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There are many approaches to
mathematical modeling pedagogy.

We'll discuss them today and provide
some activities to help you make
choices about what will work
best for you and your students.



Outline of minitutorial

Part I: Motivation and Background
* Why teach mathematical modeling?

* What is the difference between teaching
mathematical models and mathematical

modeling?
Part Il: Design and Objectives
* Course design
* Tools/algorithms
e Career preparation




Part I: Motivation and Background




Why should you teach
mathematical modeling?




Your students have likely heard of
mathematical modeling before they
come to college.



K-12 Common Core State Standards
8 Standards for Mathematical Practice

Make sense of problems and persevere in solving them.
Reason abstractly and quantitatively.

Construct viable arguments and critique reasoning of others.
Model with Mathematics.

Use appropriate tools strategically.

Attend to precision.

Look for and make use of structure.

Look for and express regularity in repeated reasoning.



CCSS.Math.Practice.MP4
Model with mathematics.

Mathematically proficient students

e apply the mathematics they know to solve problems

e are comfortable making assumptions and approximations to simplify a

complicated situation, realizing that these may need revision later.

¢ identify important quantities in a practical situation and map their
relationships using such tools as diagrams, two-way tables, graphs,
flowcharts and formulas.

e analyze those relationships mathematically to draw conclusions.

e interpret their mathematical results in the context of the situation and

reflect on whether the results make sense, possibly improving the model if
it has not served its purpose.



Mathematical Modeling Competitions

Moody's Mega Math Challenge’
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Participation in high school mathematical
modeling competitions is steadily increasing.

The Mathematical Contest in Modeling (MCM)
The Interdisciplinary Contest in Modeling (ICM)

Undergraduate competitions are also
growing, especially in participation
by Chinese teams.




GAIMME Report (SIAM, COMAP 2016)

Guidelines for Assessment and Instruction in
Mathematical Modeling Education

Contents

* What is Mathematical Modeling?
* Early Grades (K-8)
* High School (9-12)
* Undergraduate
Resources

nnnnnnnnnnnnnnnnnnnnnnnnnn
AAAAAAAAAAAAAAAAAAAA

http://www.siam.org/reports/gaimme.php
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As we discuss mathematical modeling today,
please keep in mind these questions:

1) Who are your learners?

2) What do you want your students to accomplish
in @ mathematical modeling course?

3) Will you teach a stand alone course or infuse
modeling into an existing course?

Take a few minutes to discuss these questions with
a neighbor or two.



Who is teaching...

 Undergraduates?

* Graduate Students?

 Math majors?

e Other majors? (Name them.)

* Modeling as part of an existing course?
* As astand alone course?

We’ll discuss more details about goals later...



What is the difference between
teaching mathematical models and
mathematical modeling?




three perspectives



What is a model?

In [Field], a model is .....

Biology: ... a hypothesis explaining experiments (or a mouse)

Engineering: ... a simple design/prototype of a more complex system

Comp Sci: ... is description of the complete operations of a system

Numerics: ... is a simulation that gives the same quantitative results

Differential eqns: ... is a simpler eqn derivable from the full problem




What is modeling?

Many definitions of the scope and intrinsic elements of “math modeling” —it's
applied math, but beyond that, many views on aspects:

On Starting points — classes of problems:
* Broad questions for un-formulated real world problems vs.
* Specific questions for well-defined but intractable direct problems

On Ending points — desired form of solutions:
Formulating new frameworks/theories
Finding efficient computing/analysis approaches
Developing a proof-of-concept approximation
Using teamwork and interdisciplinary collaboration to present communicate
progress

IFocus of teaching and priorities:
Emphasis on formulation or analysis/solution techniques
Experience with open problems vs. specific problem classes
The modeling process vs. studies of model types




Continuum of Problems

Solve a 2 How can |
order constant Mass Spring model a

coeff linear Equation building in an
forced DE earthquake?

Math Model Modeling



Mathematical modeling is the Scientific Method

(where your hypothesis is a mathematical relationship)

ormulate Hypothesis

Veldaton

Graphing relationships, clustering, exploring
dimensionality, scaling, unsupervised learning

Optimization, differential equation, training
supervised learning methods

Core algorithms and/or feedback control

Measuring, quantifying, and reporting the
quality of the results, errors, uncertainty, etc.




Classifying models:
black boxes, white boxes
and shades of gray




Shades of Model Uncertainty

Black Box Models Gray Box Models White Box Models
< >
Fitting Data Combination of First Principles
data and first
n principles
min > f(y; - f(x,)) up + V- f(u) =0
1=1
Purely data driven Conservation Laws



Black Box Methods:
Mapping inputs to outputs

* Regression
— Curve Fitting
— Time-Series Analysis
— Econometrics
— Credit Scoring

— Classification
— Credit Card Fraud —
— Speech Recognition

— Image Recognition
* Freakonomics: In black box disciplines, you are  ##osut economist exeLokes
are a good researcher if you ask clever

questions and find good data sets. (‘*‘\\O
Sy

* Not very good at prediction unless the future
looks like the past

SYEVEMR . STEPHER J.

LEVITT & DUBNER



Black-Box Example:
Surviving the Titanic

* Use classification to predict who
lived and who died
— Class of ticket (first class, etc)
— Gender
— Age
— With spouse or children

* Can get around 94% accuracy in

[es) ij_ sex malez [no]
predicting who lived and died. ; |

. survivec
is age > 9.57
72 2R/
| A| B | C ot o oo g i 7% X 0.73 36%
1 | pclass survived name sex age sibsp parch ','
2 1 1|Allen, Miss. Elisabeth Walton Lfemale 29 0 02 "-,_
3 1 1 Allison, Master. Hudson Trevor male 0.917 1 21 . I"\
4 1 0 Allison, Miss. Helen Loraine female 2 1 21 | died ) é i
5 1 0 Allison, Mr. Hudson Joshua Creighton male 30 1 21 e IS Slbsp > 2,5?
6 1 0 Allison, Mrs. Hudson J C (Bessie Waldo Daniels) female 25 1 21 0.17 61% / '
7 1 1 Anderson, Mr. Harry male 48 0 01¢ cat /
8 1 1 Andrews, Miss. Komnelia Theodosia female 63 1 01 "" \
9 1 0 Andrews, Mr. Thomas Jr male 39 0 01 : \
10 1 1 Appleton, Mrs. Edward Dale (Charlotte Lamson) female 53 2 01 P R ——
11 1 0 Artagaveytia, Mr. Ramon male 71 0 0m | d|ed .:' {survived )
12 1 0 Astor, Col. John Jacob male 47 1 op - o’ -
13 1 1 Astor, Mrs. John Jacob (Madeleine Talmadge Force)  female 18 1 om 005 2% 089 2%
14 1 1 Aubart, Mme. Leontine Pauline female 24 0 0op e S
15 1 1 Barber, Miss. Ellen "Nellie" female 26 0 01
16 1 1 Barkworth, Mr. Algernon Henry Wilson male 80 0 02




Black-Box Example:
Consumer Credit Rating

Logistic regression is the old school
way to do analytics.

Credit ratings use this technique to
give you scores that have some
meaning in weighing the fidelity of a
borrower.

Has reasonable track record when
predictions are “in sample”

Have little to no fidelity when
predictions are “out of sample”

Feature selection is the name of the
game

Types of Credit in Use
Payment History

New Credit

.(l;vrgflist?:l Use Amounts Owed



Black-Box Example:
Handwriting Recognition

Classify zip codes for USPS (famous MNIST dataset)
Each image is 28x28 = 784 pixels with 256 shades of grey

Training data (60k samples) is much smaller than the set of all
possible vectors

Methods:

— Best in Show: Deep convolutional neural networks. Now up to
99.79% accuracy (as of 2013)

— Entry level via nearest neighbors

— with Logistic regression: 92.5% accuracy :
— Average Humans: 98% accuracy O / 2_

U?




Gray-Box Methods:
Uncovering the Structure

Dynamical models (cause and effect)

Managing uncertainty, peeling back the layers to
understand what is in the box

Understanding feedback effects
Understanding first principles: “Why?”, not just “How?”.
Modeling the thing that generate data, not the data.

Able to make predictions when the future is not a repeat
of the past.

Examples:

— Natural Language Processing (underlying semantics)
— Math Biology (individual processes and reactions)
— Economic Modeling (individual decisions)



Gray-Box Example:
Handwriting Recognition

* Adding human motor
o )
control to the model

* Understanding context l !ﬂ l SR M
with the surrounding | /\ -
letters

Noe .
Fig. 9. Importance of context in handwriting recognition. The word ‘defence’ M

is clearly legible, but the letter ‘n’ in isolation is ambiguous.

Dictionary and
aaaaaaaaaaaaa

eeeeeeeeeeee

Handwriting



Gray-Box Example:
Weather Prediction

Use compressible fluid dynamical
models, thermodynamics, oceanic
models, climate models, etc.,
combined with statistical models.

National Weather Service uses two E A ','
clusters each with 10k processors $ ”‘*
and 210TF peak performance (210 &
Trillion floating point operations
per second).

Still fairly accurate to 8 days.

European Center has 10 times that
power and forecasts better. v
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Gray-Box Example:
Weight Management

dF dL

FEE = §BW ‘|‘5tefEI+\6atEI +yrF + L + ME o TL o T KJ, Conservation

physical  ¢hermic . ~ of Energy

. resting metabolic rate (RMR)
activity effect of
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dF(t
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Gray Box Example:
Inverted Pendulum
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Gray-Box Example:
Jet Control

X-29 forward swept
wing, DARPA funded
(1980s)

Dynamically unstable: A
flying inverted
pendulum

Computer stabilized:
Makes 40 corrections
per second

Inspired many fighter jet
designs in use today




White-Box Methods:
Uncovering the Truth

 Models are “essentially” right

* |ntimate connection with symmetries and
conservation laws

 Examples:
— Classical Mechanics
— Electromagnetism
— Quantum Theory
— Statistical Physics
— General Relativity
— Fluid Dynamics (mostly)



White Box Example:
Maxwell’s Equations

And God Said
V-BE=0
v D= Py

3B
VXE = —=——
* ot
D

VXH= —_—
I+

and then there was light,




White Box Example: Fluid Dynamics

(with a sliver of gray)

The Navier-Stokes Equation:

Mass pe + V- (p?¥) =0

Momentum (p0)e + V- (p 7)) =V -P

Energy [,0(6 + %|?7‘2)]t ==/ - [p(e + %‘UP)U] =V - (Pv+ wkVT),
where

e p is the density, v the velocity, and e the specific energy
e P=|—p+nV 0|1+ 2uSym(V7) is the stress tensor,
e 1, n are the viscosity coefficients (u > 0, 2u +n > 0), and

e x> (0 is the heat conductivity.



Part Il: Design and Objectives




Facilitating Modeling



Modeling Teaching Principles
(from GAIMME report)

1. Modeling (like real life) is open-ended and
messy.

2. When students are modeling, they must be
making genuine choices.

3. Start big, start small, just start

4. Assessment should focus on the process, not
the product.

5. Modeling does not happen in isolation



What makes a good modeling problem?

 Modelers can relate to the context

* Openness
— Beginning: multiple entry points
— Middle: multiple mathematical approaches
— End: multiple solutions

* Inspires questions right away to focus problem
through assumptions

 Information needed to inform and test solutions

e Someone cares about solutions; solutions are
useful



Questions that arise when
facilitating mathematical modeling

How should | form student groups?

Should | anticipate/encourage particular
mathematical approaches?

What do | do when student work reveals a
unrecognized assumption or mathematical
misconception?

How many days should | stay on this project?

What if students focus on an aspect of the
problem other than mathematics?



Student modeling process

N\ N 4 aYd AY4 R
Define a Do the Decid
Dive A math, ecide Declare Demonstrate
in » mathematical | make a :>whethe'r you > victory Y solution
problem model are satisfied
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Are My Students Modeling?

ARE THEY

DID THEY START WITH COMMUNICATING

WITH SOMEONE WHO
ABIG, MESSY, REAL HTH SOUEDNE
WORLD PROBLEM?

SOLUTION?

DID THEY ASK
QUESTIONS AND THEN
MAKE ASSUMPTIONS
T0 DEFINE THE
PROBLEM?

HAVE THEY
EXPLAINED IF/WHEN
THEIR

ANSWERS MAKE
SENSE?

ARE THEY USING
MATHEMATICAL
TOOLS TO SOLVE
THE PROBLEM?

DID THEY IDENTIFY
WHAT CHANGES AND HAVE THEY TESTED

WHAT STAYS THE THEIR MODEL/
SAME? SOLUTION AND

REVISED IF
NECESSARY?



Course design




Who are you planning to teach?

 What are their majors? Career plans? Interests?

 What prerequisite knowledge do they bring? What
do they lack?

— Mathematics

— Programming/Algorithms

— Modeling

— Familiarity with software

— Teamwork

— Application background/interest

* Do they have to take your course or is it an
elective?



Syllabus organizational principles

Mathematical topics— usually ordered from simple to more complex.
Model and context follows introduction of math as illustration of its
use. (“Applied math class”)

Types of models or algorithms — here the mathematics appears within
a particular established modeling approach. Context follows model as
illustration of its use. (“Greatest hits models”)

Context — start with something like traffic/climate/health and introduce
mathematics to apply to that context. (“Topics course”)

Process-based modeling project — emphasize steps of the process
applied to open-ended problems. Choice of mathematical tools usually
up to the student, though instructors could make suggestions.
(“Modeling class”)

Current research/practice — Topics or themes based on current journal
articles or industrial projects (“Journal club”)



Syllabus Organized by Model Type

Mathematical Modeling (Math 5740)

* Growth & interaction models (population dynamics,
epidemics)

Wave models (traffic)
Conflict models (games)
Graphs (shortest path, max flow, transport)

Shapes, smooth/space-fitting, fractal curves
(gerrymandering)

e Lattice models (structures and materials)

Andrej Cherkaev, Utah



Syllabus organized by Context

Mathematical Modeling (Applied Math 115)

Population Dynamics: ODEs, linear stability of fixed points, numerical
solutions of ODEs, Markov processes, stochastic equations, stochastic
simulations, equations for probability of distribution function, phase
planes, oscillations vs limit cycles, model validation, maps as dynamical
systems, their fixed points, oscillation and chaos.

Climate: multiple equilibria, bifurcation, hysteresis, catastrophes,
stochastic DEs, white noise, red noise, Fourier transform, spectrum, AR(n),
Markov processes, variance, autocorrelation

Renewable and Exhaustible Resources: maximum solution in optimal
control, singular solutions and bang-bang control, shadow prices

Traffic flow: discrete modeling, delayed ODEs and PDEs, waves,
characteristics, shocks

Interacting agents: Markov chains, ergodic distribution, recurrent classes

Tziperman and Fudenberg, Harvard



First Year BYU ACME (4 Courses)

Mathematical Analysis

* Vector Spaces

* Linear Transformations
* Inner Product Spaces

* Spectral Theory
 Metric Topology

e Differentiation

* Contraction Mappings
* Integration

* Integration on Manifolds
 Complex Analysis

e Adv. Spectral Theory

* Psudospectrum

Algorithm Design & Optimization
* Intro Algorithms

* Graph Algorithms

e Discrete Probability

* Fourier Theory

*  Wauvelets

* Interpolation

* Unconstrained Optimization
e Convex Analysis

* Linear Optimization

* Nonlinear Optimization

* Dynamic Optimization

* Markov Decision Processes



First Year BYU ACME (Labs)

Mathematical Analysis

Intro Python

NumPy

MatPlotLib
Complexity/Sparse Matrices
Linear Systems

QR (householder)

QR (givens)

Markov Chain Lab

Image Segmentation

Facial Recognition (SVD)
Finite Differences
Conditioning

Newton Cotes vs. Monte Carlo
Sparse Grid Approximation
Variance Reduction Methods
Complex Analysis

Profiling and Wrapping
PageRank on Tournaments
Arnoldi Iteration and GMRES
The Pseudospectrum

Algorithm Design & Optimization

Standard Library

Object Oriented Programming
Data Structures
Depth/Breadth First

Nearest Neighbor Search
Scientific Visualization
Maximum Likelihood Estimation
FFT and Applications
Wavelets

Chebychev Polynomials
Gaussian Quadrature
Polynomial Interpolation
Optimization Packages

Line Search Methods
Conjugate Gradient Methods
Simplex Method

Compressed Sensing Lab
Interior Point Methods
Dynamic Optimization
Multi-Armed Bandits



Second Year BYU ACME (4 Courses)

Modeling with Uncertainty & Data Modeling with Dynamics & Control

* Random Spaces & Variables * ODE Existence & Uniqueness
e Distributions & Expectation e Linear ODE

* Limit Theorems

* Markov Processes

e Poisson, Queuing, Renewal

* Nonlinear Stability
* Boundary-Value Problems

* Information Theory * Hyperbolic PDE
* Martingales, Diffusion  Parabolic PDE
* Kalman Filtering & Time-Series «  Elliptic PDE

e Principal Components

e Clustering

 Bayesian Statistics (MCMC) * Optimal Control
« Logistic Regression * Stochastic Control

* Calculus of Variations

 Random Forests
e Support Vector Machines



Second Year BYU ACME (Labs)

Modeling with Uncertainty & Data

Relational Databases and SQL
Regular Expressions

Web Technologies

Scraping with BeautifulSoup

MPI and OpenMP

Pandas and Hadoop
MongoDB/noSQL

Kalman Filtering

Time Series

Naive Bayes

Discrete HMMs

Continuous HMMs (speech recognition)
Gibbs Sampling and LDA
Metropolis Hastings

PCA and LSI

Clustering with k-means

Logistic Regression

Random Forests

SVM on Handwriting Recognition

Modeling with Dynamics & Control

Harmonic Oscillators and Resonance
Weightloss Models

Predator-Prey Models

Shooting Methods and Applications
Compartmental Models (SIR)
Pseudospectral methods for BVP
Lyapunov Exponents and Lorenz Attractors
Hysteresis in population models
Conservation Laws and Heat Flow
Anisotropic diffusion

Poisson equation, finite difference
Nonlinear Waves

Finite Volume Methods

Finite Element Methods

Scattering Problems

PID Control

LQR and LQG Control

Guided Missiles

Merton Model in Finance



Let’s discuss Pros and Cons...
Discussion: Which approach(es)
will best serve your students?

Mathematical topics

Types of models or algorithms
Context

Process-based modeling project
Current research/practice



Assignment types — again, what will
best serve your students?

Doing the Math (more closed)

* Solving problems to practice a mathematical skill (little or no context)
* Solving given problem using particular tool (tool practice is the focus)
* Solving mathematical problems where the context matters
Modeling projects (more open)

 Teacher-proposed

e Student-proposed

e Industrial / community client

Presentations

* Problem presentation in class

e Data visualization

e Oral presentations

* Written presentations



Tools / algorithms




—_
jupyter
N

Jupyter Notebook Demonstration



Career preparation




Beyond the classroom: math modeling courses as intro guided
research experiences

What are the short/long-term take-aways for students? (GAIMME
2016 report)

* Improved skills with applying specific mathematical tools and
techniques

Independently formulating research goals

Doing searches to find sources for background

Experience with teamwork, project management, or leadership
Communications skills: intra-team and external reports and
presentations

All are valuable transferable skills that students can carry-over to
future experiences




Math modeling courses are gateways to many opportunities:

" Independent research projects (in math or application areas)

= Summer schools and workshops on modeling
MPI (Mathematical Problems in Industry) workshops (US
Univs)

. GSMMC (Graduate Student Mathematical Modeling Camp)

(RPI)
IMSM (Industrial Mathematical & Statistical Modeling
Workshop) (NCSU/SAMSI)
RIPS (Research in Industrial Projects for Students) (UCLA/IPAM)
ESGI (European Study Groups in Industry, Medicine, etc) (UK,
EU, worldwide)
Other programs in Canada (Fields, PIMS, MITACS) and other
sources...
PIC Math

" |nternships with companies and research labs...



Beyond the classroom: preparation for broader career paths

* Many thriving areas of high technical careers involving research and design
via mathematical sciences outside academia!

* Essential for sustainability — academia does not offer enough jobs to balance
the yearly production of graduates

What industrial areas? (SIAM Mathematics in Industry 1996, 2012 reports)
* Engineering, aerospace, defense

* Biotech, medicine, pharmaceuticals

* Information science, communications, computers, security

* Manufacturing and materials

* Finance, business, management

What mathematical backgrounds?

* Statistics

* Applied mathematics

* Probability

* Discrete math, algebra, geometry, ...

* Numerical analysis, optimization, operations research, ...




Beyond the classroom: modeling in modernized advanced math curriculum

NSF-IPAM Workshop on Internships in Math Sciences (UCLA/IPAM, Fall 2015)
Recommendations for preparing math students for current real-world jobs:
* Encouraging internship experiences
* Industry-academic collaborations
* Multi-level National infrastructure to provide support and information:
via Professional Associations (SIAM, AMS, ASA, ACM, etc), Mathematical
Institutes (IPAM, ICERM, SAMSI, Fields, etc), ...
see BIG (Business Industry Government) Math Network
(https://bigmathnetwork.wordpress.com)
* Key elements of modern training in applied math
* Programming, Data science, Modeling and simulation
* Professional development experience

Very consistent with earlier Math-in-Industry reports, also:

* Depth of knowledge in a current active application area is important

* Some “cultural” tensions exist in academia regarding valuing academic vs.
industrial-track jobs for graduates, but core training shares fundamental
principles of problem solving and modeling via applied math



SIAM Conference on

Applied Mathematics Education
September 30-October 2, 2016
DoubleTree by Hilton Hotel,
Philadelphia Center City
Philadelphia, Pennsylvania, USA



Find a blend
that works for your learners.

models + modeling
mathematics + algorithms
theory + implementation
formulation + solutions
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Mathematical _.
Communication

Vocabulary
Interdisciplinary Formalizing &
Connections Mathematizing
Quantitative ] Problems
Literacy Mathematical Solving
. . Modellng Iteration &
Creativity . . .
Motivates Revision
Collaboration Computation
Critical Thinking Multiple.
representations




