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Minitutorial	MT2	
	



There	are	many	approaches	to	
mathema'cal	modeling	pedagogy.	

	
We’ll	discuss	them	today	and	provide	
some	ac'vi'es	to	help	you	make	
choices	about	what	will	work	
best	for	you	and	your	students.	



Outline	of	minitutorial	

Part	I:		Mo'va'on	and	Background	
•  Why	teach	mathema'cal	modeling?		
•  What	is	the	difference	between	teaching	
mathema'cal	models	and	mathema'cal	
modeling?		

Part	II:	Design	and	Objec'ves	
•  Course	design		
•  Tools/algorithms		
•  Career	prepara'on		



Part	I:		Mo=va=on	and	Background	



Why	should	you	teach		
mathema'cal	modeling?	



Your	students	have	likely	heard	of	
mathema'cal	modeling	before	they	

come	to	college.	



Make	sense	of	problems	and	persevere	in	solving	them.	
Reason	abstractly	and	quan'ta'vely.		
Construct	viable	arguments	and	cri'que	reasoning	of	others.		
Model	with	Mathema=cs.		
Use	appropriate	tools	strategically.	
ASend	to	precision.	
Look	for	and	make	use	of	structure.	
Look	for	and	express	regularity	in	repeated	reasoning.		
	

K-12	Common	Core	State	Standards	
8	Standards	for	Mathema'cal	Prac'ce	



CCSS.Math.Prac=ce.MP4		
Model	with	mathema=cs.	

Mathema=cally	proficient	students	

•  apply	the	mathema=cs	they	know	to	solve	problems	

•  are	comfortable	making	assump=ons	and	approxima=ons	to	simplify	a	

complicated	situa'on,	realizing	that	these	may	need	revision	later.	
•  iden=fy	important	quan==es	in	a	prac'cal	situa'on	and	map	their	

rela=onships	using	such	tools	as	diagrams,	two-way	tables,	graphs,	
flowcharts	and	formulas.	

•  analyze	those	rela'onships	mathema'cally	to	draw	conclusions.	

•  interpret	their	mathema'cal	results	in	the	context	of	the	situa'on	and	

reflect	on	whether	the	results	make	sense,	possibly	improving	the	model	if	
it	has	not	served	its	purpose.		



Mathema'cal	Modeling	Compe''ons	

Par'cipa'on	in	high	school	mathema'cal		
modeling	compe''ons	is	steadily	increasing.	

Undergraduate	compe''ons	are	also		
growing,	especially	in	par'cipa'on		
by	Chinese	teams.	



GAIMME	Report	(SIAM,	COMAP	2016)	
Guidelines	for	Assessment	and	Instruc'on	in	

Mathema'cal	Modeling	Educa'on	

Contents	
	
•  What	is	Mathema'cal	Modeling?	
•  Early	Grades	(K–8)	
•  High	School	(9–12)	
•  Undergraduate	
•  	Resources	
	
hQp://www.siam.org/reports/gaimme.php	







As	we	discuss	mathema=cal	modeling	today,	
please	keep	in	mind	these	ques=ons:	
	
1)  Who	are	your	learners?	
2)  What	do	you	want	your	students	to	accomplish	

in	a	mathema'cal	modeling	course?	
3)  Will	you	teach	a	stand	alone	course	or	infuse	

modeling	into	an	exis'ng	course?	

Take	a	few	minutes	to	discuss	these	ques'ons	with	
a	neighbor	or	two.	



Who	is	teaching…	

•  Undergraduates?	
•  Graduate	Students?	
•  Math	majors?			
•  Other	majors?		(Name	them.)	
•  Modeling	as	part	of	an	exis'ng	course?	
•  As	a	stand	alone	course?	

We’ll	discuss	more	details	about	goals	later…	



What	is	the	difference	between	
teaching	mathema'cal	models	and	

mathema'cal	modeling?		



three	perspec'ves	



What	is	a	model?	

l In	[Field],	a	model	is	…..	

•  Biology:	...	a	hypothesis	explaining	experiments	(or	a	mouse)	

•  Engineering:	…	a	simple	design/prototype	of	a	more	complex	system	

•  Comp	Sci:	…	is	descrip'on	of	the	complete	opera'ons	of	a	system	

•  Numerics:	…	is	a	simula'on	that	gives	the	same	quan'ta've	results	

•  Differen'al	eqns:	…	is	a	simpler	eqn	derivable	from	the	full	problem	



What	is	modeling?		
	

Many	defini'ons	of	the	scope	and	intrinsic	elements	of	“math	modeling”	–	it's	
applied	math,	but	beyond	that,	many	views	on	aspects:	
	
l On	Star=ng	points	–	classes	of	problems:		
•  Broad	ques'ons	for	un-formulated	real	world	problems	vs.	
•  Specific	ques'ons	for	well-defined	but	intractable	direct	problems	
	
l On	Ending	points	–	desired	form	of	solu=ons:	
•  Formula'ng	new	frameworks/theories	
•  Finding	efficient	compu'ng/analysis	approaches	
•  Developing	a	proof-of-concept	approxima'on	
•  Using	teamwork	and	interdisciplinary	collabora'on	to	present	communicate	

progress	
	
l Focus	of	teaching	and	priori=es:		
•  Emphasis	on	formula'on	or	analysis/solu'on	techniques	
•  Experience	with	open	problems	vs.	specific	problem	classes	
•  The	modeling	process	vs.	studies	of	model	types	
	



Con'nuum	of	Problems	

Solve	a	2nd	
order	constant	
coeff	linear	
forced	DE		

How	can	I	
model	a	

building	in	an	
earthquake?	

Mass	Spring	
Equa'on	

Math	 Model	 Modeling	



Mathema'cal	modeling	is	the	Scien'fic	Method	
(where	your	hypothesis	is	a	mathema'cal	rela'onship)	

Characteriza'on	

Formulate	Hypothesis	

Predic'on/Decision	

Valida'on	

Graphing	rela'onships,	clustering,	exploring	
dimensionality,	scaling,	unsupervised	learning	

Op'miza'on,	differen'al	equa'on,	training		
supervised	learning	methods	

Measuring,	quan'fying,	and	repor'ng	the		
quality	of	the	results,	errors,	uncertainty,	etc.	
	

Core	algorithms	and/or	feedback	control	



Classifying	models:	
black	boxes,	white	boxes		

and	shades	of	gray	



Shades	of	Model	Uncertainty	

Black	Box	Models	 White	Box	Models	Gray	Box	Models	

First	Principles	Fimng	Data	

min
nX

i=1

`(yi � f(xi))

Purely	data	driven	 Conserva'on	Laws	

Combina'on	of	
data	and	first	
principles	

ut +r · f(u) = 0



Black	Box	Methods:	
Mapping	inputs	to	outputs	

•  Regression	
–  Curve	Fimng	
–  Time-Series	Analysis	
–  Econometrics	
–  Credit	Scoring	

–  Classifica'on	
–  Credit	Card	Fraud	
–  Speech	Recogni'on	
–  Image	Recogni'on	

•  Freakonomics:		In	black	box	disciplines,	you	are	
are	a	good	researcher	if	you	ask	clever	
ques'ons	and	find	good	data	sets.	

•  Not	very	good	at	predic'on	unless	the	future	
looks	like	the	past	



Black-Box	Example:		
Surviving	the	Titanic	

•  Use	classifica'on	to	predict	who	
lived	and	who	died	
–  Class	of	'cket	(first	class,	etc)	
–  Gender	
–  Age	
–  With	spouse	or	children	

•  Can	get	around	94%	accuracy	in	
predic'ng	who	lived	and	died.	



Black-Box	Example:		
Consumer	Credit	Ra'ng	

•  Logis'c	regression	is	the	old	school	
way	to	do	analy'cs.	

•  Credit	ra'ngs	use	this	technique	to	
give	you	scores	that	have	some	
meaning	in	weighing	the	fidelity	of	a	
borrower.	

•  Has	reasonable	track	record	when	
predic'ons	are	“in	sample”	

•  Have	liSle	to	no	fidelity	when	
predic'ons	are	“out	of	sample”	

•  Feature	selec'on	is	the	name	of	the	
game	



Black-Box	Example:		
Handwri'ng	Recogni'on	

•  Classify	zip	codes	for	USPS	(famous	MNIST	dataset)	
•  Each	image	is	28x28	=	784	pixels	with	256	shades	of	grey	
•  Training	data	(60k	samples)	is	much	smaller	than	the	set	of	all	

possible	vectors	
•  Methods:	

–  Best	in	Show:	Deep	convolu'onal	neural	networks.		Now	up	to	
99.79%	accuracy	(as	of	2013)	

–  Entry	level	via	nearest	neighbors	
–  with	Logis'c	regression:	92.5%	accuracy	
–  Average	Humans:	98%	accuracy		



Gray-Box	Methods:	
Uncovering	the	Structure	

•  Dynamical	models	(cause	and	effect)	
•  Managing	uncertainty,	peeling	back	the	layers	to	
understand	what	is	in	the	box	

•  Understanding	feedback	effects	
•  Understanding	first	principles:		“Why?”,	not	just	“How?”.			
•  Modeling	the	thing	that	generate	data,	not	the	data.	
•  Able	to	make	predic'ons	when	the	future	is	not	a	repeat	
of	the	past.	

•  Examples:	
–  Natural	Language	Processing	(underlying	seman'cs)	
–  Math	Biology	(individual	processes	and	reac'ons)	
–  Economic	Modeling	(individual	decisions)	



Gray-Box	Example:		
Handwri'ng	Recogni'on	

•  Adding	human	motor	
control	to	the	model	

•  Understanding	context	
with	the	surrounding	
leSers	



Gray-Box	Example:		
Weather	Predic'on	

•  Use	compressible	fluid	dynamical	
models,	thermodynamics,		oceanic	
models,	climate	models,	etc.,	
combined	with	sta's'cal	models.	

•  Na'onal	Weather	Service	uses	two	
clusters	each	with	10k	processors	
and	210TF	peak	performance	(210	
Trillion	floa'ng	point	opera'ons	
per	second).	

•  S'll	fairly	accurate	to	8	days.	
•  European	Center	has	10	'mes	that	

power	and	forecasts	beSer.	
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Gray-Box	Example:		
Weight	Management	

EE = �BW| {z }
physical

activity

+�tefEI
| {z }
thermic

e↵ect of

eating

+�atEI + �FF + �LL+ ⌘F
dF

dt
+ ⌘L

dL

dt
+K

| {z }
resting metabolic rate (RMR)

,
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10.4

Conserva'on	
of	Energy	

Compartmental	
Model	

Forbes’	Law	
(empirical)	



Gray	Box	Example:	
Inverted	Pendulum	



Gray-Box	Example:		
Jet	Control	

•  X-29	forward	swept	
wing,	DARPA	funded	
(1980s)	

•  Dynamically	unstable:	A	
flying	inverted	
pendulum	

•  Computer	stabilized:	
Makes	40	correc'ons	
per	second	

•  Inspired	many	fighter	jet	
designs	in	use	today	



White-Box	Methods:	
Uncovering	the	Truth	

•  Models	are	“essen'ally”	right	
•  In'mate	connec'on	with	symmetries	and	
conserva'on	laws	

•  Examples:	
–  Classical	Mechanics	
–  Electromagne'sm	
– Quantum	Theory	
–  Sta's'cal	Physics	
– General	Rela'vity	
–  Fluid	Dynamics	(mostly)	



White	Box	Example:	
Maxwell’s	Equa'ons	



White	Box	Example:	Fluid	Dynamics	
(with	a	sliver	of	gray)	

The Navier-Stokes Equation:

⇢t +r · (⇢~v) = 0

(⇢~v)t +r · (⇢~v ⌦ ~v) = r · P
⇥
⇢
�
e+ 1

2 |~v|
2
�⇤

t
+r ·

⇥
⇢
�
e+ 1

2 |~v|
2
�
~v
⇤
= r · (P~v + rT ),

where

• ⇢ is the density, v the velocity, and e the specific energy

• P =

⇥
� p+ ⌘r · ~v

⇤
I+ 2µ Sym(r~v) is the stress tensor,

• µ, ⌘ are the viscosity coe�cients (µ > 0, 2µ+ ⌘ > 0), and

•  > 0 is the heat conductivity.

Mass	

Momentum	

Energy	



Part	II:		Design	and	Objec'ves	



Facilita'ng	Modeling	



Modeling	Teaching	Principles		
(from	GAIMME	report)	

1.	Modeling	(like	real	life)	is	open-ended	and	
messy.	
2.	When	students	are	modeling,	they	must	be	
making	genuine	choices.		
3.	Start	big,	start	small,	just	start	
4.	Assessment	should	focus	on	the	process,	not	
the	product.		
5.	Modeling	does	not	happen	in	isolaEon	



What	makes	a	good	modeling	problem?	

•  Modelers	can	relate	to	the	context	
•  Openness	
–  Beginning:		mul'ple	entry	points	
– Middle:		mul'ple	mathema'cal	approaches	
–  End:		mul'ple	solu'ons	

•  Inspires	ques'ons	right	away	to	focus	problem	
through	assump'ons	

•  Informa'on	needed	to	inform	and	test	solu'ons	
•  Someone	cares	about	solu'ons;	solu'ons	are	
useful	



Ques'ons	that	arise	when		
facilita'ng	mathema'cal	modeling	

•  How	should	I	form	student	groups?	
•  Should	I	an'cipate/encourage	par'cular	
mathema'cal	approaches?	

•  What	do	I	do	when	student	work	reveals	a	
unrecognized	assump'on	or	mathema'cal	
misconcep'on?	

•  How	many	days	should	I	stay	on	this	project?	
•  What	if	students	focus	on	an	aspect	of	the	
problem	other	than	mathema'cs?	





DID THEY START WITH 
A BIG, MESSY, REAL 
WORLD PROBLEM?

DID THEY ASK  
QUESTIONS AND THEN 
MAKE ASSUMPTIONS  
TO DEFINE THE  
PROBLEM?

DID THEY IDENTIFY 
WHAT CHANGES AND 
WHAT STAYS THE 
SAME?

ARE THEY USING  
MATHEMATICAL  
TOOLS TO SOLVE  
THE PROBLEM?

ARE THEY  
COMMUNICATING 
WITH SOMEONE WHO 
CARES ABOUT THE 
SOLUTION?

HAVE THEY  
EXPLAINED IF/WHEN 
THEIR  
ANSWERS MAKE 
SENSE?

HAVE THEY TESTED 
THEIR MODEL/  
SOLUTION AND  
REVISED IF  
NECESSARY?

ARE MY STUDENTS MODELING?

Are	My	Students	Modeling?	



Course	design	



Who	are	you	planning	to	teach?	
•  What	are	their	majors?		Career	plans?		Interests?	
•  What	prerequisite	knowledge	do	they	bring?		What	
do	they	lack?	
– Mathema'cs	
–  Programming/Algorithms	
– Modeling	
–  Familiarity	with	sowware	
–  Teamwork	
–  Applica'on	background/interest	

•  Do	they	have	to	take	your	course	or	is	it	an	
elec've?	

	
	



Syllabus	organiza'onal	principles	
•  Mathema=cal	topics–	usually	ordered	from	simple	to	more	complex.		

Model	and	context	follows	introduc'on	of	math	as	illustra'on	of	its	
use.		(“Applied	math	class”)	
	

•  Types	of	models	or	algorithms	–	here	the	mathema'cs	appears	within	
a	par'cular	established	modeling	approach.			Context	follows	model	as	
illustra'on	of	its	use.		(“Greatest	hits	models”)	
	

•  Context	–	start	with	something	like	traffic/climate/health	and	introduce	
mathema'cs	to	apply	to	that	context.	(“Topics	course”)	
	

•  Process-based	modeling	project	–	emphasize	steps	of	the	process	
applied	to	open-ended	problems.		Choice	of	mathema'cal	tools	usually	
up	to	the	student,	though	instructors	could	make	sugges'ons.	
(“Modeling	class”)	
	

•  Current	research/prac=ce	–	Topics	or	themes	based	on	current	journal	
ar'cles	or	industrial	projects	(“Journal	club”)	

	



Syllabus	Organized	by	Model	Type	

Mathema'cal	Modeling	(Math	5740)	
•  Growth	&	interac'on	models	(popula'on	dynamics,	
epidemics)	
• Wave	models	(traffic)	
•  Conflict	models	(games)	
•  Graphs	(shortest	path,	max	flow,	transport)	
•  Shapes,	smooth/space-fimng,	fractal	curves	
(gerrymandering)	
•  Lamce	models	(structures	and	materials)	
	

	 	 	 	 	 	 	Andrej	Cherkaev,	Utah	

	



Syllabus	organized	by	Context	
Mathema=cal	Modeling	(Applied	Math	115)	
•  Popula=on	Dynamics:	ODEs,	linear	stability	of	fixed	points,	numerical	

solu'ons	of	ODEs,	Markov	processes,	stochas'c	equa'ons,	stochas'c	
simula'ons,	equa'ons	for	probability	of	distribu'on	func'on,	phase	
planes,	oscilla'ons	vs	limit	cycles,	model	valida'on,	maps	as	dynamical	
systems,	their	fixed	points,	oscilla'on	and	chaos.		

•  Climate:	mul'ple	equilibria,	bifurca'on,	hysteresis,	catastrophes,	
stochas'c	DEs,	white	noise,	red	noise,	Fourier	transform,	spectrum,	AR(n),	
Markov	processes,	variance,	autocorrela'on	

•  Renewable	and	Exhaus=ble	Resources:	maximum	solu'on	in	op'mal	
control,	singular	solu'ons	and	bang-bang	control,	shadow	prices	

•  Traffic	flow:	discrete	modeling,	delayed	ODEs	and	PDEs,	waves,	
characteris'cs,	shocks	

•  Interac=ng	agents:	Markov	chains,	ergodic	distribu'on,	recurrent	classes		
	

	 	 	 	 	 	Tziperman	and	Fudenberg,	Harvard	



First	Year	BYU	ACME	(4	Courses)	

Mathema=cal	Analysis	
•  Vector	Spaces	
•  Linear	Transforma'ons	
•  Inner	Product	Spaces	
•  Spectral	Theory	
•  Metric	Topology	
•  Differen'a'on	
•  Contrac'on	Mappings	
•  Integra'on	
•  Integra'on	on	Manifolds	
•  Complex	Analysis	
•  Adv.	Spectral	Theory	
•  Psudospectrum	

Algorithm	Design	&	Op=miza=on	
•  Intro	Algorithms	
•  Graph	Algorithms	
•  Discrete	Probability	
•  Fourier	Theory	
•  Wavelets	
•  Interpola'on	
•  Unconstrained	Op'miza'on	
•  Convex	Analysis	
•  Linear	Op'miza'on	
•  Nonlinear	Op'miza'on	
•  Dynamic	Op'miza'on	
•  Markov	Decision	Processes	



First	Year	BYU	ACME	(Labs)	
Mathema=cal	Analysis	
•  Intro	Python	
•  NumPy	
•  MatPlotLib	
•  Complexity/Sparse	Matrices	
•  Linear	Systems	
•  QR	(householder)	
•  QR	(givens)	
•  Markov	Chain	Lab	
•  Image	Segmenta=on	
•  Facial	Recogni=on	(SVD)	
•  Finite	Differences	
•  Condi=oning	
•  Newton	Cotes	vs.	Monte	Carlo	
•  Sparse	Grid	Approxima=on	
•  Variance	Reduc=on	Methods	
•  Complex	Analysis	
•  Profiling	and	Wrapping	
•  PageRank	on	Tournaments	
•  Arnoldi	Itera=on	and	GMRES	
•  The	Pseudospectrum	

Algorithm	Design	&	Op=miza=on	
•  Standard	Library	
•  Object	Oriented	Programming	
•  Data	Structures	
•  Depth/Breadth	First	
•  Nearest	Neighbor	Search	
•  Scien=fic	Visualiza=on	
•  Maximum	Likelihood	Es=ma=on	
•  FFT	and	Applica=ons	
•  Wavelets	
•  Chebychev	Polynomials	
•  Gaussian	Quadrature	
•  Polynomial	Interpola=on	
•  Op=miza=on	Packages	
•  Line	Search	Methods	
•  Conjugate	Gradient	Methods	
•  Simplex	Method	
•  Compressed	Sensing	Lab	
•  Interior	Point	Methods	
•  Dynamic	Op=miza=on	
•  Mul=-Armed	Bandits	



Second	Year	BYU	ACME	(4	Courses)	
Modeling	with	Uncertainty	&	Data	

•  Random	Spaces	&	Variables	
•  Distribu'ons	&	Expecta'on	
•  Limit	Theorems	
•  Markov	Processes	
•  Poisson,	Queuing,	Renewal	
•  Informa'on	Theory	
•  Mar'ngales,	Diffusion	
•  Kalman	Filtering	&	Time-Series	
•  Principal	Components	
•  Clustering	
•  Bayesian	Sta's'cs	(MCMC)	
•  Logis'c	Regression	
•  Random	Forests	
•  Support	Vector	Machines	

Modeling	with	Dynamics	&	Control	

•  ODE	Existence	&	Uniqueness	
•  Linear	ODE	
•  Nonlinear	Stability	
•  Boundary-Value	Problems	
•  Hyperbolic	PDE	
•  Parabolic	PDE	
•  Ellip'c	PDE	
•  Calculus	of	Varia'ons	
•  Op'mal	Control	
•  Stochas'c	Control	



Second	Year	BYU	ACME	(Labs)	
Modeling	with	Uncertainty	&	Data	

•  Rela=onal	Databases	and	SQL	
•  Regular	Expressions	
•  Web	Technologies	
•  Scraping	with	Beau=fulSoup	
•  MPI	and	OpenMP	
•  Pandas	and	Hadoop	
•  MongoDB/noSQL	
•  Kalman	Filtering	
•  Time	Series	
•  Naïve	Bayes	
•  Discrete	HMMs	
•  Con=nuous	HMMs	(speech	recogni=on)	
•  Gibbs	Sampling	and	LDA	
•  Metropolis	Has=ngs	
•  PCA	and	LSI	
•  Clustering	with	k-means	
•  Logis=c	Regression	
•  Random	Forests	
•  SVM	on	Handwri=ng	Recogni=on	

Modeling	with	Dynamics	&	Control	

•  Harmonic	Oscillators	and	Resonance	
•  Weightloss	Models	
•  Predator-Prey	Models	
•  Shoo=ng	Methods	and	Applica=ons	
•  Compartmental	Models	(SIR)	
•  Pseudospectral	methods	for	BVP	
•  Lyapunov	Exponents	and	Lorenz	AQractors	
•  Hysteresis	in	popula=on	models	
•  Conserva=on	Laws	and	Heat	Flow	
•  Anisotropic	diffusion	
•  Poisson	equa=on,	finite	difference	
•  Nonlinear	Waves	
•  Finite	Volume	Methods	
•  Finite	Element	Methods	
•  ScaQering	Problems	
•  PID	Control	
•  LQR	and	LQG	Control	
•  Guided	Missiles	
•  Merton	Model	in	Finance	



Let’s	discuss	Pros	and	Cons…	
Discussion:		Which	approach(es)		
will	best	serve	your	students?	

•  Mathema=cal	topics	
•  Types	of	models	or	algorithms	
•  Context	
•  Process-based	modeling	project		
•  Current	research/prac=ce	



Assignment	types	–	again,	what	will	
best	serve	your	students?	

Doing	the	Math	(more	closed)	
•  Solving	problems	to	prac'ce	a	mathema'cal	skill	(liSle	or	no	context)	
•  Solving	given	problem	using	par'cular	tool	(tool	prac'ce	is	the	focus)	
•  Solving	mathema'cal	problems	where	the	context	maSers	
Modeling	projects	(more	open)	
•  Teacher-proposed	
•  Student-proposed	
•  Industrial	/	community	client	
Presenta=ons	
•  Problem	presenta'on	in	class	
•  Data	visualiza'on	
•  Oral	presenta'ons	
•  WriSen	presenta'ons	



Tools	/	algorithms	



Jupyter	Notebook	Demonstra'on	
	



Career	prepara'on	



Beyond	the	classroom:	math	modeling	courses	as	intro	guided	
research	experiences	
	
What	are	the	short/long-term	take-aways	for	students?	(GAIMME	
2016	report)	
•  Improved	skills	with	applying	specific	mathema=cal	tools	and	
techniques	

•  Independently	formula=ng	research	goals	
•  Doing	searches	to	find	sources	for	background	
•  Experience	with	teamwork,	project	management,	or	leadership	
•  Communica=ons	skills:	intra-team	and	external	reports	and	
presenta'ons	

	
All	are	valuable	transferable	skills	that	students	can	carry-over	to	
future	experiences	
	
	



Math	modeling	courses	are	gateways	to	many	opportuni'es:	
	
§  Independent	research	projects	(in	math	or	applica'on	areas)	
§  Summer	schools	and	workshops	on	modeling	

§  MPI	(Mathema'cal	Problems	in	Industry)	workshops	(US	
Univs)	

§  GSMMC	(Graduate	Student	Mathema'cal	Modeling	Camp)	
(RPI)	

§  IMSM	(Industrial	Mathema'cal	&	Sta's'cal	Modeling	
Workshop)	(NCSU/SAMSI)	

§  RIPS	(Research	in	Industrial	Projects	for	Students)	(UCLA/IPAM)	
§  ESGI	(European	Study	Groups	in	Industry,	Medicine,	etc)	(UK,	
EU,	worldwide)	

§  Other	programs	in	Canada	(Fields,	PIMS,	MITACS)	and	other	
sources…						

§  PIC	Math	
§  Internships	with	companies	and	research	labs...		
	
	



Beyond	the	classroom:	prepara'on	for	broader	career	paths	
	
•  Many	thriving	areas	of	high	technical	careers	involving	research	and	design	

via	mathema'cal	sciences	outside	academia!			
•  Essen'al	for	sustainability	–	academia	does	not	offer	enough	jobs	to	balance	

the	yearly	produc'on	of	graduates	
	
What	industrial	areas?	(SIAM	Mathema'cs	in	Industry	1996,	2012	reports)	
•  Engineering,	aerospace,	defense	
•  Biotech,	medicine,	pharmaceu'cals	
•  Informa'on	science,	communica'ons,	computers,	security	
•  Manufacturing	and	materials	
•  Finance,	business,	management	
	
	
	
	
	

What	mathema'cal	backgrounds?	
•  Sta's'cs	
•  Applied	mathema'cs	
•  Probability	
•  Discrete	math,	algebra,	geometry,	...	
•  Numerical	analysis,	op'miza'on,	opera'ons	research,	…	



Beyond	the	classroom:	modeling	in	modernized	advanced	math	curriculum	
	
NSF-IPAM	Workshop	on	Internships	in	Math	Sciences	(UCLA/IPAM,	Fall	2015)	
Recommenda'ons	for	preparing	math	students	for	current	real-world	jobs:	
•  	Encouraging	internship	experiences	
•  	Industry-academic	collabora=ons	
•  Mul'-level	Na'onal	infrastructure	to	provide	support	and	informa'on:																																										

via	Professional	Associa'ons	(SIAM,	AMS,	ASA,	ACM,	etc),	Mathema'cal	
Ins'tutes	(IPAM,	ICERM,	SAMSI,	Fields,	etc),	…	
see	BIG	(Business	Industry	Government)	Math	Network		
(https://bigmathnetwork.wordpress.com)	

•  Key	elements	of	modern	training	in	applied	math	
•  Programming,	Data	science,	Modeling	and	simula=on	
•  Professional	development	experience	

	
Very	consistent	with	earlier	Math-in-Industry	reports,	also:	
•  Depth	of	knowledge	in	a	current	ac=ve	applica=on	area	is	important	
•  Some	“cultural”	tensions	exist	in	academia	regarding	valuing	academic	vs.	

industrial-track	jobs	for	graduates,	but	core	training	shares	fundamental	
principles	of	problem	solving	and	modeling	via	applied	math	

	
	





Find	a	blend	
that	works	for	your	learners.	

			
models	+	modeling		

mathema'cs	+	algorithms	
theory	+	implementa'on	
formula'on	+	solu'ons	
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