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The Great Thinkers Agree: Prediction Is Hard 

A fool also is full of words: 
a man cannot tell what shall be; 

and what shall be after him, 
who can tell him? 

 
Ecclesiastes 

When the number of factors coming into play 
in a phenomenological complex is too large, 

scientific method in most cases fails. 
One need only think of the weather, in which 

case the prediction even for a few days 
ahead is impossible. 

 
Albert Einstein 

Our reasons are not prophets 
When oft our fancies are. 

 
William Shakespeare 

It’s tough to make predictions, 
especially about the future. 

 
Yogi Berra * 

*maybe 
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Why Is Prediction Hard? 
Answer 1: The World Is Unpredictable 

An intellect which at a certain moment would know all 
forces that set nature in motion, and all positions of 

all items of which nature is composed, if this intellect 
were also vast enough to submit these data to 

analysis, it would embrace in a single formula the 
movements of the greatest bodies of the universe 
and those of the tiniest atom; for such an intellect 

nothing would be uncertain and the future just like 
the past would be present before its eyes. 

 
Pierre-Simon Laplace, 1814 

It may happen that small differences in the 
initial conditions produce very great ones in 

the final phenomena. A small error in the 
former will produce an enormous error in the 

latter. Prediction becomes impossible. 
 

Henri Poincaré, 1903 

Werner Heisenberg, 1927 
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Why Is Prediction Hard? 
Answer 2: Humans Are Bad at It 

Magical thinking 
Base rate neglect 

Disjunction fallacy 

Conjunction fallacy 

Gambler’s fallacy Availability heuristic 

Affect heuristic 

Planning fallacy 

Choose–reject asymmetry 
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•  Biases on preceding slide are violations of mathematical laws 
–  Transitive property 
–  Probability axioms 
–  Bayes’s rule 

•  Literature going back to Meehl (1954) shows models beat experts 
•  Need to control for biases when building models 

–  Demographics 
–  Education 
–  Quantifiability 

Predictive Analytics Can Help 

But predictive analytics comes with its own mathematical challenges 
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•  Motivation 
•  Predictive analytics 
•  Large, noisy feature data 
•  Evaluating prediction quality 
•  Missing or low-quality ground-truth labels 
•  Conclusion 

Mathematical Challenges in Predictive Analytics 
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What Is Predictive Analytics? 

Business 
understanding 

Data 
preparation 

Deployment Data 

Data 
understanding 

Modeling 

Evaluation 

Historical data 

Produces predictions 

Goal is online deployment 

Predictive analytics is a process, not a suite of models 

The CRISP-DM Model of Analytics ^ 
Predictive 

*Shearer (2000) 
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Models 

Time series analysis “Machine learning” algorithms Custom generative models 

Increasing complexity 

Increasing fidelity potential 

Increasing history of application 
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What Is Predictive Analytics Not? 

Detection Risk Analysis Expert Prediction 
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•  Motivation 
•  Predictive analytics 
•  Large, noisy feature data 
•  Evaluating prediction quality 
•  Missing or low-quality ground-truth labels 
•  Conclusion 

Mathematical Challenges in Predictive Analytics 
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Suppose You Want to Predict Cyber Attacks 

Big, noisy data 

Logs 

@FawkesSecurity: lol guys let’s 
attack all hsbc websites at the 

same time 
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Overfitting 
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Big Data, Big Confidence 

I have so much data, 
the answer must be in here somewhere! 

I have so much data, 
this must be the best way to get the answer! 

Existence Fallacy 

Optimality Fallacy 
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Debunking the Existence Fallacy: 
The Answer Is Not Always in Your Big Data 
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a b s t r a c t

Behavioral economics tells us that emotions can profoundly affect individual behavior and decision-
making. Does this also apply to societies at large, i.e. can societies experience mood states that affect their
collective decision making? By extension is the public mood correlated or even predictive of economic
indicators? Here we investigate whether measurements of collective mood states derived from large-
scale Twitter feeds are correlated to the value of the Dow Jones Industrial Average (DJIA) over time. We
analyze the text content of daily Twitter feeds by two mood tracking tools, namely OpinionFinder that
measures positive vs. negative mood and Google-Profile of Mood States (GPOMS) that measures mood
in terms of 6 dimensions (Calm, Alert, Sure, Vital, Kind, and Happy). We cross-validate the resulting
mood time series by comparing their ability to detect the public’s response to the presidential election
and Thanksgiving day in 2008. A Granger causality analysis and a Self-Organizing Fuzzy Neural Network
are then used to investigate the hypothesis that public mood states, as measured by the OpinionFinder
and GPOMS mood time series, are predictive of changes in DJIA closing values. Our results indicate that
the accuracy of DJIA predictions can be significantly improved by the inclusion of specific public mood
dimensions but not others. We find an accuracy of 86.7% in predicting the daily up and down changes
in the closing values of the DJIA and a reduction of the Mean Average Percentage Error (MAPE) by more
than 6%.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Stock market prediction has attracted much attention from
academia as well as business. But can the stock market really be pre-
dicted? Early research on stock market prediction [14,13,19] was
based on random walk theory and the Efficient Market Hypothesis
(EMH) [12]. According to the EMH stock market prices are largely
driven by new information, i.e. news, rather than present and past
prices. Since news is unpredictable, stock market prices will follow
a random walk pattern and cannot be predicted with more than
50% accuracy [43].

A growing body of research has however critically examined
EMH [31], in particular from the perspective of the Socionomic
Theory of Finance (STF) [42,41], behavioral economics [47] and
behavioral finance [36]. Numerous studies show that stock market
prices do not follow a random walk and can indeed to some degree
be predicted [4,24,16,43] thereby calling into question EMH’s basic
assumptions. Some recent research also suggests that news may be
unpredictable but that very early indicators can be extracted from

∗ Corresponding author. Tel.: +1 812 856 1833.
E-mail addresses: jbollen@indiana.edu (J. Bollen), huinmao@indiana.edu

(H. Mao), x.zeng@manchester.ac.uk (X. Zeng).
1 Authors made equal contributions.

online social media (blogs, Twitter feeds, etc.) to predict changes
in various economic and commercial indicators. This may conceiv-
ably also be the case for the stock market. For example, Gruhl et al.
[18] showed how online chat activity predicts book sales. Mishne
and Rijke [34] used assessments of blog sentiment to predict movie
sales. Liu et al. [30] predicted the future product sales using a Proba-
bilistic Latent Semantic Analysis (PLSA) model to extract indicators
of sentiment from blogs. In addition, Google search queries have
been shown to provide early indicators of disease infection rates
and consumer spending [6]. Schumaker and Chen [46] investi-
gated the relations between breaking financial news and stock price
changes. Most recently, Asur and Huberman [1] provided a demon-
stration of how public sentiment related to movies, as expressed on
Twitter, can actually predict box office receipts.

Although news most certainly influences stock market prices,
public mood states or sentiment may play an equally impor-
tant role. We know from psychological research that emotions, in
addition to information, play an significant role in human decision-
making [9,7,23]. Behavioral finance has provided further proof that
financial decisions are significantly driven by emotion and mood
[36]. It is therefore reasonable to assume that the public mood and
sentiment can drive stock market values as much as news.

However, if it is our goal to study how public mood influences
the stock markets, we need reliable, scalable and early assessments
of the public mood at a time-scale and resolution appropriate for

1877-7503/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jocs.2010.12.007
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Table 1
Multiple regression results for OpinionFinder vs. 6 GPOMS mood dimensions.

Parameters Coeff. Std. Err. t P

Calm (X1) 1.731 1.348 1.284 0.205
Alert (X2) 0.199 2.319 0.086 0.932
Sure (X3) 3.897 0.613 6.356 4.25e−08***

Vital (X4) 1.763 0.595 2.965 0.004*

Kind (X5) 1.687 1.377 1.226 0.226
Happy (X6) 2.770 0.578 4.790 1.30e−05**

Summary Residual Std. Err. Adj. R2 F6,55 p

0.078 0.683 22.93 2.382e−13

* p < 0.1.
** p < 0.05.

*** p < 0.001.

Fig. 2 shows that the OF successfully identifies the public’s emo-
tional response to the Presidential election on November 4th and
Thanksgiving on November 27th. In both cases OF marks a signifi-
cant, but short-lived uptick in positive sentiment specific to those
days.

The GPOMS results reveal a more differentiated public mood
response to the events in the 3-day period surrounding the election
day (November 4, 2008). November 3, 2008 is characterized by a
significant drop in Calm indicating highly elevated levels of public
anxiety. Election Day itself is characterized by a reversal of Calm
scores indicating a significant reduction in public anxiety, in con-
junction with a significant increases of Vital, Happy as well as Kind
scores. The latter indicates a public that is energized, happy and
friendly on election day. On November 5, these GPOMS dimensions
continue to indicate positive mood levels, in particular high levels
of Calm, Sure, Vital and Happy. After November 5, all mood dimen-
sions gradually return to the baseline. The public mood response
to Thanksgiving on November 27, 2008 provides a counterpart to
the differentiated response to the Presidential Election. On Thanks-
giving day we find a spike in Happy values, indicating high levels
of public happiness. However, no other mood dimensions are ele-
vated on November 27. Furthermore, the spike in Happy values is
limited to the 1 day, i.e. we find no significant mood response the
day before or after Thanksgiving.

A visual comparison of Fig. 2 suggests that GPOMS’ Happy
dimension best approximates the mood trend provided by Opinion-
Finder. To quantitatively determine the relations between GPOMS’s
mood dimensions and the OF mood trends, we test the correlation
between the trend obtained from OF lexicon and the six dimen-
sions of GPOMS using multiple regression. The regression model is
shown in Eq. (2).

YOF = ˛ +
N∑

i=1

ˇiXi + εt (2)

where N = 6, X1, X2, X3, X4, X5, and X6 represent the mood time series
obtained from the 6 GPOMS dimensions, respectively Calm, Alert,
Sure, Vital, Kind and Happy.

The multiple linear regression results are provided in Table 1
(coefficient and p-values), and indicate that YOF is significantly cor-
related with X3 (Sure), X4 (Vital) and X6 (Happy), but not with X1
(Calm), X2 (Alert) and X5 (Kind). We therefore conclude that certain
GPOMS mood dimension partially overlap with the mood values
provided by OpinionFinder, but not necessarily all mood dimen-
sions that may be important in describing the various components
of public mood e.g. the varied mood response to the Presidential
Election. The GPOMS thus provides a unique perspective on public
mood states not captured by uni-dimensional tools such as Opin-
ionFinder.

Table 2
Statistical significance (p-values) of bivariate Granger-causality correlation between
moods and DJIA in period February 28, 2008 to November 3, 2008.

Lag OF Calm Alert Sure Vital Kind Happy

1 Day 0.085* 0.272 0.952 0.648 0.120 0.848 0.388
2 Days 0.268 0.013** 0.973 0.811 0.369 0.991 0.7061
3 Days 0.436 0.022** 0.981 0.349 0.418 0.991 0.723
4 Days 0.218 0.030** 0.998 0.415 0.475 0.989 0.750
5 Days 0.300 0.036** 0.989 0.544 0.553 0.996 0.173
6 Days 0.446 0.065* 0.996 0.691 0.682 0.994 0.081*

7 Days 0.620 0.157 0.999 0.381 0.713 0.999 0.150

* p < 0.1.
** p < 0.05.

2.4. Bivariate Granger causality analysis of mood vs. DJIA prices

After establishing that our mood time series responds to sig-
nificant socio-cultural events such as the Presidential Election and
Thanksgiving, we are concerned with the question whether other
variations of the public’s mood state correlate with changes in
the stock market, in particular DJIA closing values. To answer this
question, we apply the econometric technique of Granger causality
analysis to the daily time series produced by GPOMS and Opin-
ionFinder vs. the DJIA. Granger causality analysis rests on the
assumption that if a variable X causes Y then changes in X will sys-
tematically occur before changes in Y. We will thus find that the
lagged values of X will exhibit a statistically significant correlation
with Y. Correlation however does not prove causation. We there-
fore use Granger causality analysis in a similar fashion to [17]; we
are not testing actual causation but whether one time series has
predictive information about the other or not.8

Our DJIA time series, denoted Dt, is defined to reflect daily
changes in stock market value, i.e. its values are the delta between
day t and day t−1: Dt = DJIAt − DJIAt−1. To test whether our mood
time series predicts changes in stock market values we compare
the variance explained by two linear models as shown in Eqs. (3)
and (4). The first model (L1) uses only n lagged values of Dt, i.e.
(Dt−1, · · · , Dt−n) for prediction, while the second model L2 uses the
n lagged values of both D1 and the GPOMS plus the OpinionFinder
mood time series denoted Xt−1, · · · , Xt−n.

We perform the Granger causality analysis according to model
L1 and L2 shown in Eqs. (3) and (4) for the period of time between
February 28 to November 3, 2008 to exclude the exceptional public
mood response to the Presidential Election and Thanksgiving from
the comparison. GPOMS and OpinionFinder time series were pro-
duced for 342,255 tweets in that period, and the daily Dow Jones
Industrial Average (DJIA) was retrieved from Yahoo! Finance for
each day.9

L1 : Dt = ˛ +
n∑

i=1

ˇiDt−i + εt (3)

L2 : Dt = ˛ +
n∑

i=1

ˇiDt−i +
n∑

i=1

"iXt−i + εt (4)

Based on the results of our Granger causality (shown in Table 2),
we can reject the null hypothesis that the mood time series do
not predict DJIA values, i.e. ˇ{1,2,· · ·,n} /= 0 with a high level of
confidence. However, this result only applies to 1 GPOMS mood

8 Gilbert and Karahalios [17] uses only one mood index, namely Anxiety, but
we investigate the relation between DJIA values and all Twitter mood dimensions
measured by GPOMS and OpinionFinder.

9 Our DJIA time series has no values for weekends and holidays because trading
is suspended during those days. We do not linearly extropolate to fill the gaps. This
results in a time series of 64 days.
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Multiple Comparison Problem 
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a b s t r a c t

Behavioral economics tells us that emotions can profoundly affect individual behavior and decision-
making. Does this also apply to societies at large, i.e. can societies experience mood states that affect their
collective decision making? By extension is the public mood correlated or even predictive of economic
indicators? Here we investigate whether measurements of collective mood states derived from large-
scale Twitter feeds are correlated to the value of the Dow Jones Industrial Average (DJIA) over time. We
analyze the text content of daily Twitter feeds by two mood tracking tools, namely OpinionFinder that
measures positive vs. negative mood and Google-Profile of Mood States (GPOMS) that measures mood
in terms of 6 dimensions (Calm, Alert, Sure, Vital, Kind, and Happy). We cross-validate the resulting
mood time series by comparing their ability to detect the public’s response to the presidential election
and Thanksgiving day in 2008. A Granger causality analysis and a Self-Organizing Fuzzy Neural Network
are then used to investigate the hypothesis that public mood states, as measured by the OpinionFinder
and GPOMS mood time series, are predictive of changes in DJIA closing values. Our results indicate that
the accuracy of DJIA predictions can be significantly improved by the inclusion of specific public mood
dimensions but not others. We find an accuracy of 86.7% in predicting the daily up and down changes
in the closing values of the DJIA and a reduction of the Mean Average Percentage Error (MAPE) by more
than 6%.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Stock market prediction has attracted much attention from
academia as well as business. But can the stock market really be pre-
dicted? Early research on stock market prediction [14,13,19] was
based on random walk theory and the Efficient Market Hypothesis
(EMH) [12]. According to the EMH stock market prices are largely
driven by new information, i.e. news, rather than present and past
prices. Since news is unpredictable, stock market prices will follow
a random walk pattern and cannot be predicted with more than
50% accuracy [43].

A growing body of research has however critically examined
EMH [31], in particular from the perspective of the Socionomic
Theory of Finance (STF) [42,41], behavioral economics [47] and
behavioral finance [36]. Numerous studies show that stock market
prices do not follow a random walk and can indeed to some degree
be predicted [4,24,16,43] thereby calling into question EMH’s basic
assumptions. Some recent research also suggests that news may be
unpredictable but that very early indicators can be extracted from
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E-mail addresses: jbollen@indiana.edu (J. Bollen), huinmao@indiana.edu

(H. Mao), x.zeng@manchester.ac.uk (X. Zeng).
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online social media (blogs, Twitter feeds, etc.) to predict changes
in various economic and commercial indicators. This may conceiv-
ably also be the case for the stock market. For example, Gruhl et al.
[18] showed how online chat activity predicts book sales. Mishne
and Rijke [34] used assessments of blog sentiment to predict movie
sales. Liu et al. [30] predicted the future product sales using a Proba-
bilistic Latent Semantic Analysis (PLSA) model to extract indicators
of sentiment from blogs. In addition, Google search queries have
been shown to provide early indicators of disease infection rates
and consumer spending [6]. Schumaker and Chen [46] investi-
gated the relations between breaking financial news and stock price
changes. Most recently, Asur and Huberman [1] provided a demon-
stration of how public sentiment related to movies, as expressed on
Twitter, can actually predict box office receipts.

Although news most certainly influences stock market prices,
public mood states or sentiment may play an equally impor-
tant role. We know from psychological research that emotions, in
addition to information, play an significant role in human decision-
making [9,7,23]. Behavioral finance has provided further proof that
financial decisions are significantly driven by emotion and mood
[36]. It is therefore reasonable to assume that the public mood and
sentiment can drive stock market values as much as news.

However, if it is our goal to study how public mood influences
the stock markets, we need reliable, scalable and early assessments
of the public mood at a time-scale and resolution appropriate for

1877-7503/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
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Table 1
Multiple regression results for OpinionFinder vs. 6 GPOMS mood dimensions.

Parameters Coeff. Std. Err. t P

Calm (X1) 1.731 1.348 1.284 0.205
Alert (X2) 0.199 2.319 0.086 0.932
Sure (X3) 3.897 0.613 6.356 4.25e−08***

Vital (X4) 1.763 0.595 2.965 0.004*

Kind (X5) 1.687 1.377 1.226 0.226
Happy (X6) 2.770 0.578 4.790 1.30e−05**

Summary Residual Std. Err. Adj. R2 F6,55 p

0.078 0.683 22.93 2.382e−13

* p < 0.1.
** p < 0.05.

*** p < 0.001.

Fig. 2 shows that the OF successfully identifies the public’s emo-
tional response to the Presidential election on November 4th and
Thanksgiving on November 27th. In both cases OF marks a signifi-
cant, but short-lived uptick in positive sentiment specific to those
days.

The GPOMS results reveal a more differentiated public mood
response to the events in the 3-day period surrounding the election
day (November 4, 2008). November 3, 2008 is characterized by a
significant drop in Calm indicating highly elevated levels of public
anxiety. Election Day itself is characterized by a reversal of Calm
scores indicating a significant reduction in public anxiety, in con-
junction with a significant increases of Vital, Happy as well as Kind
scores. The latter indicates a public that is energized, happy and
friendly on election day. On November 5, these GPOMS dimensions
continue to indicate positive mood levels, in particular high levels
of Calm, Sure, Vital and Happy. After November 5, all mood dimen-
sions gradually return to the baseline. The public mood response
to Thanksgiving on November 27, 2008 provides a counterpart to
the differentiated response to the Presidential Election. On Thanks-
giving day we find a spike in Happy values, indicating high levels
of public happiness. However, no other mood dimensions are ele-
vated on November 27. Furthermore, the spike in Happy values is
limited to the 1 day, i.e. we find no significant mood response the
day before or after Thanksgiving.

A visual comparison of Fig. 2 suggests that GPOMS’ Happy
dimension best approximates the mood trend provided by Opinion-
Finder. To quantitatively determine the relations between GPOMS’s
mood dimensions and the OF mood trends, we test the correlation
between the trend obtained from OF lexicon and the six dimen-
sions of GPOMS using multiple regression. The regression model is
shown in Eq. (2).

YOF = ˛ +
N∑

i=1

ˇiXi + εt (2)

where N = 6, X1, X2, X3, X4, X5, and X6 represent the mood time series
obtained from the 6 GPOMS dimensions, respectively Calm, Alert,
Sure, Vital, Kind and Happy.

The multiple linear regression results are provided in Table 1
(coefficient and p-values), and indicate that YOF is significantly cor-
related with X3 (Sure), X4 (Vital) and X6 (Happy), but not with X1
(Calm), X2 (Alert) and X5 (Kind). We therefore conclude that certain
GPOMS mood dimension partially overlap with the mood values
provided by OpinionFinder, but not necessarily all mood dimen-
sions that may be important in describing the various components
of public mood e.g. the varied mood response to the Presidential
Election. The GPOMS thus provides a unique perspective on public
mood states not captured by uni-dimensional tools such as Opin-
ionFinder.

Table 2
Statistical significance (p-values) of bivariate Granger-causality correlation between
moods and DJIA in period February 28, 2008 to November 3, 2008.

Lag OF Calm Alert Sure Vital Kind Happy

1 Day 0.085* 0.272 0.952 0.648 0.120 0.848 0.388
2 Days 0.268 0.013** 0.973 0.811 0.369 0.991 0.7061
3 Days 0.436 0.022** 0.981 0.349 0.418 0.991 0.723
4 Days 0.218 0.030** 0.998 0.415 0.475 0.989 0.750
5 Days 0.300 0.036** 0.989 0.544 0.553 0.996 0.173
6 Days 0.446 0.065* 0.996 0.691 0.682 0.994 0.081*

7 Days 0.620 0.157 0.999 0.381 0.713 0.999 0.150

* p < 0.1.
** p < 0.05.

2.4. Bivariate Granger causality analysis of mood vs. DJIA prices

After establishing that our mood time series responds to sig-
nificant socio-cultural events such as the Presidential Election and
Thanksgiving, we are concerned with the question whether other
variations of the public’s mood state correlate with changes in
the stock market, in particular DJIA closing values. To answer this
question, we apply the econometric technique of Granger causality
analysis to the daily time series produced by GPOMS and Opin-
ionFinder vs. the DJIA. Granger causality analysis rests on the
assumption that if a variable X causes Y then changes in X will sys-
tematically occur before changes in Y. We will thus find that the
lagged values of X will exhibit a statistically significant correlation
with Y. Correlation however does not prove causation. We there-
fore use Granger causality analysis in a similar fashion to [17]; we
are not testing actual causation but whether one time series has
predictive information about the other or not.8

Our DJIA time series, denoted Dt, is defined to reflect daily
changes in stock market value, i.e. its values are the delta between
day t and day t−1: Dt = DJIAt − DJIAt−1. To test whether our mood
time series predicts changes in stock market values we compare
the variance explained by two linear models as shown in Eqs. (3)
and (4). The first model (L1) uses only n lagged values of Dt, i.e.
(Dt−1, · · · , Dt−n) for prediction, while the second model L2 uses the
n lagged values of both D1 and the GPOMS plus the OpinionFinder
mood time series denoted Xt−1, · · · , Xt−n.

We perform the Granger causality analysis according to model
L1 and L2 shown in Eqs. (3) and (4) for the period of time between
February 28 to November 3, 2008 to exclude the exceptional public
mood response to the Presidential Election and Thanksgiving from
the comparison. GPOMS and OpinionFinder time series were pro-
duced for 342,255 tweets in that period, and the daily Dow Jones
Industrial Average (DJIA) was retrieved from Yahoo! Finance for
each day.9

L1 : Dt = ˛ +
n∑

i=1

ˇiDt−i + εt (3)

L2 : Dt = ˛ +
n∑

i=1

ˇiDt−i +
n∑

i=1

"iXt−i + εt (4)

Based on the results of our Granger causality (shown in Table 2),
we can reject the null hypothesis that the mood time series do
not predict DJIA values, i.e. ˇ{1,2,· · ·,n} /= 0 with a high level of
confidence. However, this result only applies to 1 GPOMS mood

8 Gilbert and Karahalios [17] uses only one mood index, namely Anxiety, but
we investigate the relation between DJIA values and all Twitter mood dimensions
measured by GPOMS and OpinionFinder.

9 Our DJIA time series has no values for weekends and holidays because trading
is suspended during those days. We do not linearly extropolate to fill the gaps. This
results in a time series of 64 days.

http://sellthenews.tumblr.com/post/21067996377/noitdoesnot 
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Debunking the Optimality Fallacy: 
Your Big Data Is Not Always the Best Tool 

14 MARCH 2014    VOL 343    SCIENCE    www.sciencemag.org 1204

POLICYFORUM

Algorithm Dynamics

All empirical research stands on a founda-
tion of measurement. Is the instrumentation 
actually capturing the theoretical construct of 
interest? Is measurement stable and compa-
rable across cases and over time? Are mea-
surement errors systematic? At a minimum, 
it is quite likely that GFT was an unstable 
refl ection of the prevalence of the fl u because 
of algorithm dynamics affecting Google’s 
search algorithm. Algorithm dynamics are 
the changes made by engineers to improve 
the commercial service and by consum-
ers in using that service. Several changes in 
Google’s search algorithm and user behav-
ior likely affected GFT’s tracking. The most 
common explanation for GFT’s error is a 
media-stoked panic last fl u season ( 1,  15). 
Although this may have been a factor, it can-
not explain why GFT has been missing high 
by wide margins for more than 2 years. The 
2009 version of GFT has weathered other 
media panics related to the fl u, including the 
2005–2006 influenza A/H5N1 (“bird flu”) 
outbreak and the 2009 A/H1N1 (“swine fl u”) 
pandemic. A more likely culprit is changes 
made by Google’s search algorithm itself.

The Google search algorithm is not a 
static entity—the company is constantly 
testing and improving search. For example, 
the offi cial Google search blog reported 86 
changes in June and July 2012 alone (SM). 
Search patterns are the result of thousands of 
decisions made by the company’s program-
mers in various subunits and by millions of 
consumers worldwide.

There are multiple challenges to replicat-
ing GFT’s original algorithm. GFT has never 
documented the 45 search terms used, and 
the examples that have been released appear 
misleading ( 14) (SM). Google does provide 
a service, Google Correlate, which allows 
the user to identify search data that correlate 
with a given time series; however, it is lim-
ited to national level data, whereas GFT was 
developed using correlations at the regional 
level ( 13). The service also fails to return any 
of the sample search terms reported in GFT-
related publications ( 13,  14).

Nonetheless, using Google Correlate to 
compare correlated search terms for the GFT 
time series to those returned by the CDC’s 
data revealed some interesting differences. In 
particular, searches for treatments for the fl u 
and searches for information on differentiat-
ing the cold from the fl u track closely with 
GFT’s errors (SM). This points to the possi-
bility that the explanation for changes in rela-
tive search behavior is “blue team” dynam-
ics—where the algorithm producing the data 
(and thus user utilization) has been modi-

fi ed by the service provider in accordance 
with their business model. Google reported 
in June 2011 that it had modifi ed its search 
results to provide suggested additional search 
terms and reported again in February 2012 
that it was now returning potential diagnoses 
for searches including physical symptoms 
like “fever” and “cough” ( 21,  22). The for-
mer recommends searching for treatments 
of the fl u in response to general fl u inqui-
ries, and the latter may explain the increase 
in some searches to distinguish the fl u from 
the common cold. We document several other 
changes that may have affected GFT (SM).

In improving its service to customers, 
Google is also changing the data-generating 
process. Modifications to the search algo-
rithm are presumably implemented so as to 
support Google’s business model—for exam-
ple, in part, by providing users useful infor-
mation quickly and, in part, to promote more 
advertising revenue. Recommended searches, 
usually based on what others have searched, 
will increase the relative magnitude of certain 
searches. Because GFT uses the relative prev-
alence of search terms in its model, improve-
ments in the search algorithm can adversely 
affect GFT’s estimates. Oddly, GFT bakes in 
an assumption that relative search volume for 
certain terms is statically related to external 

events, but search behavior is not just exog-
enously determined, it is also endogenously 
cultivated by the service provider.

Blue team issues are not limited to 
Google. Platforms such as Twitter and Face-
book are always being re-engineered, and 
whether studies conducted even a year ago 
on data collected from these platforms can 
be replicated in later or earlier periods is an 
open question.

Although it does not appear to be an issue 
in GFT, scholars should also be aware of the 
potential for “red team” attacks on the sys-
tems we monitor. Red team dynamics occur 
when research subjects (in this case Web 
searchers) attempt to manipulate the data-
generating process to meet their own goals, 
such as economic or political gain. Twitter 
polling is a clear example of these tactics. 
Campaigns and companies, aware that news 
media are monitoring Twitter, have used 
numerous tactics to make sure their candidate 
or product is trending ( 23,  24).

Similar use has been made of Twitter 
and Facebook to spread rumors about stock 
prices and markets. Ironically, the more suc-
cessful we become at monitoring the behav-
ior of people using these open sources of 
information, the more tempting it will be to 
manipulate those signals.
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GFT overestimation. GFT overestimated the prevalence of fl u in the 2012–2013 season and overshot the 

actual level in 2011–2012 by more than 50%. From 21 August 2011 to 1 September 2013, GFT reported overly 

high fl u prevalence 100 out of 108 weeks. (Top) Estimates of doctor visits for ILI. “Lagged CDC” incorporates 

52-week seasonality variables with lagged CDC data. “Google Flu + CDC” combines GFT, lagged CDC estimates, 

lagged error of GFT estimates, and 52-week seasonality variables. (Bottom) Error [as a percentage {[Non-CDC 

estmate)�(CDC estimate)]/(CDC) estimate)}. Both alternative models have much less error than GFT alone. 

Mean absolute error (MAE) during the out-of-sample period is 0.486 for GFT, 0.311 for lagged CDC, and 0.232 

for combined GFT and CDC. All of these differences are statistically signifi cant at P < 0.05. See SM.

Published by AAAS

•  Several papers purporting to predict flu 
based on search trends 

•  Google Flu Trends underperformed 
simple time series models using CDC data 
(Lazer et al. 2014) 
–  Shut down in August 2015 

•  Correlations with other seasonal 
phenomena that don’t track flu 
–  High-school basketball 

•  Neglected known correlates 
–  Lagged CDC data (Lazer et al. 2014) 
–  Sales of over-the-counter cold remedies 

(Welliver et al. 1979) 

Need to benchmark predictive systems against a plausible baseline 
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•  Motivation 
•  Predictive analytics 
•  Large, noisy feature data 
•  Evaluating prediction quality 
•  Missing or low-quality ground-truth labels 
•  Conclusion 

Mathematical Challenges in Predictive Analytics 
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•  Compare output of your system to ground truth 
–  Need ground truth! 

•  Precision 
–  TP/(TP+FP) 
–  Proportion of detections that are true 

•  Recall (True Positive Rate) 
–  TP/(TP+FN) 
–  Proportion of true instances that are detected 

•  False Positive Rate 
–  FP/(FP+TN) 

Classical confusion matrix quantities 

TP FP 

FN TN 

System Output 
True False 

True 

False 

Ground 
Truth 

Sweep through operating points to reveal tradeoffs among these performance measures 
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•  Tradeoff between true positive rate and 
false positive rate at different operating 
points 

•  Built-in baseline 
–  Identity line is random guessing 
–  Not the relevant baseline when better 

practices exist 

•  Class separation between axes 
–  No accounting for class imbalance 

Receiver Operating Characteristic 
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•  Tradeoff between recall and precision at 
different operating points 

•  Too many alarms being false comes 
through in precision 
–  Primary problem with class imbalance 

•  No natural baseline 
•  No need to consider ill-defined true 

negatives 

Precision–Recall Curve 

Imperfect classifier 
Better 

imperfect classifier 

Perfect classifier 
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Need for Baselines 

Need to compare parametric curves with baselines 
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Predicts whether customers will respond to 
direct-mail campaign* Predicts alien invasions 

*Example taken from Siegel (2013) 
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•  Forecasts should have probabilities attached to them 
–  Prevents confusion between forecasters and decision-makers 
–  Enables more informative evaluation 

•  Brier score/penalty: (p – g)2 
–  p is the probability attached to the forecast 
–  g is the ground-truth indicator variable of whether the forecasted event happened 
–  Proper scoring function: Reporting true belief minimizes the penalty 

•  In practice, decision-makers need to take discrete actions 
–  Binary evaluation isn’t going away 

Probabilistic Forecasts: Brier Score 
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•  The ultimate measure of quality is the utility the predictive system delivers to the user 
–  Application-dependent 
–  User-dependent (somewhat) 

•  Metrics are useful to the extent that they illuminate utility 
•  Non-statistical metrics could be important 

–  Lead time 
–  Detection improvement time 

It’s All About Utility 
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•  Motivation 
•  Predictive analytics 
•  Large, noisy feature data 
•  Evaluating prediction quality 
•  Missing or low-quality ground-truth labels 
•  Conclusion 

Mathematical Challenges in Predictive Analytics 
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Sommer and Paxson (2010) on Cyber Data Quality 

Outside the Closed World:

On Using Machine Learning For Network Intrusion Detection

Robin Sommer
International Computer Science Institute, and

Lawrence Berkeley National Laboratory

Vern Paxson
International Computer Science Institute, and

University of California, Berkeley

Abstract—In network intrusion detection research, one pop-
ular strategy for finding attacks is monitoring a network’s
activity for anomalies: deviations from profiles of normality
previously learned from benign traffic, typically identified
using tools borrowed from the machine learning community.
However, despite extensive academic research one finds a
striking gap in terms of actual deployments of such systems:
compared with other intrusion detection approaches, machine
learning is rarely employed in operational “real world” settings.
We examine the differences between the network intrusion
detection problem and other areas where machine learning
regularly finds much more success. Our main claim is that
the task of finding attacks is fundamentally different from
these other applications, making it significantly harder for the
intrusion detection community to employ machine learning
effectively. We support this claim by identifying challenges
particular to network intrusion detection, and provide a set
of guidelines meant to strengthen future research on anomaly
detection.

Keywords-anomaly detection; machine learning; intrusion
detection; network security.

I. INTRODUCTION

Traditionally, network intrusion detection systems (NIDS)
are broadly classified based on the style of detection they are
using: systems relying on misuse-detection monitor activity
with precise descriptions of known malicious behavior, while
anomaly-detection systems have a notion of normal activity
and flag deviations from that profile.1 Both approaches have
been extensively studied by the research community for
many years. However, in terms of actual deployments, we
observe a striking imbalance: in operational settings, of
these two main classes we find almost exclusively only
misuse detectors in use—most commonly in the form of
signature systems that scan network traffic for characteristic
byte sequences.

This situation is somewhat striking when considering
the success that machine-learning—which frequently forms
the basis for anomaly-detection—sees in many other areas
of computer science, where it often results in large-scale

1Other styles include specification-based [1] and behavioral detec-
tion [2]. These approaches focus respectively on defining allowed types
of activity in order to flag any other activity as forbidden, and analyzing
patterns of activity and surrounding context to find secondary evidence of
attacks.

deployments in the commercial world. Examples from other
domains include product recommendations systems such
as used by Amazon [3] and Netflix [4]; optical character
recognition systems (e.g., [5], [6]); natural language trans-
lation [7]; and also spam detection, as an example closer to
home [8].

In this paper we set out to examine the differences
between the intrusion detection domain and other areas
where machine learning is used with more success. Our main
claim is that the task of finding attacks is fundamentally
different from other applications, making it significantly
harder for the intrusion detection community to employ
machine learning effectively. We believe that a significant
part of the problem already originates in the premise, found
in virtually any relevant textbook, that anomaly detection is
suitable for finding novel attacks; we argue that this premise
does not hold with the generality commonly implied. Rather,
the strength of machine-learning tools is finding activity
that is similar to something previously seen, without the
need however to precisely describe that activity up front (as
misuse detection must).

In addition, we identify further characteristics that our do-
main exhibits that are not well aligned with the requirements
of machine-learning. These include: (i) a very high cost of
errors; (ii) lack of training data; (iii) a semantic gap between
results and their operational interpretation; (iv) enormous
variability in input data; and (v) fundamental difficulties
for conducting sound evaluation. While these challenges
may not be surprising for those who have been working
in the domain for some time, they can be easily lost on
newcomers. To address them, we deem it crucial for any
effective deployment to acquire deep, semantic insight into
a system’s capabilities and limitations, rather than treating
the system as a black box as unfortunately often seen.

We stress that we do not consider machine-learning an
inappropriate tool for intrusion detection. Its use requires
care, however: the more crisply one can define the context
in which it operates, the better promise the results may hold.
Likewise, the better we understand the semantics of the
detection process, the more operationally relevant the system
will be. Consequently, we also present a set of guidelines
meant to strengthen future intrusion detection research.

2010 IEEE Symposium on Security and Privacy

1081-6011/10 $26.00 © 2010 IEEE
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305

“[D]evising sound evaluation schemes is not easy, 
and in fact turns out to be more difficult than 
building the detector itself … Arguably the most 
significant challenge an evaluation faces is the lack 
of appropriate public datasets for assessing 
anomaly detection systems. … In our domain, 
however, we often have neither standardized test 
sets, nor any appropriate, readily available data.” 

The situation has not improved six years later 
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What to Do? 

If cyber data won’t change to fit machine learning… 

… change machine learning to fit cyber data 
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Welinder, Welling & Perona (2013) 
•  Two classes of objects characterized by a score 
•  Samples are plentiful but labeling is expensive 

–  “Semisupervised” learning 

•  Can estimate performance curves with 
confidence intervals inferred from estimates of 
the distribution parameters 

Estimating Classifier Performance from Few Samples 

B

A C

SPE
ground truth

Thursday, February 23, 2012

Figure 2. Estimating detector performance with 10 labels known. A: Histogram of classifier scores si obtained by running the “ChnFtrs”
detector [7] on the INRIA dataset [5]. The red and green curves show the Gamma-Normal mixture model fitting the histogrammed scores
with highest likelihood. The scores are all unlabeled, apart from 10, selected at random, which have labels. The shaded bands indicate
the 90% probability bands around the model. The red and green bars show the labels of the 10 randomly sampled labels (by chance, the
scores for some of the samples are close to each other, thus only 6 bars are shown; the height of the bars has no meaning). B: Precision
and recall curves computed from the mixture model in A. C: In black, precision-recall curve computed after all items have been labeled. In
red, precision-recall curve estimated using SPE from only 10 labeled examples (with 90% confidence interval shown as the magenta band).
See Section 2 for a discussion.

We propose a method for achieving minimally super-
vised evaluation of classifiers, requiring as few as 10 labels
to accurately estimate classifier performance. Our method
is based on a generative Bayesian model for the confidence
scores produced by the classifier, borrowing from the litera-
ture on semisupervised learning [16, 20, 21]. We show how
to use the model to re-calibrate classifiers to new datasets by
choosing thresholds to satisfy performance constraints with
high likelihood. An additional contribution is a fast approx-
imate inference method for doing inference in our model.

2. Modeling the classifier score
Let us start with a set of N data items, (xi, yi) 2 RD ⇥

{0, 1}, drawn from some unknown distribution p(x, y) and
indexed by i 2 {1, . . . , N}. Suppose that a classifier,
¯

h(xi; ⌧) = [h(xi) > ⌧ ], where ⌧ is some scalar threshold,
has been used to classify all data items into two classes, ŷi 2
{0, 1}. While the “ground truth” labels yi are assumed to
be unknown, initially, we do have access to all the “scores,”
si = h(xi), computed by the classifier. From this point on-
wards, we forget about the data vectors xi and concentrate
solely on the scores and labels, (si, yi) 2 R ⇥ {0, 1}.

The key assumption in this paper is that the list of

scores S = (s1, . . . , sN ) and the unknown labels Y =

(y1, . . . , yN ) can be modeled by a two-component mixture
model p(S, Y | ✓), parameterized by ✓, where the class-
conditionals are standard parametric distributions. We show
in Section 4.2 that this is a reasonable assumption for many
datasets.

Suppose that we can ask an expert (the “oracle”) to pro-
vide the true label yi for any data item. This is an expensive
operation and our goal is to ask the oracle for as few labels
as possible. The set of items that have been labeled by the
oracle at time t is denoted by Lt and its complement, the
set of items for which the ground truth is unknown, is de-
noted Ut. This setting is similar to semisupervised learning
[20, 21]. By estimating p(S, Y | ✓), we will improve our
estimate of the performance of ¯

h when |Lt| ⌧ N .
Consider first the fully supervised case, i.e. where all

labels yi are known. Let the scores si be i.i.d. according to
the two mixture models. If the all labels are known, and we
assume independent observations, the likelihood of the data
is given by,

p(S, Y | ✓) =

Y

i:yi=0

(1 � ⇡)p0(si | ✓0)

Y

i:yi=1

⇡p1(si | ✓1),

(1)

Challenges for applying to cyber security 
•  Class imbalance 
•  Sampling only in the tail 
•  Poorly specified distributions 
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•  Motivation 
•  Predictive analytics 
•  Large, noisy feature data 
•  Evaluating prediction quality 
•  Missing or low-quality ground-truth labels 
•  Conclusion 

Mathematical Challenges in Predictive Analytics 
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•  Predictive analytics has the potential to overcome human bias in forecasting 
•  Big, noisy data multiplies the human tendency to find spurious patterns 
•  Evaluation must focus on utility for the user 
•  Plausible, meaningful baselines are essential 
•  New methods are needed for poor-quality ground truth 
•  Cyber security is an exciting application area for predictive analytics 

Conclusion 
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•  Amy Sliva, Charles River Analytics 
Predicting Events Using Diverse Ensemble Models 

•  Alexander Memory, Leidos, Inc. 
Probabilistic Forecasting in the Presence of Noisy and Conflicting Evidence 
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Relational Object Analysis Drives Multi-Model Attack Prediction (ROADMAP) 
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