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Inspiration: synthetic biology

Stricker et alli, Nature 456, 516 (2008)
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Protein production as a queueing system
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Modeling hierarchies
Stochastic simulation algorithm (SSA)

Tau leaping

Langevin approximations (SDEs)

Ordinary differential equations

(1) Delay analogs?

(2) Delay chemical Langevin equations?

Schlicht-Winkler: theoretical foundation for delay SSA 
Delay chemical Langevin equations 

Brett-Galla: derivation via generating functionals 
Ott et alli: quantitative results



Genetic switch: Co-repressive toggle

Gupta and Ott et alli, PRL 111:058104 (2013)

transitions between stable states. Exact stochastic simula-
tions of each bistable system verify this prediction.

Models and simulations.—To explore the impact of tran-
scriptional delay on bistable gene networks, we simulated
three common systems: (1) a single-gene positive feedback
loop, (2) the corepressive toggle switch [24], and (3) the
lysis-lysogeny switch of phage ! [22]. Details about the
models, parameters, and simulations can be found in
the Supplemental Material [36].

Consider the single-gene positive feedback loop shown
in Fig. 2(a). The corresponding deterministic dynamics are
given by the delay differential equation

_x ¼ "þ #
xðt$ $Þb

cb þ xðt$ $Þb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
birth

$ %x|{z}
death

; (1)

where x is the number of proteins per unit volume, " the
basal transcription rate due to leakiness of the promoter, #
the increase in transcription rate due to protein binding to
the promoter, b the Hill coefficient, c the concentration
of x needed for half-maximal induction, % the degradation
rate coefficient of the protein, and $ the transcriptional
delay time.

This positive feedback loop is bistable for a range of
parameters. As shown in the SM [36], the stability of the
two fixed points generally decreases with an increase in
delay in Eq. (1).

In the corresponding stochastic model, births and deaths
occur at rates indicated in the equation. We chose parame-
ters for which the system switches stochastically between
the two stable states and examined a biophysically relevant
range of delays. These were on the order of the protein
half-life, but small compared to the transition time scales.

While an increase in delay destabilized the fixed points in
the deterministic model, in the stochastic counterpart it
resulted in a sharp increase in the average residence time
near the stable states [see Figs. 1 and 2(a), panel 3].
Qualitatively similar behavior was observed in other models
of bistable gene networks we examined (see Fig. 2).
Although these systems are quite different, increasing tran-
scriptional delay has qualitatively the same effect in all cases.
Simulations showed that, with an increase in transcrip-

tional delay, (a) the mean residence time near the stable
states increases (right-hand panels of Fig. 2), (b) the proba-
bility of a successful transition decreases, and (c) the
increase in stability may not be accompanied by a consis-
tent change in the stationary distribution (center panels of
Fig. 2). These observations appear to be independent of
the model system and therefore may have an underlying,
unified explanation. However, since the stationary distri-
butions do not necessarily change in the manner predicted
by Kramers’ theory [37], a new explanation of the phe-
nomenon is necessary.
Reduced model (RM).—In order to obtain a unified

description of the observed increase in stability with an
increase in transcriptional delay, we introduce a general-
ized three-state reduced model. Two of the states in the
model correspond to neighborhoods of the two stable fixed
points. We call these statesH (high) and L (low). The third
state is an intermediate state, I, corresponding to a neigh-
borhood of the separatrix. All transitions between H and L
must pass through I. Therefore, the RM represents a coarse
projection of a general bistable model where large fluctua-
tions push the system from the stable states into a neigh-
borhood of the separatrix.
Because of transcriptional delay, the transition rates

between the states depend on the history of the system.

(a)

(b)

(c)

FIG. 2. Impact of transcriptional delay on three different genetic networks. Left-hand panels show the three different gene networks,
center panels show the stationary distributions at three different values of transcriptional delay $, and right-hand panels illustrate the
increase in residence times (dots) and the decrease in the probability of a successful transition (dashed lines) with increasing $. R$

denotes the mean residence time in the metastable states at delay $. The lighter stationary distributions correspond to larger delays.
(a) Positive feedback model with stationary distributions at $ ¼ 0, 1, 2, and R0 ¼ 227. (b) !-phage model with stationary distributions
at $ ¼ 0, 5, 10, and R0 ¼ 4829. (c) Corepressive toggle switch with stationary distributions at $ ¼ 0, 0.45, 0.9, and R0 ¼ 489.
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Transcriptional delay stabilizes bistable gene networks
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Transcriptional delay stabilizes bistable gene networks
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Delay-induced rubber band effect
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3-states model

Gupta and Ott et alli, PRL 111:058104 (2013)
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Modeling frameworks
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Concentration effect for metastable systems

Transitions most likely occur just after cell division 

Transcriptional delay intensifies this concentration effect 

Binomial partitioning - primary cause
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Robustness: an excitable system
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3-states model with teleportation
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Next steps

Large deviations for processes with delay 
Optimal transition pathways 
Importance sampling 
Transition rates 
Work underway (e.g. Schwartz, Billings et alli, PRE (2015))
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