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A Quote with Very Good News for Optimizers!

...Nothing at all takes place in the universe in which some rule of
maximum or minimum does not appear...

Leonhard Euler

Optimization Everywhere...

From laws of Nature, Biology, Physics, Chemistry... To ...

Management Operations, Resource Allocation, Logistic...(started with LP)

Finance, Economics, Human behavior...

Engineering: Mechanical, Structural design, Chemical,...

Machine Learning, Classification, Pattern Recognition, Data
Networks/Mining...

Signal Processing, Communication Systems, Imaging Science, Tomography...

Modern Era: Facebook, Google....

...and in Mathematics itself.
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Goal

Deriving simple and efficient methods capable of solving very large
scale problems

Amenable to theoretical analysis: Convergence/Complexity

Exploit problem structures and data information: Convex and Nonconvex Models

3 ELEMENTARY PRINCIPLES

• Approximation • Regularization • Decomposition
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Simple Minimization Methods

Practical Side – Simplicity/Scalability

Simple computational operations: additions - multiplications

Explicit iterations.

Avoid nested optimization schemes/control-correction of accumulated errors.

Minimal storage of data

Theoretical Side – Convergence/Complexity Analysis

Free from heuristic choices of extra parameters.

Versatile mathematical analytic tools broadly applicable..and with no pains!

Complexity: nearly independent on dimension.

Performance: reasonable for medium accuracy.

Natural Candidates: Schemes based on First Order Methods
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First-Order Methods

First-Order methods are iterative algorithms that only exploit information
on the objective function and its gradient (sub-gradient).

A main drawback: Can be very slow for producing high accuracy
solutions....But share many advantages:

Requires minimal data information

Often lead to very simple and ”cheap” iterative schemes

Provable complexity/efficiency nearly independent of dimension

Suitable for large-scale problems when high accuracy is not crucial. [In many
large scale applications, the data is anyway corrupted or known only roughly.]
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First Order-Based Algorithms

Widely used in applications....

Clustering Analysis: The k-means algorithm

Neuro-computing: The backpropagation algorithm

Statistical Estimation: The EM (Expectation-Maximization) algorithm.

Machine Learning: SVM, Regularized regression, etc...

Signal and Image Processing: Sparse Recovery, Denoising/Deblurring ...

Matrix minimization Problems....and much more...

Marc Teboulle (TAU) First Order Methods for Well Structured Opimization Problems



Some Basic Optimization Models, First Order Algorithms
and Rate of Convergence Results: A Short Tour
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The World’s Simplest Impossible Problem - Moler (1990)

Problem: Given the average of two numbers is 3. What are the numbers?

Typical answers: (2,4), (1,5), (-3,9)......These already ask for
”structure”:..least equal distance from average.. integer numbers..

Why not (2.71828, 3.28172) !?....!...

A nice one: (3,3) ....is with “minimal norm” and its unique!

Simplest: (6,0) or (0,6)?...A sparse one! .... here lack of uniqueness!..

This simple problem captures the essence of many
Ill-posed/underdetermined problems in applications.

Additional requirements have to be specified to make it a reasonable
mathematical/computational task, leading to interesting optimization models.
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Linear Inverse Problems

Problem: Find x ∈ C ⊂ E which ”best” solves A(x) ≈ b, A : E→ F,
where b (observable output), and A are known.

Approach via Optimization – Regularization Models
• ρ(x) is a ”regularizer” (one – or sum of functions, convex or nonconvex)
• d(b,A(x)) some ”proximity” measure from b to A(x)

. min{ρ(x) : A(x) = b, x ∈ C} or min{ρ(x) : d(b,A(x)) ≤ ε, x ∈ C}

. min{d(b,A(x)) : ρ(x) ≤ δ, x ∈ C} or min{d(b,A(x))+µρ(x) : x ∈ C}, µ > 0

Choices for ρ(·), d(·, ·) depends on the application at hand.

Nonsmooth and Nonconvex regularizers ρ useful to describe desired
features.

Intensive research activities over the past 50 years.

Today more with emerging new technologies and increase in computer power.
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Example: Sparsity is a Common Desired Feature/Structure

Arises in Many Applications

Sparse learning: feature selection, support vector machines, PCA,...

Compressive sensing: recover a signal from few measurements ...

Trust topology design: remove bars that are not needed...

Image processing: denoising, deblurring,....and much more....

Example Let d(b,A(x)) := ‖b−A(x)‖2, ρ(x) := ‖x‖0.

Find x ∈ Rd which is sparsest or at least δ-sparse

min{‖x‖0 : ‖b−A(x)‖2 ≤ ε, x ∈ Rd}; min{‖b−A(x)‖2 : ‖x‖0 ≤ δ, ∈ Rd}

where ‖x‖0 denotes the number of nonzero component of x.

This can be Hard (despite the convex objective/constraint!).

Approaches

Convex Relaxation/Approximation: Replace ‖x‖0 by a more tractable
object. The l1-norm ‖x‖1 has been well known (since 70’s) to promote
sparsity. Nonconvex (concave) approximations are also relevant.

Tackle directly the nonconvex problem “as is”?. More on this soon...
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A Basic and Useful Model: Composite Minimization

(M) min {F (x) ≡ f (x) + g(x) : x ∈ E} .

E is a finite dimensional Euclidean space

f : E→ R is smooth: C 1,1
L (L-Lipschitz continuous gradient)

g : E→ (−∞,∞] is nonsmooth extended valued (allowing constraints)

With a constraint set C , replace g by g + δC , the indicator of C :

δC (x) =

{
0, if x ∈ C ,
+∞, otherwise.

This “simple” model (M) has structural information, and captures various
classes of smooth/nonsmooth/convex/nonconvex minimization problems.

We are interested in solving (M) approximately to a given accuracy ε > 0:

F (x̂)− F (x∗) ≤ ε.
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Building First Order Based Schemes: Basic Old Idea

Pick an adequate approximate model

1 Linearize + regularize: Given some y, approximate f (x) + g(x) via:

q(x, y) = f (y) + 〈x− y,∇f (y)〉+
1

2t
‖x− y‖2 + g(x), (t > 0)

That is, leaving the nonsmooth part g(·) untouched.

2 Linearize only + use info on C : e.g., C compact, g := δC

q(x, y) = f (y) + 〈x− y,∇f (y)〉

Solve “some how”, the resulting approximate model:

xk+1 = argmin
x

q(x, xk), k = 0, . . .

.
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Examples xk+1 = argmin
x

q(x, xk)

1. The Proximal-Gradient - [Passty’79, Lions-Mercier’79]

xk+1 = argmin
x∈E

{
g(x) +

1

2tk
‖x− (xk − tk∇f (xk))‖2

}
≡ proxtkg (xk − tk∇f (xk))

proxg(z) := argmin
u

{
g(u) +

1

2
‖u− z‖2

}
[Moreau 64]

The Prox-Grad scheme covers: gradient (g ≡ 0); projected gradient, (g ≡ δC );
proximal minimization (f ≡ 0).
Useful when projection/prox step easy to compute.

2. The Conditional-Gradient Method - g := δC the indicator of C , compact
[Frank-Wolfe’56, Polyak’63, Dunn’78]

� pk = argmin{〈x,∇f (xk)〉 : x ∈ C}, xk+1 = (1− tk)xk + tkpk , tk ∈ (0, 1].

Useful when “linear oracles” � can be efficiently solved.
Schemes widely used in the convex setting.
But also relevant in the Nonconvex setting. More on this soon!
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Global Rate of Convergence/Complexity for Convex FOM

Global Rate (Nonasymptotic) of Convergence Results for F (xk)− F∗

For Prox-Grad and Gradient methods: O(1/k)

For Subgradient Methods: O(1/
√
k).

Can we find a faster method?

Yes we can..!

Idea: From an old algorithm of Nesterov (1983) designed for minimizing a
smooth convex function, and proven to be an “optimal” first order method
(Yudin-Nemirovsky (80)).

But, here our composite problem (M) is nonsmooth. Yet, we can derive a faster
algorithm than Prox-Grad, and equally simple.
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A Fast Prox-Grad Algorithm (FISTA)- [Beck-Teboulle (2009)]

Algorithm as simple as ”prox-grad”, but with the rate O(1/k2).

Fast Prox-Grad Algorithm (FISTA)
For k ≥ 1, compute a prox at auxiliary yk :

xk = prox g
L
(yk −

1

L
∇f (yk)), ←↩ main computation as Prox-Grad

• tk+1 = 2−1(1 +
√

1 + 4t2
k ); sk = t−1

k+1(tk − 1)

•• yk+1 = xk + sk(xk − xk−1).

1 Additional computation in (•) and (••) is marginal.
2 Knowledge of L is not necessary. (Use a backtracking procedure).
3 Extensive testing in the literature confirms the efficiency of FISTA in many

applications e.g.,:
image denoising/deblurring, nuclear matrix norm regularization, matrix
completion problems, multi-task learning, matrix classification, etc..
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An Example: l1-Image Deblurring

min
x
{‖Ax− b‖2 + ‖x‖1}

Comparing ISTA versus FISTA on Problems
• dimension d like d = 256× 256 = 65, 536, or/and 512× 512 = 262, 144.
• The d × d matrix A is dense
(Gaussian blurring times inverse of two-stage Haar wavelet transform).
• All problems with Gaussian noise.

Marc Teboulle (TAU) First Order Methods for Well Structured Opimization Problems



Example l1 Image Deblurring

original blurred and noisy
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1000 Iterations of ISTA versus 200 of FISTA

ProxGrad=ISTA: 1000 Iterations FastPG=FISTA: 200 Iterations
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Original Versus Deblurring via FISTA

Original FISTA:1000 Iterations
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Function Values errors F (xk)− F (x∗)
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Extension: FOM with Non-Euclidean Distances

All previous schemes were based on using the squared Euclidean distance

It is useful to exploit the geometry of the constraints set X

This is done by selecting a “distance-like” function

Typical example: Bregman type distances - based on kernel ψ:

Dψ(x, y) = ψ(x)− ψ(y)− 〈x− y,∇ψ(y)〉, ψ strongly convex

Advantages: can exploit geometry of the constraints and allows to:

1 Simplify the prox computation for the given constraint, with adequate Dψ
2 Preserve Complexity rate O(1/k2)

3 Often improve the constant in the complexity bound.

Studied in various frameworks: Mirror descent algorithms, extragradient-like,
Lagrangians, smoothing, dual fast-prox-grad...

[Nemirovsky-Yudin (80), Teboulle (92), Beck-Teboulle (03), Nemirovsky (04), Nesterov (05),

Auslender-Teboulle (05), Beck-Teboulle.(12,14)...]
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More General Convex Nonsmooth Composite: Saddle Point Based
Methods
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A Class of Structured Convex-Concave Saddle-Point Model

Extends the previous model, and allows for handling more general problems

(SP) min
u∈Rn

max
v∈Rd

{K (u, v) := f (u) + 〈u,Av〉 − g (v)} ,

Data Information

(i) f : Rn → R is convex, smooth :C 1,1
Lf

(ii) g : Rd → (−∞,+∞], is convex nonsmooth

(iii) A : Rd → Rn is a linear map.

The model handles general scenarios with:

g (v1, . . . , vm) :=
m∑
i=1

gi (vi ) ; Av =
m∑
i=1

Aivi , vi ∈ Rdi , d =
m∑
i=1

di
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A Simple Algorithm for the Convex-Concave SP
Drori -Sabach -T. (2015)

Relies on fundamental ideas: it combines duality, predictor-corrector steps,
and proximal operation within very simple iterations.

PAPC – Proximal Alternating Predictor Corrector
For k ≥ 1 compute:

pk = uk−1 − τ
(
Avk−1 +∇f

(
uk−1

))
vk
i = proxgiσi

(
vk−1
i + σiA

T
i p

k
)
, i = 1, 2, . . . ,m,

uk = uk−1 − τ
(
Avk +∇f

(
uk−1

))
.

⊕ The - v step “decomposes” according to structure

⊕ Only prox for each gi (·), and not for the difficult composite gi ◦ Ai .

⊕ The parameters (τ, σi ) are defined in terms of problem’s data Lf ,Ai .
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PAPC – Convergence Results and Features

1 Global Rate of Convergence Shares the best known estimate O(1/ε) for
primal-dual gap. Complexity bound constant in terms of data (Lf ,Ai )

2 Convergence: {(uk , vk)}k∈N converges to a saddle-point (u∗, v∗) of K .

Features of PAPC - Fully exploits given structures of a problem

Free of heuristic/extra parameters: No tuning necessary, etc...

Constraints on the variable u and presence of nonsmooth f can be easily
handled via The Dual Transportation Trick. (Details in Paper).

Performs well in applications: Image processing, Machine Learning ... and
can be applied to many important optimization models which cannot be
tackled by other current methods with same rate:

• minu

{
F (u) +

∑m
i=1 Hi (Biu)

}
• minxi

{∑m
i=1 ψ(xi ) :

∑m
i=1 Mixi = b

}
• minu∈Rp

{
F (u) :

∑m
i=1 Hi (Biu) ≤ α

}
.
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Nonconvex Smooth Models
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Principal Component Analysis (PCA) – Pearson(1901)

PCA is a tool for analyzing data. The way it works: project high dimensional
data to a lower dimension in such a way that the amount of variance
captured by the low dimensional data is maximized.

PCA can be done by eigenvalue decomposition of a data covariance matrix:

max{xTAx : ‖x‖2 = 1, x ∈ Rn}, (A � 0).

Problem with PCA: Each data point is taken as a linear combination
of all original features. Allows for nicely separating data but we don’t
have an interpretation as to what separates the data?

This is where sparsity helps: Sparse PCA solves a similar problem
to PCA but forces the factors to be a linear combinations of a limited
number of the original features.
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Sparse PCA

Principal Component Analysis solves

(PCA) max{xTAx : ‖x‖2 = 1, x ∈ Rn}, (A � 0)

while Sparse Principal Component Analysis solves

(SPCA) max{xTAx : ‖x‖2 = 1, ‖x‖0 ≤ k, x ∈ Rn}, k ∈ (1, n] sparsity

‖x‖0 counts the number of nonzero entries of x

Issues in SPCA:

1 Maximizing a convex objective.

2 Hard nonconvex constraint ‖x‖0 ≤ k .

Current Approaches:

1 SDP Convex Relaxations – too expensive for large problems.

2 Solve modification/approximations of SPCA.
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Sparse PCA via Penalization/Relaxation/Approx.

♠ The problem of interest is the difficult sparse PCA problem as is

max{xTAx : ‖x‖2 = 1, ‖x‖0 ≤ k , x ∈ Rn}

♠ Literature has focused on solving various relaxation/Approximations:

l0-penalized PCA

max {xTAx− s‖x‖0 : ‖x‖2 = 1}, s > 0

Relaxed l1-constrained PCA

max {xTAx : ‖x‖2 = 1, ‖x‖1 ≤
√
k}

Relaxed l1-penalized PCA

max {xTAx− s‖x‖1 : ‖x‖2 = 1}

Approximated-Penalized

max {xTAx− sgp(x) : ‖x‖2 = 1} where gp(x) ' ‖x‖0}

Many algorithms from various disparate approaches/motivations to solve
modifications/appproximations of SPCA: Expectation Maximization;
Majorization-Mininimization techniques; DC programming.. etc..
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A Plethora of Algorithms for Modified/Approximate SPCA

1 Are all current algorithms for modified SPCA different?

2 Can we tackle directly the sparse PCA problem “as is”?
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Sparse PCA Revisited - [Luss and T. (2013)]

Current algorithms for modified SPCA are just a particular realization of
the well-known Conditional Gradient Algorithm! with unit step size.

ConGradU CAN be applied directly to the original problem!

Solving Original Sparse PCA: max{xTAx : ‖x‖2 = 1, ‖x‖0 ≤ k, x ∈ Rn}

ConGradU generates the sequence {x j} via

x j+1 =
Tk(Ax j)

‖Tk(Ax j)‖2
, j = 0, . . .

Tk(a) := argmin
u
{‖u − a‖2

2 : ‖x‖0 ≤ k}

Despite the hard constraint, easy to compute: (Tk(a))i = ai for the k largest
entries (in absolute value) of a and (Tk(x))i = 0 otherwise.

Convergence: Every limit point of {x j} converges to a critical point.

Computationally Cheap: Handles very large-scale SPCA problems
(limited only by storage of data matrix.)
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Nonconvex and NonSmooth Models
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A Broad Class of Nonsmooth Nonconvex Problems

A Useful Block Optimization Model

(B) minimizex,yΨ (x , y) := f (x) + g (y) + H (x , y)

f : Rn → (−∞,+∞] and g : Rm → (−∞,+∞] proper and lsc.

H : Rn × Rm → R is a C 1 function.

Partial gradients of H are smooth C 1,1

♠ NO convexity assumed in the objective and the constraints
(built-in through f and g extended valued).

Two blocks is only for the sake of simplicity. Same for the p-blocks case:

minimizex1,...,xpH (x1, x2, . . . , xp) +

p∑
i=1

fi (xi ) , xi ∈ Rni , n =

p∑
i=1

ni
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PALM: Proximal Alternating Linearized Minimization

PALM ”blends” old spices:
⊕ Space decomposition [á la Gauss-Seidel]
⊕ Composite decomposition [ á la Prox-Gradient].

PALM Algorithm

1. Take γ1 > 1, set ck = γ1L1

(
yk
)

and compute

xk+1 ∈ prox f
ck

(
xk − 1

ck
∇xH

(
xk , yk

))
.

2. Take γ2 > 1, set dk = γ2L2

(
xk+1

)
and compute

yk+1 ∈ prox g
dk

(
yk − 1

dk
∇yH

(
xk+1, yk

))
.

Stepsizes c−1
k , d−1

k are in
]
0, 1/L2(yk)

[
&

]
0, 1/L1(xk+1)

[
.

Main computational step: Computing the prox of a nonconvex function.
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Convergence of PALM and More...

Theorem (Bolte–Sabach–T. 2014)

Assume f , g ,H real semi-algebraic. Any bounded PALM sequence
{
zk
}
k∈N

converges to a critical point z∗ = (x∗, y∗) of Ψ.

Moreover there exists γ > 0,C > 0 such that

‖zk − z∗‖ ≤ C k−γ

1 Are there many semi-algebraic functions?

2 What is behind these results ?

Answer to 2 =⇒

A general convergence framework for any descent algorithm.
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A General Recipe in 3 Main Steps for Descent Methods

A sequence zk is called a descent sequence for F : Rn → (−∞,+∞] if

C1. Sufficient decrease property

∃ρ1 > 0 with ρ1‖zk+1 − zk‖2 ≤ F (zk)− F (zk+1), ∀k ≥ 0

C2. Iterates gap For each k there exists wk ∈ ∂F (zk) such that:

∃ρ2 > 0 with
∥∥wk+1

∥∥ ≤ ρ2‖zk+1 − zk‖,∀k ≥ 0.

These two steps are typical for any descent type algorithms but lead
only to subsequential convergence [Ostrowski 1966].

To get global convergence to a critical point, we need a deep mathematical
tool.[  Lojasiewicz (68), Kurdyka (98)]

C3. The Kurdyka- Lojasiewicz property: Assume that F satisfies the
KL property. Use this to prove that the generated sequence

{
zk
}
k∈N is a

Cauchy sequence, and thus converges!

Impact of KL in optimization:
[Bolte et al. (06,07,10), Attouch-Bolte et al. (09,10,12)]
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The KL Property Informal: A Geometric Snapshot

Let z be critical, with F (z) = 0 (true up to translation); Lη := {z ∈ Rd : 0 < F (z) < η}

Definition [Sharpness] A function F : Rd → (−∞,+∞] is called sharp on Lη if there
exists c > 0 such that min {‖ξ‖ : ξ ∈ ∂F (z)} ≥ c > 0 ∀ z ∈ Lη.
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100

200

KL warrants F amenable to sharpness

−→

−5 0
5−5

0
50

20

Sharp reparameterization ϕ ◦ F

• Sharpness implies excellent convergence properties.

Theorem [Bolte-Daniilidis-Lewis (2006)]

KL property holds for all semi-algebraic functions.
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The KL Property: ( Lojasiewicz (68), Kurdyka (98))

• ϕ : R→ R+ a desingularizing function on (0, η):

ϕ ∈ C [0, η), concave, ϕ ∈ C 1(0, η), ϕ′ > 0, ϕ(0) = 0.

• Lη := {z ∈ Rd : 0 < F (z) < η}

The KL Property F has the KL property on Lη if there exists a desingularizing
function ϕ such that

dist (0, ∂(ϕ ◦ F )(x)) ≥ 1. ∀x ∈ Lη.

Meaning: Subgradients of ϕ ◦ F have a norm bounded away from zero, no
matter how close is z to the critical point z – This is sharpness.
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Answer to 1 - There is a Wealth of Semi-Algebraic
Functions!

Semi-algebraic Sets/Functions

Semi-algebraic objects: defined by finitely polynomials.

Semi-algebraic property is very stable and preserved under many operations :
Finite sums and product, composition, ...

Some Examples - ”Starring” in Optimization/Applications

Real polynomial functions.

Standard Cones: Rd
+, SDP, Lorentz..

Rank, ‖·‖0 and lp-norms (p rational or p =∞)

Indicator functions of semi-algebraic sets...

Marc Teboulle (TAU) First Order Methods for Well Structured Opimization Problems



Application: Nonnegative Matrix Factorization Problems

The NMF Problem: Given A ∈ Rm×n and r � min {m, n}.
Find X ∈ Rm×r and Y ∈ Rr×n such that

A ≈ XY , X ∈ Km,r ∩ F , Y ∈ Kr ,n ∩ G,

Kp,q =
{
M ∈ Rp×q : M ≥ 0

}
F =

{
X ∈ Rm×r : R1 (X ) ≤ α

}
G =

{
Y ∈ Rr×n : R2 (Y ) ≤ β

}
.

R1(·) and R2(·) are functions used to describe some additional/required features
of X ,Y .

(NMF) covers a very large number of problems in applications: Text Mining
(data clusters in documents); Audio-Denoising (speech dictionnary);
Bio-informatics (clustering gene expression); Medical Imaging,...Vast Literature.
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Example: Applying PALM on NMF Problems

I. Nonnegative Matrix Factorization (NMF): F ≡ Rm×r ; G ≡ Rr×n.

min

{
1

2
‖A− XY ‖2

F : X ≥ 0,Y ≥ 0

}
.

II. Sparsity Constrained NMF: Useful in many applications

min

{
1

2
‖A− XY ‖2

F : ‖X‖0 ≤ α, ‖Y ‖0 ≤ β, X ≥ 0,Y ≥ 0

}
.

Sparsity measure of matrix: ‖X‖0 :=
∑

i ‖xi‖0 , (xi column vector of X ).

For both models:

The data is semi-algebraic, and fit our block model (B):

H(X ,Y ) ≡ 2−1 ‖A− XY ‖2
F ; f and g ≡ δU≥0 + δ‖U‖0≤s

PALM produces very simple practical schemes, proven to globally converge.
[Bolte-Sabach-T. (2014)].
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For More Details and Results....

http://www.math.tau.ac.il/~teboulle

THANK YOU FOR YOUR ATTENTION!

Marc Teboulle (TAU) First Order Methods for Well Structured Opimization Problems
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