q?i AN16, Boston 16 O



EEEEEEEEEEEE—S—S
General Setting — Modeling Smooth S;(z), S2(x), ..., Sp(x)

Assume:
< each S; is continuously differentiable, available

© each V.S, is Lipschitz continuous, unavailable

mSi : R™ — R approximates S; on B(z, A) i=1,...,p

Fully Linear Models

mSi fully linear on B(x, A) if there exist constants k; of and r; eg independent of x
and A so that

[Si(z + 5) — mTi(z +8)| < Ky s A2 Vs € B(0, A)
IVSi(z + s) — VmSi(z + s)|| < Kiegd Vs € B(0,A)

QE AN16, Boston 16 =2



NLS— Nonlinear Least Squares f(z) = 3 3. R;()?

Obtain a vector of output Ry (z),. ..

< Model each R;

Rile) = mf? () = Ralan) + o — ) "ol + 2@ — 2 HY @ = 22)

< Approximate:

V()

Z VR;(x)Ri(z)  —> Z Vmy (z)R;(x)

V2 f(x)

Z VR;(x)VR;(x) T + ZR () V2R;(x)
— > Vm (@) Vm (x)T + 3 Ri(@)V?ml (z)

© Model f via Gauss-Newton or similar

regularized Hessians —DFLS [Zhang, Conn, Scheinberg]
full Newton —POUNDERS [W., Moré|

QE AN16, Boston 17



NLS— Consequences for f(z) = 1>, R;(z)?

Pay a (negligible for expensive S) price in terms of p models

< Save linear algebra using interpolation set X common to all models
¢ Single system solve, multiple right hand sides

B[ 2D o 2 J=[ R - R, ]

¢ mfa quality = quality of all mfti

+ (nearly) exact gradients for R; (nearly) linear

- No longer interpolate function at data points

m(zy +0) = f(wk) _
+87 5, 94 Ri() _
30755 (0 )T + RiCe) 1) 8
+ missing h.o. terms

@ AN16, Boston
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NLS— POUNDERS in Practice: DFT Calibration/MLE

2
ming 37 wi (Si(x) — di)?
i=1
Si(z) Simulated (DFT) nucleus property
d; Experimental data %
w; Weight for data type 7

p Parallel simulations (12 wallclock mins)

ol i | o nelder-mead

' |#-pounders

o 15; Day 1 i Day 2 | Day3 1
E 1 1
> : :
7 100 : E
g : :
‘o-0,. : :
°. 4 ;

7000 0:1g. ...

0 150 250
Number of 12min. Evaluations

— [Kortelainen et al., PhysRevC 2010]

Y AN16, Boston
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NS,
CNO- Composite Nonsmooth Optimization Examples

Ex.- Groundwater remediation o s
S S
Determine rates z for c\@“’
extraction /injection wells & g
&/ = ]
< Regulator's simulator returns & e i
flow S;(z) in/out of cell ¢ &/ ks g
< Minimize plume fluxes H
. K=6mid g
(e.g., regulatory $ penalties) 3 . k]
) = Si(x
§(&) = 218:(2) AN -
Bedrock Outcrop (no flow)
—> See MS90 later today Lockwood Solvent Ground Water Plume Site (LSGPS)
Ex.- Particle accelerator design
Minimize particle losses: f(z) = max S(z;t;) — min S(z:t;
p f() = max S(ait) —  min S(rih)

Qgi AN16, Boston 20 ©
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 EEEEEEEEE——SSS
CNO- Composite Nonsmooth Optimization f(x) = h(S(x);x)

nonsmooth (algebraically available) function h : RP x R™ — R
of a smooth (blackbox) mapping S : R™ — RP

on AN16, Boston 21 B
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CNO- Composite Nonsmooth Optimization f(x) = h(S(x);x)

nonsmooth (algebraically available) function h : RP x R™ — R
of a smooth (blackbox) mapping S : R™ — RP

Basic Idea: Knowledge of vector S(z*) & potential nondifferentiability at S(z*)
should enhance (theoretical and practical) progress to a stationary point

Ex- () = [S@)lh = Xy [Si(x)|

off(m) =D sen(Si(@)VSi(x)+ > co{-VSi(z), VS(x)}

4:5; () #0 :5; (x2)=0

© D¢ ={z : Fi with S;(z) =0,V S;(z) # 0}

+ Compact 9f(x)
- D€ depends on VS;(z)

L; AN16, B 21 O
S oston



CNO- The Nuisance Set, N/

Relaxation A/ C D¢ using only zero-order
information

I
N = {z : 3 with S;(z) =0}

o

N:{z;foo(z):mr

> 1}

arg max |9 (z)|

° AN16, Boston
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CNO- The Nuisance Set, N

Relaxation A/ C D¢ using only zero-order
information

I
N = {z : 3 with S;(z) =0}
I

arg max |9 (z)|
k2

> 1]

N:{z:foo(z):OOr

When zF ¢ N,
af(*) =Vf(z¥)
= V.S(2") TV sh(S(z*))
~ VoM (2R)TVgh(S(x*))

and smooth approximation is justified

a&n AN16, Boston
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CNO- Subdifferential Approximation

¢ 2k € N, we build a set of generators G(z*) based on dsh(S(z*)).
¢ co {g(zk)} approximates 8 f (z*)

Ex- fi(z) = IS(@)]1

G(a*) = VM (*)" {Sgn(s(wk))Jr U {—ei,O,ei}}

i:S;(zk)=0

Ai AN16, Boston 23 B



CNO- Subdifferential Approximation

¢ 2k € N, we build a set of generators G(z*) based on dsh(S(z*)).
¢ co {g(zk)} approximates 8 f (z*)

Ex- f'(z) = [|S(2)]x

i:S; (xk)=0

G(a*) = VM (*)" {Sgﬂ(S(wk)) + U {-e0, @i}}

Nearby data X C B(x*, A},) informs models M = m?S and generator set

< Manifold sampling method uses manifold(s) of X

VM@E®T U mani(S(yi))
yrex

< Traditional gradient sampling —> [Burke, Lewis, Overton; SIOPT 2005]

yiLeJX VM (y") T mani (S(y'b))

AN16, Boston



CNO- Smooth Trust-Region Subproblem

Smooth master model from minimum-norm element

mf(wk +38) = f(mk) + <57pr0j (0, co {g(“’k)})> +oe

Y AN16, Boston
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CNO- Smooth Trust-Region Subproblem

Smooth master model from minimum-norm element
mf(gck +s) = f(zk) + <s, proj (0, co {g(xk)})> + .-
= smooth subproblems Nonsmooth subproblems

min {mf(xk +s) : s € B(0, Ak)} min {h (M (mk + s)) 1 s € B(0, Ak)}

© Convex h (e.g., ||S(x)||1) and © Requires
VS, is Lipschitz convex h
= every cluster point of — [Fletcher;
{2*} is Clarke stationary MathProgStudy 1982]
— [Larson, Menickelly, W.; Preprint
2016] —> [Grapiglia, Yuan,
© OK to sample at ¥ € D€ :;:2]; C&A Math.
© More general (piecewise Complexity results
differentiable f) results: —5 [Garmanjani, : S
— [Larson, Khan, W.; in prog. 2016] Judice, Vicente; SIOPT Roger Fletcher
(vesterday in MS155!) 2016]

° AN16, Boston 24
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CNO- Example Performance on L; Test Problems

Function Value Stationary Measure

0.3% -8 CMS
- GDMS
-A-DMS
03 —-SMs
-b-GYY
Q-DFOTR
0.25 L-DFOTR]]

0.2

Best f value found
=
Best ¥ value found

1000 2000 3000 4000 5000 1000 2000 -3000 4000 5000
Number of function evaluations Number of function evaluations

Smooth black-box methods can fail in practice, even when DC has measure zero

Numerical tests: — [Larson, Menickelly, W.; Preprint 2016]

@ AN16, Boston



SKP- Some Known Partials Example

Ex.- Bi-level model calibration structure
P
min {f(m) = Z (Si(z) — dz‘)Q}

=1
Si(z) solution to lower-level problem depending only on z ;
Si(x) = gi(z) +minfhi(zs;y) 1y € Di}
= gi(2) + hi(z;yi«[25])

For z = (z1,z7)
© Vg, Si(xr, ) available
© Vo, Si(r) & Va,gi(2) + Va,mi(z)
© S;(x) continuous and smooth in zy
@ gi(z) cheap to compute!

< No noise/errors introduced in g;(z)

General bi-level —>[Conn & Vicente, OMS 2012]

GE AN16, Boston
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SKP- Some Known Partials

x = (xr,27); have ar

“Solve”
Pz =f
with known zg 1, 2,1
Zc
[ ®c @g0 Puy ]| 290 | =f-Pgrzg1—Prr2m1
ZH,J

< Still have interpolation where required
< Effectively lowers dimension to |J| = n — |I| for

¢ approximation
¢ model-improving evaluations
¢ linear algebra

© limg o0 Vf(zg) = 0 as before:
¢ Guaranteed descent in some directions

Q% AN16, Boston 27



SKP- Numerical Results With Some Partials

10% : : ‘
o =g~ pounder
:il -A-pounders
» =¥ poundersm
g | M L Three approaches:
10" n= 1
0 s - black box
.l i\ .
bt LS. s exploit least squares
Rt O m use V, derivatives
6 | L I |
10 S
e T S =161 =3
v ey -A""A.__‘_ - © 5-10 secs/evaluation
104 "v.‘-’-“"‘V""v‘--V-‘-\:
0 100 200 300 400

Number of Evaluations

Same algorithmic framework, performance advantages from exploiting structure

—>[Bertolli, Papenbrock, W., PRC 2012]

AN16, Boston 28



SCO- General Constraints

min{ f(z) : c1(x) = 0, cs(x) = 0}

© Lagrangian (key to optimality conditions):

VL =Vf+X Vei+A] Ves
= Vf4+ A Ver+AJ Vm

© Use favorite method: filters, augmented Lagrangian, ...
< Slack variables

¢ Do not increase effective dimension
¢ Subproblems can treat separately
¢ Know derivatives

—>[Lewis & Torczon; 2010]
Modified AL methods —[Diniz-Ehrhardt, Martinez, Pedroso; C&A Math. 2011]
SBO constraints have unique properties —[Le Digabel & W.; ANL/MCS-P5350-0515 2016]

Q?i AN16, Boston 29



SCO- What Constraint Derivatives Buy You

Ex.- Augmented Lagrangian methods, L A(x, \; ) = f(z) — A" e(x) + %||c(9c)||2

min, {f(x) : ¢(x)

Four approaches:
1. Penalize constraints

2. Treat ¢ and f both as
(separate) black boxes

3. Work with f and V¢
4. Have both V, f and V¢

Best Merit Function Value
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OPTIMIZE EVERYTHING

Mathematically unwrap problems to expose (the deepest) black boxes

<

<

<

<

Structure is everywhere, even in legacy-code-driven optimization problems

Exploiting structure is one way to expand range of optimization to solve
grand-challenge problems
Sacrifice little in convenience

¢ Output & model residuals {r;(z)};, not ||r(z)||
¢ Output & model constraints {c;(z)};, not a penalty P(c(x))
¢ Explicitly handle nonsmoothness (and noise, . ..)

Papers and links at www.mcs.anl.gov/~wild

Collaborators in this work:

Argonne°

NATIONAL LABORATORY

U.S. DEPARTMENT OF

'ENERGY

Awesome opportunities for students

Aswin Kannan (UIUC), Slava Kungurtsev (UCSD),

Jeff Larson (UC-Denver), Matt Menickelly (Lehigh)
...and postdocs!

Prasanna Balaprakash (UL Bruxelles), Kamil Khan (MIT)

Office of
Science
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