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Model reduction and general CFD analysis

A reduced order model (ROM)

provides rapid and reliable responses

for the real-time/many-query case for which it was trained.
But, ROMs lack the versatility of FEM for general CFD analysis.

general geometry & condition = flow solution

Question. Can we incorporate model reduction concepts to
accelerate/compress general CFD analysis?
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An effective CFD solver must be versatile and provide

support for general equations — nonlinear, convection, ...

geometric flexibility — non-parametric, topology, . ..

parametric flexibility — M, Re, a, ...

reliable predictions — output error estimate & adaptivity

minimal case-specific training — ~ 10 runs unaffordable.




Localized reduction: boundary layer

Idea: forgo reduction of a specific case,
and focus on reducible & reusable features

In this talk: focus on boundary layers (BLs)
Reason 1: BLs require high resolution for high Re.




Formulation



Formulation

@ Discretization



Discontinuous Galerkin (DG) method

System of steady conservation laws (d + 2 egs for NS)
V-F™(u)+V-F"u,Vu)=0 inQ; (+BCs).
DG: introduce a discontinous FE space V,;
find wu,, € V,, such that
R, (up,v,) =0 Yo, €V,
where

R, (w,,v,) = —/ Vo, - F™ (w,)dx + / 1,r:Fi“V(- s )ds -
Qh Eh

Features:
@ Flexible choice of FE spaces
@ Stability for conservation laws
Roe’s Riemann solver for 7 and BR2 for FVis¢



Polynomial FE spaces & geometry representation

FE space:
Vo=W,={v e LZ(Q) t (Vo gy)lk € Pp(Kret), Fret € Thyret}-

-~

discontinuous polynomial in tessellation
each ref element

Geometry mapping: degree-¢ polynomial

Gq © Kref — K, & .

L
o @ ST




Polynomial FE spaces: adaptivity

FE space: Vi, = {v € L*(Q) : (vogy)|s € Pp(Kret), Fret € Thret}-

h-adaptivity: u;, — w as h — 0

p-adaptivity: u, — u as p — o0
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Polynomial spaces with good general approximability in each «.



Formulation

@ Reduced basis element (RBE)



Reduced basis element (RBE) [Maday & Rgnquist, 2005; .. ]

Idea. Construct spaces with feature-specific approximability.

Discontinuous non-polynomial FE space

Vo={veLl*Q): (vo 9q)|s € FE,(Kyet)s Fret € Thref }-
where
RBEy (krwet), & € reducible region

P, (Kref), otherwise

FEH, (l{ref) = {

Reduced basis elements (RBE ) are

1. tailored for a specific reducible feature (e.g. BLs)
2. hierarchical (N =1,2,...).

BEE




DG-RBE: offline training for a feature (not for a case)

Step 1. Solve training cases using //p-adaptive FEM
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Step 2. Extract wall functions in reference element r,.¢

Step 3. Identify wall modes using POD — RBEs




DG-RBE: online

Step 1. Tessellate the domain (as in FEM)

Step 2. Mark reducible features (e.g.

BLs)

Step 3. Solve the DG system using RBEs for reducible features
and polynomial FEs for the rest.
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Formulation

o Stability



For entropy variables, the discontinuous Galkerin method is stable.
[Barth, 1999; Harten 1983; Hughes et al 1986]

Linear equations: energy stability

lun (D)3 < l[un(0)[3; + (inflow data).
Nonlinear equations: entropy stability

U(u,(T)) < U(un(0)) + (inflow data),

where U(-) is a generalized convex entropy function.
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Formulation

@ Error estimation and adaptation



Output error estimation: dual-weighted residual (DWR)
[Becker & Rannacher, 1996; Ainsworth & Oden, 1998; .. .|

Adjoint: for an output functional ./, find v, € V24 £V, s.t.
R (s U, n) = J! (U3 v) Vo, € V2Y,
Global error estimate (wrt exact PDE not FE “truth”):
E=J(u) = Jo(un) = =R (tn, ¥n).
Element-wise error estimate:

nfi = ’Rn<unawn‘n)‘v K e 771'
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Adjoint approximation

Effective error estimate requires an accurate adjoint
= crucial for aggressive model reduction.

Adjoint feature-specific FE spaces:
Vadi = Lo € LA(Q) 1 (vogy)|e € FEM (Kper), Hret € Thret }-

where
R]B%Ea </11Cf) € reducible region

Pyi1(FKret), otherwise

FEH(I{ICf) {

Adjoint RBEs (RBE"") extracted from training + POD

.—! —
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Adaptivity

Employ
Solve — Estimate — Mark — Refine.
Solve: DG method
Estimate: DWR error estimate
Mark: top 10% of elements with largest error estimate

Refine:

h-refine: split element into four, h — h/2
p-refine: increase poly degree by 1, p — p + 1

e-refine: increase number of modes by 3, N — N + 3
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Formulation

@ Related work



Related work

Viscous-inviscid coupling via thin-shear layer (TSL) Navier-Stokes
@ Potential/Euler-TSL [Le Balleur 1978—; Drela & Giles 1987; .. .]

=+ mathematical reduction; error estimation wrt full equation

FEM with non-polynomial, special basis functions
e PUM, XFEM, GFEM, DEM

[Babuska 1994—; Belytschko 1999—; Farhat 2001—; ...]
= analytical functions vs empirical training

Reduced basis element methods
o RBE [Maday & Rgnquist 2005—; ... ]
@ Static-condensation RBE [Patera, Knezevic, & Huynh 2013—; .. ]
@ Localized RB multiscale method [Ohlberger & Schindler 2015-]
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Numerical results



Numerical results

o RBE training



Training cases: NACA 4-digit family

Geom. M. Re. «
0009 0.4 1000 O°
0015 0.2 1000 O°
0012 0.2 1000 5°
2412 0.2 2000 O0°
0012 0.2 500 ©O°

| ——
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POD eigenvalues and modes

Eigenvalues:
primal adjoint
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Numerical results

@ Laminar airfoil



Case 1. NACA 2410, M, = 0.5, Re. = 3000, o = 1°

Parameters outside of the training range
M, =05>04
Re. = 3000 > 2000

We employ
e-refinement for boundary layer RBEs
p-refinement for the rest.

[ |
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Case 1. NACA 2410, M, = 0.5, Re. = 3000, a = 1°

Target output: drag (at +1% error level)

h-adapt: ¢; ~ 351.1 4 3.2 counts (dof = 19485)

e-adapt: ¢, ~ 356.9 & 3.0 counts (dof = 972)
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Case 1. Convergence

v rapid convergence

0.065

—e—h-uniform (p=2)
0.06 + —e—h-adapt (p=2)
e-adapt

0.055 ¢

102 10* 108
dof
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Case 1. Convergence

v rapid convergence
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Case 1. Convergence & error estimate effectivity

v rapid convergence

v reliable error estimate
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Dof distribution: e/p-adaptivity

RBE dof (range: 4-38)

RBE and polynomial dof (range: 4-100)

Next reducible feature: trailing edge singularity
20



Numerical results

o Flat plate



Case 2. Flat plate, M, = 0.2, Re. = 500

Use the same airfoil-trained boundary-layer RBEs.

Topologically different from an airfoil.

RBE region
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Case 2. Flat plate, M, = 0.2, Re. = 500

Target output: drag (at +0.1% error level)

{‘—

h-adapt: ¢4 ~ 9294.2 + 4.3 counts (dof = 5346)

{4

e-adapt: ¢; =~ 9306.5 £ 7.7 counts (dof = 204)
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Case 2. Convergence

v rapid convergence

—e— h-uniform (p=2)
—o—h-adapt (p=2)
e-adapt
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Case 2. Convergence

v rapid convergence

—e— h-uniform (p=2)
—4&—h-adapt (p=2)
e-adapt
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Case 2. Convergence & error estimate effectivity

v rapid convergence

v reliable error estimate

—e— h-uniform (p=2)
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e-adapt

0.1%

Cd error
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Case 2. Convergence & error estimate effectivity

v rapid convergence
v reliable error estimate

v’ geometric flexibility (non-parametric & topology)

—e—h-uniform (p=2)
—A—h-adapt (p=2)
e-adapt

0.1%

Cd error

10°

dof
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Idea: forgo reduction of a specific case,
and focus on reducible & reusable features (e.g. Bls)

Ingredients:
DG + RBE + error estimate + adaptivity.
Result: reliable and flexible model reduction method

(though not as fast as case-specific ROMs)

Ongoing work: optimal basis rep. & quadrature;
RBE library & automated selection;
multi-parameter/nonlinear RBEs;
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Implementation: basis functions and quadrature rules

Evaluation of R, (w,,v,) requires
1. means to evaluate basis functions

2. quadrature rule.

Current:
Basis: represented by high-order polynomials (p ~ 15)
Quadrature: high-order Gauss quadrature (¢ ~ 50)

Ongoing:
Basis: optimal /1/p representation

Quadrature: specialized integration rules (e.g. magic points)

26



	Formulation
	Discretization
	Reduced basis element (RBE)
	Stability
	Error estimation and adaptation
	Related work

	Numerical results
	RBE training
	Laminar airfoil
	Flat plate

	Summary
	Backup

