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Nematic Liquid Crystals

o Fluid of rod-like particles, partially ordered:
translation but rotational symmetry is
broken.
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Nematic Liquid Crystals

o Fluid of rod-like particles, partially ordered:
translation but rotational symmetry is
broken.

@ Nematic phase: vnua, thread: particles
prefer to order parallel to their neighbors

axis of preference: gives on average the
direction of alignment.

@ Director n(x), |n(x)| = 1 indicates local ‘
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Oseen—Frank energy

@ A variational model for equilibrium configurations of liquid crystals.
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Oseen—Frank energy

@ A variational model for equilibrium configurations of liquid crystals.

e Equilibria n: Q ¢ R® — S? minimize elastic energy,

E(n) :/Qe(n,Vn) dx
e(n,Vn) = Ki(V - n)?> + Ka[n - (V x n)]> + Kz[n x (V x n)]?
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Oseen—Frank energy

@ A variational model for equilibrium configurations of liquid crystals.

e Equilibria n: Q ¢ R® — S? minimize elastic energy,
E(n) :/ e(n,Vn)dx
Q
e(n,Vn) = Ki(V - n)?> + Ka[n - (V x n)]> + Kz[n x (V x n)]?

@ Simple case: one-constant approximation K1 = K, = K3 =1,

1
E(n) = 5 /Q |Vn]2 dx, the S? harmonic map energy.
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A variational model for equilibrium configurations of liquid crystals.

Equilibria n: Q ¢ R — S? minimize elastic energy,

E(n) :/Qe(n,Vn) dx
e(n,Vn) = Ki(V - n)?> + Ka[n - (V x n)]> + Kz[n x (V x n)]?

Simple case: one-constant approximation K1 = Kr = K3 =1,

1
E(n) = 5 /Q |Vn]2 dx, the S? harmonic map energy.

@ nis not oriented, —n ~ n gives same physical state.
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Oseen—Frank energy

A variational model for equilibrium configurations of liquid crystals.

Equilibria n: Q ¢ R — S? minimize elastic energy,

E(n) :/Qe(n,Vn) dx
e(n,Vn) = Ki(V - n)?> + Ka[n - (V x n)]> + Kz[n x (V x n)]?

Simple case: one-constant approximation K1 = Kr = K3 =1,

1
E(n) = 5 /Q |Vn]2 dx, the S? harmonic map energy.

@ nis not oriented, —n ~ n gives same physical state.
— n: Q= RP?
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Harmonic Maps to S? (or RP?)

@ Real-valued minimizers f : Q — R of the Dirichlet energy
E(f) = % | IVf]? dx are harmonic functions, Af = 0.
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Harmonic Maps to S? (or RP?)

@ Real-valued minimizers f : Q — R of the Dirichlet energy
E(f) = % | IVf]? dx are harmonic functions, Af = 0.
> Linear elliptic PDE; solutions are smooth, bounded singularities
removable.
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Harmonic Maps to S? (or RP?)
@ Real-valued minimizers f : Q — R of the Dirichlet energy
E(f) = % | IVf]? dx are harmonic functions, Af = 0.
> Linear elliptic PDE; solutions are smooth, bounded singularities
removable.

@ When u: Q — M, M a smooth manifold, minimizers solve a
nonlinear elliptic system of PDE.
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Harmonic Maps to S? (or RP?)
@ Real-valued minimizers f : Q — R of the Dirichlet energy
E(f) = % | IVf]? dx are harmonic functions, Af = 0.
> Linear elliptic PDE; solutions are smooth, bounded singularities
removable.

@ When u: Q — M, M a smooth manifold, minimizers solve a
nonlinear elliptic system of PDE.
o For M =Sk or RPX, —An = |Vn|?n
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Harmonic Maps to S? (or RP?)

@ Real-valued minimizers f : Q — R of the Dirichlet energy
E(f) = % | IVf]? dx are harmonic functions, Af = 0.
> Linear elliptic PDE; solutions are smooth, bounded singularities
removable.
@ When u: Q — M, M a smooth manifold, minimizers solve a
nonlinear elliptic system of PDE.
o For M =Sk or RPK, —An = |Vn|?n
o Regularity theory for S? or RP?-valued harmonic maps:
» Schoen-Uhlenbeck (1982): S2-valued minimizers are Holder continuous
except for a discrete set of points.
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Harmonic Maps to S? (or RP?)

@ Real-valued minimizers f : Q — R of the Dirichlet energy
E(f) = % | IVf]? dx are harmonic functions, Af = 0.
> Linear elliptic PDE; solutions are smooth, bounded singularities
removable.
@ When u: Q — M, M a smooth manifold, minimizers solve a
nonlinear elliptic system of PDE.
o For M =Sk or RPK, —An = |Vn|?n
o Regularity theory for S? or RP?-valued harmonic maps:
» Schoen-Uhlenbeck (1982): S2-valued minimizers are Holder continuous
except for a discrete set of points.
» Brezis-Coron-Lieb (1986): singularities have degree 1, n ~ %, R

orthogonal. (“hedgehog”, “antihedgehog”)
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Harmonic Maps to S? (or RP?)

@ Real-valued minimizers f : Q — R of the Dirichlet energy
E(f) = % | IVf]? dx are harmonic functions, Af = 0.
» Linear elliptic PDE; solutions are smooth, bounded singularities
removable.
@ When u: Q — M, M a smooth manifold, minimizers solve a
nonlinear elliptic system of PDE.
o For M =Sk or RPK, —An = |Vn|?n
o Regularity theory for S? or RP?-valued harmonic maps:
» Schoen-Uhlenbeck (1982): S2-valued minimizers are Holder continuous
except for a discrete set of points.
» Brezis-Coron-Lieb (1986): singularities have degree 1, n ~ %, R

orthogonal. (“hedgehog”, “antihedgehog”)

NZEP N
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» Hardt-Kinderlehrer-Lin (1986): for Oseen-Frank, min are real analytic
except for a closed set Z, H'(Z) = 0.
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Applications of colloidal suspensions in nematic liquid crystals: photonics, biomedical sensors,
T~
)
=
Spm _—

Lia Bronsard (McMaster)

Spherical Colloid



Applications of colloidal suspensions in nematic liquid crystals: photonics, biomedical sensors,
T~
)
‘
Spm

-

€4

.
o B8

Lia Bronsard (McMaster)

Spherical Colloid



T~

Applications of colloidal suspensions in nematic liquid crystals: photonics, biomedical sensors,

I. Musevic, M. Skarabot and M. Ravnik, Phil Trans Roy Soc A, 2013
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The spherical colloid
Consider a nematic in R3 surrounding a spherical particle By, (0).

n(x) ~e,,

|x] = oo

00 = 0B,

x € 0B,,
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The spherical colloid
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The spherical colloid
Consider a nematic in R3 surrounding a spherical particle By, (0).

n(x) ~e,,
|x] = oo
e O =R3\ B,(0), exterior domain.

0 = 0By, @ As |x| — oo, tend to vertical
director, n(x) — +te,

x € 0B,,
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The spherical colloid
Consider a nematic in R3 surrounding a spherical particle By, (0).

n(x) ~e,,
|x] = oo
e O =R3\ B,(0), exterior domain.
o = 0B, @ As |x| — oo, tend to vertical
director, n(x) — +te,
@ On 0By, homeotropic (normal)
anchoring:

» Strong (Dirichlet) with
n=e =

x € 0B,,
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The spherical colloid
Consider a nematic in R3 surrounding a spherical particle By, (0).

n(x) ~e,,

|x] = oo

e O =R3\ B,(0), exterior domain.

o = 0B, @ As |x| — oo, tend to vertical

director, n(x) — +te,
@ On 0By, homeotropic (normal)

anchoring:

» Strong (Dirichlet) with
n=e =

» Weak anchoring, via surface
wr 2
energy, 5 ‘[83,0 |n— e |?dS

x € 0B,,
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Size matters

Physicists observe that the character of the minimizers should depend on
particle radius ry and anchoring strength W.

(a) (b) (©)

Kleman & Lavrentovich, Phil. Mag. 2006.
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Size matters

Physicists observe that the character of the minimizers should depend on
particle radius ry and anchoring strength W.

(a) (b) (©)

Kleman & Lavrentovich, Phil. Mag. 2006.

(a) For large rg, a "dipolar” configuration, with a detached (antihedghog)
defect;
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Size matters
Physicists observe that the character of the minimizers should depend on
particle radius ry and anchoring strength W.

(a) (b) (©)

Kleman & Lavrentovich, Phil. Mag. 2006.

(a) For large rg, a "dipolar” configuration, with a detached (antihedghog)
defect;

(b) For small ry with large W, a “quadripolar” minimizer, with no point
singularity but a “Saturn ring” disclination;
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Size matters
Physicists observe that the character of the minimizers should depend on
particle radius ry and anchoring strength W.

(a) (b) (©)

Kleman & Lavrentovich, Phil. Mag. 2006.

(a) For large rg, a "dipolar” configuration, with a detached (antihedghog)
defect;

(b) For small ry with large W, a “quadripolar” minimizer, with no point
singularity but a “Saturn ring” disclination;

(c) For small rp and low W, no singular structure at all.
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Problems with Oseen-Frank

@ “Saturn ring":
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Problems with Oseen-Frank

@ “Saturn ring”:

» Solution should have a 1-D singular set.
» Harmonic map or Oseen-Frank minimizers have only isolated point
defects.
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Problems with Oseen-Frank

@ “Saturn ring”:

» Solution should have a 1-D singular set.
» Harmonic map or Oseen-Frank minimizers have only isolated point
defects.

@ Dipolar, with detached point defect:
» This may be observed in a harmonic map model.
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Problems with Oseen-Frank

@ “Saturn ring”:
» Solution should have a 1-D singular set.
» Harmonic map or Oseen-Frank minimizers have only isolated point
defects.
@ Dipolar, with detached point defect:
» This may be observed in a harmonic map model.
» But harmonic map/Oseen-Frank has no fixed length scale; cannot
distinguish different radii.
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Problems with Oseen-Frank

@ “Saturn ring”:
» Solution should have a 1-D singular set.
» Harmonic map or Oseen-Frank minimizers have only isolated point
defects.
@ Dipolar, with detached point defect:
» This may be observed in a harmonic map model.
» But harmonic map/Oseen-Frank has no fixed length scale; cannot
distinguish different radii.
@ New approach: embed the harmonic map problem in a larger family
of variational problems with a natural length scale. The harmonic
maps may be recovered in an appropriate limit.
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Landau—de Gennes Model

A relaxation of the harmonic map energy.
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Landau—de Gennes Model

A relaxation of the harmonic map energy.

@ Introduce space of Q-tensors: Q(x) € Qz, symmetric, traceless 3 x 3
matrix-valued maps. Q(x) models second moment of the orientational distribution

of the rod-like molecules near x.
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Landau—de Gennes Model

A relaxation of the harmonic map energy.

@ Introduce space of Q-tensors: Q(x) € Qz, symmetric, traceless 3 x 3
matrix-valued maps. Q(x) models second moment of the orientational distribution

of the rod-like molecules near x.

e Eigenvectors of Q(x) = principal axes of the nematic alignment.
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Landau—de Gennes Model

A relaxation of the harmonic map energy.

@ Introduce space of Q-tensors: Q(x) € Qz, symmetric, traceless 3 x 3
matrix-valued maps. Q(x) models second moment of the orientational distribution
of the rod-like molecules near x.
e Eigenvectors of Q(x) = principal axes of the nematic alignment.
@ Uniaxial Q-tensor: two equal eigenvalues; principal eigenvector defines
a director n € S?,
Qn = s(n®n— 3Id).
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A relaxation of the harmonic map energy.

@ Introduce space of Q-tensors: Q(x) € Qs, symmetric, traceless 3 x 3
matrix-valued maps. Q(x) models second moment of the orientational distribution

of the rod-like molecules near x.
e Eigenvectors of Q(x) = principal axes of the nematic alignment.

@ Uniaxial Q-tensor: two equal eigenvalues; principal eigenvector defines
a director n € S?,

Qn = s(n®n— 3Id).

e Q, = Q_,; these represent RP?-valued maps.
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Landau—de Gennes Model

A relaxation of the harmonic map energy.

@ Introduce space of Q-tensors: Q(x) € Qs, symmetric, traceless 3 x 3
matrix-valued maps. Q(x) models second moment of the orientational distribution

of the rod-like molecules near x.

Eigenvectors of Q(x) = principal axes of the nematic alignment.

Uniaxial Q-tensor: two equal eigenvalues; principal eigenvector defines
a director n € S?,

Qn = s(n®n— 3Id).

Qn = Q_p; these represent RP?-valued maps.

Biaxial Q-tensor: all eigenvalues are distinct. Strictly speaking, no
director; but the principal eigenvector is an approximate director.
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Landau—de Gennes Model

A relaxation of the harmonic map energy.

@ Introduce space of Q-tensors: Q(x) € Qs, symmetric, traceless 3 x 3
matrix-valued maps. Q(x) models second moment of the orientational distribution

of the rod-like molecules near x.
e Eigenvectors of Q(x) = principal axes of the nematic alignment.

@ Uniaxial Q-tensor: two equal eigenvalues; principal eigenvector defines
a director n € S?,

Qn = s(n®n— 3Id).
e Q, = Q_,; these represent RP?-valued maps.

@ Biaxial Q-tensor: all eigenvalues are distinct. Strictly speaking, no
director; but the principal eigenvector is an approximate director.

@ Isotropic Q-tensor: all eigenvalues are equal, so @ = 0. No preferred
direction, the liquid crystal has no alignment or ordering.
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The LdG Energy

F(@-= | [érvoﬁ +F(Q)| ax.
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The LdG Energy

Fi(Q) :/Q

e Potential f(Q) = —gtr(Qz) + gtr(Q3) + %(tr(Qz))2 —d,

éyvoﬁ + f(Q)] dx,

@ a= a(Tw-T), b,c > 0 constant, d chosen so ming f(Q) =0
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The LdG Energy
fL(Q)Z/Q

e Potential f(Q) = —gtr(Q2) + gtr(Q3) + %(tr(Qz))2 —d,

@ a=a(Ty-T), b,c > 0 constant, d chosen so ming f(Q) = 0.

éyvoﬁ + f(Q)] dx,

e f(Q) depends only on the eigenvalues of Q.
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The LdG Energy
]:[(Q):/Q

Potential f(Q) = —gtr(Q2) + gtr(Q3) + %(tr(Qz))z _

CIVQR +A(Q)| o,

@ a=a(Ty-T), b,c > 0 constant, d chosen so ming f(Q) = 0.
e f(Q) depends only on the eigenvalues of Q.
° ( )=0 <= Q=s.(n®n—1ld) with n € S? (uniaxial) and

(b+ vV b?+24ac)/4c >0
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The LdG Energy
fz(Q)Z/Q

b
o Potential £(Q) = —gtr(Qz) 5t (@) + %(tr(Qz))z -
@ a= a(Tw-T), b,c > 0 constant, d chosen so ming f(Q) = 0.
° f(Q)
° ( )=0 <= Q=s.(n®n—1ld) with n € S? (uniaxial) and
= (b+ Vb?+24ac)/4c >0
° EuIer—l_agrange equations are semilinear,
[AQ=Vf(Q)=~aQ — b(Q*—3IQP) +¢[QQ
@ Uniaxial solutions are the exception; in most geometries expect
biaxiality rules [Lamy, Contreras—Lamy]|

CIVQR +A(Q)| o,

depends only on the eigenvalues of Q.
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The LdG Energy
fz(Q)Z/Q

b
o Potential f(Q) = —gtr(Qz) -+ 5tr(Q3) -+ %(tr(c;ﬂ))2 -
@ a= a(Tw-T), b,c > 0 constant, d chosen so ming f(Q) = 0.
° f(Q)
° ( )=0 <= Q=s.(n®n—1ld) with n € S? (uniaxial) and
= (b+ Vb?+24ac)/4c >0
° Euler—l_agrange equations are semilinear,
[AQ=Vf(Q)=~aQ — b(Q*—3IQP) +¢[QQ
@ Uniaxial solutions are the exception; in most geometries expect
biaxiality rules [Lamy, Contreras—Lamy]|

é\voﬁ + f(Q)] o,

depends only on the eigenvalues of Q.

e Analogy: Ginzburg-Landau model, a relaxation of the S'-harmonic
map problem: .
Jol5IVul? + (Juf? =12, u: Q= C
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The spherical CO“Oid, joint work with S. Alama and X. Lamy.

Consider a nematic in R3 surrounding a spherical particle By, (0).

n(z) ~e,,

|z| = oo

el
x € 0B,
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The spherical CO“Oid, joint work with S. Alama and X. Lamy.

Consider a nematic in R3 surrounding a spherical particle By, (0).

n(z) ~ e, o Q =R3\ B,(0), exterior domain.
|z — oo @ Minimize LdG over Q(x) € H}(Q; Q3).

el
x € 0B,
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The spherical CO“Oid, joint work with S. Alama and X. Lamy.

Consider a nematic in R3 surrounding a spherical particle By, (0).

n(z) ~ e, o Q =R3\ B,(0), exterior domain.
|z — oo @ Minimize LdG over Q(x) € H}(Q; Q3).

@ As |x| — oo, Q is uniaxial, with vertical
director, Q(x) — s, (e; @ e, — 3/).

00 = 0B,

x € 0B,
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The spherical CO“Oid, joint work with S. Alama and X. Lamy.

Consider a nematic in R3 surrounding a spherical particle By, (0).

n(z) ~ e, Q =R3\ B, (0), exterior domain.
|z| = o0 @ Minimize LdG over Q(x) € HY(Q; Q3).

@ As |x| — oo, Q is uniaxial, with vertical
ro director, Q(x) — s, (e; @ e, — %I)

002 = 0B

e On 0B, homeotropic (normal) anchoring:
» Strong (Dirichlet) with n = e, = ML

Q(X)los, = Qs :=s. (e ® & — 31).

el
x € 0B,
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The spherical CO“Oid, joint work with S. Alama and X. Lamy.

Consider a nematic in R3 surrounding a spherical particle By, (0).

n(z) ~ e, Q =R3\ B, (0), exterior domain.
|z| = o0 @ Minimize LdG over Q(x) € HY(Q; Q3).

@ As |x| — oo, Q is uniaxial, with vertical
ro director, Q(x) — s, (e; @ e, — %I)

002 = 0B

e On 0B, homeotropic (normal) anchoring:
» Strong (Dirichlet) with n = e, = ML
Q(X)los, = Qs :=s. (e ® & — 31).
» Weak anchoring, via surface energy,

Y Jog, 1Q0) — Qo d

el
x € 0B,
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The spherical CO“Oid, joint work with S. Alama and X. Lamy.

Consider a nematic in R3 surrounding a spherical particle By, (0).

n(z) ~ e, Q =R3\ B, (0), exterior domain.
|z| = o0 @ Minimize LdG over Q(x) € HY(Q; Q3).

@ As |x| — oo, Q is uniaxial, with vertical
ro director, Q(x) — s, (e; @ e, — %I)

002 = 0B

e On 0B, homeotropic (normal) anchoring:
» Strong (Dirichlet) with n = e, = ML
Q(X)los, = Qs :=s. (e ® & — 31).
» Weak anchoring, via surface energy,

Y Jog, 1Q0) — Qo d

el LoQ _
) > = 5, — Qs — QondBy.
To
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Two scaling limits
First rescale by the particle radius ro; Q = R3\ By(0),

F(Q)=fo | 2V QP+(@)] it £ [, 10— QA
0
and non-dimensionalize by dividing by the reference energy a( Tp;):

F(Q) = Jo [5IVQIP +(Q)] dx + % [y, 1Qs — QPPdA.

. _ i _ Wrza(T )
with L = rEEmE W = = N
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Two scaling limits
First rescale by the particle radius ro; Q = R3\ By(0),

F(Q)=fo | 2V QP+(@)] it £ [, 10— QA
0
and non-dimensionalize by dividing by the reference energy a( Tp;):

F(Q) = Jo [5IVQIP +(Q)] dx + % [y, 1Qs — QPPdA.

. _ i _ Wrza(T )
with L = rEEmE W = = N

@ Set Qx = si(e; ® e, — %I) and Heo = Qoo + H, with
H={QeHp.: [o[IVQ]?+ [x|?|Q?] dx < oco}.
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Two scaling limits
First rescale by the particle radius ro; Q = R3\ By(0),

F(@)=/q [%WQ\ZﬂC(Q)] dx+% Jos, |Qs—QI*dA.
and non-dimensionalize by dividing by the reference energy a( Tp;):

F(Q) = Jo [5IVQP + f(@)] dx + % [55, 1Qs — QdA.

. _ i _ Wrza(T )
with L = rEEmE W = = N

@ Set Qx = si(e; ® e, — %I) and Heo = Qoo + H, with
H={QeH,,: Jo [|VQ\2 + \x\’2]0\2] dx < 00}.
@ For fixed parameters L, W, there exists a minimizer in Hqo,
Q(x) = Qoo uniformly as |x| — oo.
Open question: at what rate?
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Two scaling limits
First rescale by the particle radius ro; Q = R3\ By(0),

F(@)=/q [%WQ\ZﬂC(Q)] dx+% Jos, |Qs—QI*dA.
and non-dimensionalize by dividing by the reference energy a( Tp;):

F(Q) = Jo [5IVQP + f(@)] dx + % [55, 1Qs — QdA.

. _ i _ Wrza(T )
with L = rEEmE W = = N

@ Set Qx = si(e; ® e, — %I) and Heo = Qoo + H, with
H={Q¢€ H,loc C g [|VQ\2 + \x\’le\z] dx < 00}.
@ For fixed parameters L, W, there exists a minimizer in Hqo,
Q(x) = Qoo uniformly as |x| — oo.
Open question: at what rate?
@ We consider two limits:
» Small particle limit. L — oo, with W — w € (0, o0].
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Two scaling limits
First rescale by the particle radius ro; Q = R3\ By(0),

F(@)=/q [%WQ\ZﬂC(Q)] dx+% Jos, |Qs—QI*dA.
and non-dimensionalize by dividing by the reference energy a( Tp;):

F(Q) = Jo [5IVQP + f(@)] dx + % [55, 1Qs — QdA.

. _ i _ Wrza(T )
with L = rEEmE W = = N

@ Set Qx = si(e; ® e, — %I) and Heo = Qoo + H, with
H={Q¢€ H,loc C g [|VQ\2 + \x\*le\z] dx < 00}.
@ For fixed parameters L, W, there exists a minimizer in Hqo,
Q(x) = Qoo uniformly as |x| — oo.
Open question: at what rate?
@ We consider two limits:
» Small particle limit. L — oo, with W — w € (0, o0].
» Large particle limit. L — 0, with Strong (Dirichlet) anchoring.
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Small particle limit

FQ=fo[5IVQPHF(Q)]dx+ ¥ [, 1Q:—QIdA.
When L — oo, W — w € (0, 0]

@ converge to a harmonic (linear) function, AQ, =0 in
Q =TR3\ B(0).
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Small particle limit
FQ=Jo[5IVQP+F(Q)]dx+ %[5, |Q:—QI?dA.

When L — oo, W — w € (0, 0]
@ converge to a harmonic (linear) function, AQ, =0 in
Q =TR3\ B(0).
e Explicit solution, Q(x) !! In spherical coordinates (r, 8, ),
Quw =oa(r)(e-®e —1/3)+ B(r)(e; ® e, —1/3), (r>1),

with a(r) = 5,524, B() = 5.1 1252).
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Small particle limit

FQ=Jo[5IVQP+F(Q)]dx+ %[5, |Q:—QI?dA.
When L — oo, W — w € (0, 0]

@ converge to a harmonic (linear) function, AQ, =0 in
Q =TR3\ B(0).

e Explicit solution, Q(x) !! In spherical coordinates (r, 8, ),

Quw =oa(r)(e-®e —1/3)+ B(r)(e; ® e, —1/3), (r>1),

with a(r) = S*HLW%, B(r) =s.(1— HLW%)

@ The eigenvalues of @, may also be calculated explicitly,
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Small particle limit

FQ=Jo[5IVQP+F(Q)]dx+ %[5, |Q:—QI?dA.
When L — oo, W — w € (0, 0]

@ converge to a harmonic (linear) function, AQ, =0 in
Q =TR3\ B(0).

e Explicit solution, Q(x) !! In spherical coordinates (r, 8, ),

Quw =oa(r)(e-®e —1/3)+ B(r)(e; ® e, —1/3), (r>1),

with a(r) = S*HLW%, B(r) =s.(1— HLW%)

@ The eigenvalues of @, may also be calculated explicitly,

@ At eigenvalue crossing A\1 = Ay, eigenvectors exchange —
discontinuous director!
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Small particle limit

FQ=Jo[5IVQP+F(Q)]dx+ %[5, |Q:—QI?dA.
When L — oo, W — w € (0, 0]

@ converge to a harmonic (linear) function, AQ, =0 in
Q =TR3\ B(0).

e Explicit solution, Q(x) !! In spherical coordinates (r, 8, ),

Quw =oa(r)(e-®e —1/3)+ B(r)(e; ® e, —1/3), (r>1),

with a(r) = 5*3+Lw7137 B(r) =s.(1— HLW%)

@ The eigenvalues of @, may also be calculated explicitly,

@ At eigenvalue crossing A\1 = Ay, eigenvectors exchange —
discontinuous director!

e This occurs along a circle, (ry,#,0), with r,, root of:
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The Saturn Ring

W = 00 w = 1732 ~ V3.
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Colloidal cuboids (homeotropic)

s ‘ ' -
T\ 2P Y\ 2P 2\ 2p
i 2 d =1
5 +G) ()
p=1 p=2 p=10

Aspect ratio: a/b.
“Sharpness”: p. a/b=1

Beller, Gharbi & Liu, Soft Matter, 2015, 11, 1078
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Large particle limit

Now we consider L — 0, with Dirichlet Q|op, = s«(er ® e
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Large particle limit

Now we consider L — 0, with Dirichlet Q|s5, = s.(er ® e, — 11).

@ Coincides with singular limit as elastic constant L — 0.
(Majumdar-Zarnescu; Nguyen-Zarnescu)
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Large particle limit

Now we consider L — 0, with Dirichlet Q|s5, = s.(er ® e, — 11).

@ Coincides with singular limit as elastic constant L — 0.
(Majumdar-Zarnescu; Nguyen-Zarnescu)

@ Minimizer converges to uniaxial Q-tensor, Q. = s.(n® n — %/)
locally uniformly, away from a discrete set of singularities.

o Director n(x) € S? is a minimizing harmonic map.
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Large particle limit

Now we consider L — 0, with Dirichlet Q|s5, = s.(er ® e, — 11).

@ Coincides with singular limit as elastic constant L — 0.
(Majumdar-Zarnescu; Nguyen-Zarnescu)

@ Minimizer converges to uniaxial Q-tensor, Q. = s.(n® n — %/)

locally uniformly, away from a discrete set of singularities.
o Director n(x) € S? is a minimizing harmonic map.

@ No “Saturn ring”, or any other line defects are possible.
(Schoen-Uhlenbeck; Hardt-Kinderlehrer-Lin)
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Large particle limit

Now we consider L — 0, with Dirichlet Q|s5, = s.(er ® e, — 11).

@ Coincides with singular limit as elastic constant L — 0.
(Majumdar-Zarnescu; Nguyen-Zarnescu)

@ Minimizer converges to uniaxial Q-tensor, Q. = s.(n® n — %I)
locally uniformly, away from a discrete set of singularities.

Director n(x) € S? is a minimizing harmonic map.

No “Saturn ring”, or any other line defects are possible.
(Schoen-Uhlenbeck; Hardt-Kinderlehrer-Lin)

Solution must have at least one singularity; but generally, neither
boundary topology nor energy determine the number of defects.
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Large particle limit

Now we consider L — 0, with Dirichlet Q|s5, = s.(er ® e, — 11).

@ Coincides with singular limit as elastic constant L — 0.
(Majumdar-Zarnescu; Nguyen-Zarnescu)

@ Minimizer converges to uniaxial Q-tensor, Q. = s.(n® n — %I)
locally uniformly, away from a discrete set of singularities.

Director n(x) € S? is a minimizing harmonic map.

No “Saturn ring”, or any other line defects are possible.
(Schoen-Uhlenbeck; Hardt-Kinderlehrer-Lin)
Solution must have at least one singularity; but generally, neither
boundary topology nor energy determine the number of defects.
» Hardt-Lin-Poon (1992) There exist axisymmetric harmonic maps in
Q = B;(0), with degree-zero Dirichlet BC and arbitrarily many pairs of
degree +1 defects on the axis.

Lia Bronsard (McMaster) Spherical Colloid SIAM Boston 2016 16 / 19



Large particle limit

Now we consider L — 0, with Dirichlet Q|s5, = s.(er ® e, — 11).

@ Coincides with singular limit as elastic constant L — 0.
(Majumdar-Zarnescu; Nguyen-Zarnescu)

@ Minimizer converges to uniaxial Q-tensor, Q. = s.(n® n — %I)
locally uniformly, away from a discrete set of singularities.

Director n(x) € S? is a minimizing harmonic map.

No “Saturn ring”, or any other line defects are possible.
(Schoen-Uhlenbeck; Hardt-Kinderlehrer-Lin)

Solution must have at least one singularity; but generally, neither
boundary topology nor energy determine the number of defects.
» Hardt-Lin-Poon (1992) There exist axisymmetric harmonic maps in
Q = B;(0), with degree-zero Dirichlet BC and arbitrarily many pairs of
degree +1 defects on the axis.
» Hardt-Lin (1986) For any N, 3 g : 9B1(0) — S? with degree zero such
that the minimizing harmonic map has N defects in B;(0).
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Our result: large particle limit

@ We assume axial symmetry; this improves regularity (D. Zhang) and
constrains the possible singularities.
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Our result: large particle limit

@ We assume axial symmetry; this improves regularity (D. Zhang) and
constrains the possible singularities.

@ Axial symmetry is consistent with physical intuition and numerical
studies.
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Our result: large particle limit

@ We assume axial symmetry; this improves regularity (D. Zhang) and
constrains the possible singularities.

@ Axial symmetry is consistent with physical intuition and numerical
studies.

Theorem

For any sequence of axisymmetric minimizers with L — 0, a subsequence
converges to a map Q.(x) = s.(n(x) ® n(x) — 1/3), locally uniformly in
Q\ {po}. Here n minimizes the Dirichlet energy in Q, among axially
symmetric S?-valued maps satisfying the boundary conditions

2 2
n= e on 0By, and/%dx<oo,
Q

and n is analytic away from exactly one point defect pg, located on the
axis of symmetry.

v

Lia Bronsard (McMaster) Spherical Colloid SIAM Boston 2016 17 /19



Why only one singularity?

@ Use cylindrical coords (p,0,z) in Q = R3\ By; by axial symmetry,
» it suffices to consider the cross-section €2, with 6 = 0;
> Q. is simply connected, so the director n is oriented;
» n € S? is determined by the spherical angle ¢ = v(p, z),

n=siny(p,z)e, +cos(p,z)e,
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Why only one singularity?

@ Use cylindrical coords (p,0,z) in Q = R3\ By; by axial symmetry,
» it suffices to consider the cross-section €2, with 6 = 0;
> Q. is simply connected, so the director n is oriented;
» n € S? is determined by the spherical angle ¢ = v(p, z),

n=siny(p,z)e, +cos(p,z)e,
@ Harmonic map energy, integrated in a cross-section Q.
E(6) = Ja, [19,01 +10:6 + b sin? y] pdpdz
@ Single nonlinear PDE,
2 + 02 + 10,31/} o 57 sin(2Y) in Qg
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!

Key observation: X_ = {9(p,z) < 5} and Xy = {+(p,z) > T} are both
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Key observation: X_ = {9(p,z) < 5} and Xy = {+(p,z) > T} are both
connected.

!

@ Assume several defects; each lies on the z-axis,
z9 T

degree £1, n is vertical away from z; on axis.
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Key observation: X_ = {9(p,z) < 5} and Xy = {+(p,z) > T} are both
connected.

!

@ Assume several defects; each lies on the z-axis,
z9 T

degree £1, n is vertical away from z; on axis.
T @ 1) turns between ¢ = 0 and ¥ = 7w around

defect, creates components of X in Q.
e T

X
s
A

e

20

A,
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Key observation: X_ =
connected.

22 @—> T

\UJ+'_’
Z] ¢—>

B,

\—_%

f//T

20 =—>

Lia Bronsard (McMaster)

{¢(p,2z) < 5} and Xy = {¥(p,z) > 5} are both

@ Assume several defects; each lies on the z-axis,
degree £1, n is vertical away from z; on axis.

@ 1) turns between 1) = 0 and ¢ = 7 around
defect, creates components of X in Q.
To If Xy has a component &4 whose boundary is
disjoint from 0Bz, replace v in & by
Qb(p? Z) =T = w(PaZ)§
@ The new function has the same energy as v, so
it also solves the PDE;
@ Solutions are analytic away from the z-axis
(Zhang), so this is not possible.
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Key observation: X_ = {9(p,z) < 5} and Xy = {+(p,z) > T} are both

connected.
@ Assume several defects; each lies on the z-axis,
T degree £1, n is vertical away from z; on axis.
Zz<>-—\> T @ 1) turns between 1) = 0 and ¢ = 7 around
NW+—> defect, creates components of X in Q.
D To If Xy has a component &4 whose boundary is
disjoint from 0Bz, replace v in & by
B ¢(P>Z) :W—w(PaZ);
@ The new function has the same energy as v, so
\> AN it also solves the PDE;
20 =—> . . .
/ @ Solutions are analytic away from the z-axis
/ / 1 (Zhang), so this is not possible.

@ X4 connected + topological argument —-
exactly one defect!
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