Using the Wentzell-Freidlin least action to
direct network dynamical systems

William L. Kath
Applied Mathematics / Neurobiology
Northwestern Institute on Complex Systems

NORTHWESTERN
UNIVERSITY




Acknowledgements

Danny Wells Adilson Motter
Applied Mathematics Physics and Astronomy

Control of Stochastic and Induced Switching in Biophysical Networks
PRX 5 (2015) 031036

Supported by the NCI Physical Sciences Oncology Program



9]
2
=
(¢
-
>
o)
=
)
Q
-
()
20
o
Ll

Waddington’s epigenetic landscape...

...a qualitative model of cell differentiation



The epigenetic landscape and cancer attractors
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The aim: a rational basis for cell reprogramming
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Zhou and Huang, 2011 back 5



' ' cape
Need barrier height in the quasipotential landscap
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Determining the barrier height

Barrier height can be determined from a stochastic model. If
the system is

dX = F(X;P)dt +e dW
(with P a vector of parameters, and & small)

then the Wentzell-Freidlin least action measures it

2
S = , 1 ¢n||d
S[¢i,j;P]:m1n$(¢;(§L 5); d¢ F(¢(t) P)|| dt
6(T)=d;

The minimization is over paths from one state to another



The minimum action sets the transition rate

1

R; ; (P)~C(¢) exp (— - S [¢z i P ]) Freidlin & Wentzell

« Asymptotic form of coefficient is more difficult to determine
» But main behavior determined by action and exponential

* If necessary, can compute prefactor with importance sampling
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Key idea: minimize barrier height w.r.t. parameters

min ; S[@:j;f’]

...to make transition from one state
to another more likely

—0.6—‘?\

* Only need fixed points of interest

* Problem is basically 1D, even if
full problem has high dimension

* Takes into account some non-local system information

* Minimize over paths (there are good methods for this), and then
minimize with respect to parameters (good methods for this, too)

* Use to predict the optimal combination (possibly constrained) of system
parameters (e.g., gene expression rates) inducing a desired state



An old (illustrative) method to find the path

SA=["[aX1d-FX)] dr=|" L&XR).XA)dr

If choose
0X 1[dL d(oL)
oA 2|9X dt\9x )
-2
:>————J al_j—d(al;) dt <0
= dX dt\9X )|

R. Courant, Variational methods for the solution of problems of
equilibrium and vibrations, Bull. Amer. Math. Soc., 49:1-23, 1943.
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Better path finding: adaptive minimum action method

Adaptive discretization
+ minimize with L-BFGS
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Optimal Least Action Control (OLAQ):

find minimum path, then minimize over parameters

1. Takes account of nonlinear interaction between nodes

2. Modular, scalable
- Effort proportional to the number of transitions, not size of system
(upper bound: the square of the number of stable fixed points)

3. Able to incorporate flexible constraints
- Not all interventions may be possible
- Can add sparsity constraints

4. Implementation can be state agnostic

- If know all stable states, can increase occupancy of desired state
(alternatively, just lower barriers into the desired state)

- Then predicted interventions apply in parallel to cells in different states

OLAC can identify system interventions that change the
landscape to bring about a desired network state



Example: an intervention to enhance lineage respecification

The model: C. elegans vulval precursor cells (VPC); competent to adopt three fates.

.
L= G(F 1, L)

dt

Fate is determined by two
signaling pathways, EGF and
Notch, whose strengths are

determined from £+ and 5.

low ¢4, low €2: bias towards 3° (blue)
high ¢4, low éo: bias towards 1° (red)

low ¢4, high €o: bias towards 2° (green)

Corson F.,, and Siggia, E. PNAS (2012)
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Choose the particular “desired” state

Goal: optimize transition MRy ==
rate (minimize S) from 2° o @EF=z=—3I—3—=— |
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Find least action path, iterate over parameters
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Find least action path, iterate over parameters
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Find least action path, iterate over parameters

-02 00 02 04 06 038 1.0

[, =0.1642 [ = 0.0486 10



Find least action path, iterate over parameters
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Find least action path, iterate over parameters
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Final answer agrees with biological result

20
57=0.0014596
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Another, bigger example: the cell death pathway

x NonACD Apoptosis s




Details of the signaling model

. a™» |°* 22 genes, 43 adjustable parameters
S = (protein-protein interaction rate
BoFA constants).
LoAsPs * Four stable states:
‘ » Naive:. apoptosis not induced; cell is
fc?—? healthy.
O—G- -, * Apoptotic: Cell dies via apoptosis
e S T - Necrotic: Cell dies via necrosis.
_\—@J_g@—*@  Proliferative: Cell survives the
X CASP3 e apoptotic signal, is potentially proto-
[henkco | cancerous

Goal: Find the optimal intervention (combination of therapeutic targets) to
maximize the rate of transition out of the proliferative state and into the
apoptotic state.

* Intervention should be of a pre-specified dosage strength.
* Should preserve the stability of the healthy (naive) cell state.

Calzone et. al. PLoS Computational Biology 2011



Method predicts optimal multiplexed therapeutic strategies

Cell Line: 1 2 3 4 5 6

Intervention
Strength
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6 different proliferative cell lines, 9 possible dosage strengths

Green: interaction rate decreased; Red: interaction rate increased

Optimal therapeutic combinations comprised of 4-8 perturbations

Eliminating proliferative state w/o significant harm to naive state possible in all cases



Therapeutic combinations not unique, but have commonalities

Cell Line: 1 2 3 4 5 6

Intervention

Strength 0.20
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Two therapeutic targets are robust for all cell lines.
« With larger dosage strengths, these four target alone can eliminate the
proliferative state in all cases.

Individualized therapeutic combinations can be more efficient.



OLAC identifies Z robust therapeutic targets in all cell

lines, and others in individual cell lines

3. Decrease DISC-FAS 4. Increase CASP8
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* Optimal least action control:
manipulate the system landscape to promote an outcome

 Wentzell-Freidlin least action is a natural metric for this

* Find the minimum action path|[s] between fixed points;
reduce barrier heights associated with desired transitions

* Can push the system to a bifurcation
* Example: lineage respecification in a cell line

* Example: a signaling model of the cell death pathway;
possible targets promoting apoptosis of proliferating cells
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Indicators of progression to apoptosis
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