Minimizers of an Energy Modelling Nanoparticle-Polymer Blends

Stan Alama McMaster University

joint work with Lia Bronsard and Ihsan Topaloglu (McMaster)

SIAM Boston 2016

Diblock Copolymers

Diffuse-interface energy (Ohta-Kawasaki) passes to a sharp-interface model, a nonlocal isoperimetric problem (NLIP). In a sharp-interface limit, minimizers form phase domains, whose geometries depend on the volume fraction of the monomers and the strength of the nonlocal interactions.

f_A denotes the volume fraction of A-type monomers.

Extensive literature: Acerbi-Fusco-Morini, Alberti-Choksi-Otto, Bonacini-Cristoferi, Choksi-Glasner, Choksi-Peletier, Choksi-Ren, Choksi-Sternberg, Goldman-Muratov-Serfaty, Knüpfer-Muratov, Lu-Otto, Muratov, Ren-Wei, Shirokoff-Choksi-Nave, Sternberg-Topalaglu.

► Goal (applications): alter the morphology of the phase domains.

- ► Goal (applications): alter the morphology of the phase domains.
- Idea: add filler nanoparticles, which are coated so as to prefer one of the polymer phases.

- ► Goal (applications): alter the morphology of the phase domains.
- Idea: add filler nanoparticles, which are coated so as to prefer one of the polymer phases.
- By adjusting the density of the nanoparticles we hope to confine the domains to specified regions and select a different minimizing morphology.

- ► Goal (applications): alter the morphology of the phase domains.
- Idea: add filler nanoparticles, which are coated so as to prefer one of the polymer phases.
- By adjusting the density of the nanoparticles we hope to confine the domains to specified regions and select a different minimizing morphology.

Study by the research group of Fredrickson: first column shows low-density, second column shows high-density of nanoparticles.

The Model – An Extension of Ohta–Kawasaki

Ginzburg-Qiu-Balacz, Polymer 43, (2002) 461-466

$$\mathsf{E}_{\epsilon,\gamma,\eta,m,r,u_{p},N}(u;\mathbf{x}) := \boxed{\frac{3\epsilon}{8} \int_{\mathbb{T}^{n}} |\nabla u|^{2} dx + \frac{3}{16\epsilon} \int_{\mathbb{T}^{n}} (u^{2} - 1)^{2} dx} + \frac{\gamma}{2} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} \frac{\mathbf{G}(\mathbf{x},\mathbf{y})(u(\mathbf{x}) - \mathbf{m})(u(\mathbf{y}) - \mathbf{m}) dx dy}{+ \eta \int_{\mathbb{T}^{n}} \sum_{i=1}^{N} V(|\mathbf{x} - \mathbf{x}_{i}|)(u - u_{p})^{2} dx}.$$

The first three terms are Ohta-Kawasaki:

 $u \in H^1(\mathbb{T}^n)$ is the phase parameter, ϵ =thickness of the phase transition. $m \in (-1, 1)$ determines the volume fraction of polymers: $m = \int_{\mathbb{T}^n} u(x) dx$. γ =strength of the bond between phases, G(x, y) denotes the Green's function on \mathbb{T}^n .

The Model – An Extension of Ohta–Kawasaki

Ginzburg-Qiu-Balacz, Polymer 43, (2002) 461-466

$$\begin{split} \mathsf{E}_{\epsilon,\gamma,\eta,m,r,u_p,N}(u;\mathbf{x}) &:= \frac{3\epsilon}{8} \int_{\mathbb{T}^n} |\nabla u|^2 \, dx + \frac{3}{16\epsilon} \int_{\mathbb{T}^n} (u^2 - 1)^2 \, dx \\ &+ \frac{\gamma}{2} \int_{\mathbb{T}^n} \int_{\mathbb{T}^n} G(x,y)(u(x) - m)(u(y) - m) \, dx dy \\ &+ \boxed{\eta \int_{\mathbb{T}^n} \sum_{i=1}^N V(|x - x_i|)(u - u_p)^2 \, dx.} \end{split}$$

The last term models nanoparticle-polymer interactions:

- ▶ $\mathbf{x} \in (\mathbb{T}^n)^N$ denotes the centers of *N*-many nanoparticles where each particle is a ball of radius *r*, *B*(*x_i*, *r*).
- V=rapidly decreasing (compactly supported) repulsive potential.
- ▶ $u_p \in [-1, 1]$ =nanoparticle preference towards polymer phases;
- η =nanoparticle density;

The Model – An Extension of Ohta–Kawasaki

Ginzburg-Qiu-Balacz, Polymer 43, (2002) 461-466

$$\begin{split} \mathsf{E}_{\epsilon,\gamma,\eta,m,r,u_{p},N}(u;\mathbf{x}) &:= \frac{3\epsilon}{8} \int_{\mathbb{T}^{n}} |\nabla u|^{2} \, dx + \frac{3}{16\epsilon} \int_{\mathbb{T}^{n}} (u^{2}-1)^{2} \, dx \\ &+ \frac{\gamma}{2} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} G(x,y)(u(x)-m)(u(y)-m) \, dx dy \\ &+ \boxed{\eta \int_{\mathbb{T}^{n}} \sum_{i=1}^{N} V(|x-x_{i}|)(u-u_{p})^{2} \, dx.} \end{split}$$

The last term models nanoparticle-polymer interactions:

- ▶ $\mathbf{x} \in (\mathbb{T}^n)^N$ denotes the centers of *N*-many nanoparticles where each particle is a ball of radius *r*, *B*(*x_i*, *r*).
- V=rapidly decreasing (compactly supported) repulsive potential.
- ▶ $u_p \in [-1, 1]$ =nanoparticle preference towards polymer phases;
- > η =nanoparticle density;

We assume the nanoparticle locations $\mathbf{x} = (x_i)_{n=1,...,N}$ are <u>fixed</u>.

Choices of parameters:

• $u_p = 1$, nanoparticles prefer u = 1;

Choices of parameters:

- $u_p = 1$, nanoparticles prefer u = 1;
- V supported in balls $B_{r_{\epsilon}}$, $\int_{\mathbb{T}^n} V = 1$.

Choices of parameters:

- $u_p = 1$, nanoparticles prefer u = 1;
- V supported in balls B_{r_e} , $\int_{\mathbb{T}^n} V = 1$.
- ▶ For fixed N_{ϵ} -many points $x_1, \ldots, x_{N_{\epsilon}} \in \mathbb{T}^n$, we minimize:

$$\begin{split} \mathsf{E}_{\epsilon,\sigma}(u) &:= \frac{\epsilon}{2} \int_{\mathbb{T}^n} |\nabla u|^2 \, dx + \frac{1}{4\epsilon} \int_{\mathbb{T}^n} (u^2 - 1)^2 \, dx \\ &+ \frac{\gamma}{2} \int_{\mathbb{T}^n} \int_{\mathbb{T}^n} G(x, y) (u(x) - m) (u(y) - m) \, dx dy \\ &+ \frac{\sigma}{N_\epsilon} r_\epsilon^n \sum_{i=1}^{N_\epsilon} \int_{B(x_i, r_\epsilon)} V(|x - x_i| / r_\epsilon) (u - 1)^2 \, dx \end{split}$$

Choices of parameters:

- $u_p = 1$, nanoparticles prefer u = 1;
- V supported in balls $B_{r_{\epsilon}}$, $\int_{\mathbb{T}^n} V = 1$.
- ▶ For fixed N_{ϵ} -many points $x_1, \ldots, x_{N_{\epsilon}} \in \mathbb{T}^n$, we minimize:

$$\begin{aligned} \mathsf{E}_{\epsilon,\sigma}(u) &:= \frac{\epsilon}{2} \int_{\mathbb{T}^n} |\nabla u|^2 \, dx + \frac{1}{4\epsilon} \int_{\mathbb{T}^n} (u^2 - 1)^2 \, dx \\ &+ \frac{\gamma}{2} \int_{\mathbb{T}^n} \int_{\mathbb{T}^n} G(x, y) (u(x) - m) (u(y) - m) \, dx dy \\ &+ \frac{\sigma}{N_\epsilon} r_\epsilon^n \sum_{i=1}^{N_\epsilon} \int_{B(x_i, r_\epsilon)} V(|x - x_i| / r_\epsilon) (u - 1)^2 \, dx \end{aligned}$$

Large number of nanoparticles, but small volume fraction:

 $N_{\epsilon} \to \infty$, but $N_{\epsilon} r_{\epsilon}^n \to 0$

Choices of parameters:

- $u_p = 1$, nanoparticles prefer u = 1;
- V supported in balls $B_{r_{\epsilon}}$, $\int_{\mathbb{T}^n} V = 1$.
- ▶ For fixed N_{ϵ} -many points $x_1, \ldots, x_{N_{\epsilon}} \in \mathbb{T}^n$, we minimize:

$$\begin{aligned} \mathsf{E}_{\epsilon,\sigma}(u) &:= \frac{\epsilon}{2} \int_{\mathbb{T}^n} |\nabla u|^2 \, dx + \frac{1}{4\epsilon} \int_{\mathbb{T}^n} (u^2 - 1)^2 \, dx \\ &+ \frac{\gamma}{2} \int_{\mathbb{T}^n} \int_{\mathbb{T}^n} G(x, y) (u(x) - m) (u(y) - m) \, dx dy \\ &+ \frac{\sigma}{N_\epsilon} r_\epsilon^n \sum_{i=1}^{N_\epsilon} \int_{B(x_i, r_\epsilon)} V(|x - x_i| / r_\epsilon) (u - 1)^2 \, dx \end{aligned}$$

Large number of nanoparticles, but small volume fraction:

 $N_{\epsilon} \to \infty$, but $N_{\epsilon} r_{\epsilon}^n \to 0$

Assume the nanoparticles converge to a fixed distribution, µ ∈ 𝒫_{ac}(Tⁿ) representing a limiting nanoparticle density measure:

$$N_{\epsilon} r_{\epsilon}^n \sum_{i=1}^{N_{\epsilon}} \int_{B(x_i, r_{\epsilon})} V(|x - x_i|/r_{\epsilon})(u - 1)^2 dx \rightharpoonup \mu$$

Sharp Interface Limit

We first prove Γ -convergence of $\mathsf{E}_{\epsilon,\sigma}$ to the sharp interface energy,

$$\begin{aligned} \mathsf{E}_{\mu,\sigma}(u) &:= \frac{1}{2} \int_{\mathbb{T}^n} |\nabla u| + \sigma \int_{\mathbb{T}^n} (u(x) - 1)^2 \, d\mu(x) \\ &+ \frac{\gamma}{2} \int_{\mathbb{T}^n} \int_{\mathbb{T}^n} G(x, y) (u(x) - m) (u(y) - m) \, dx dy \end{aligned}$$

with $u \in BV(\mathbb{T}^2; \{-1, 1\})$, and where $\mu \in \mathscr{P}_{ac}(\mathbb{T}^n)$ represents the limiting nanoparticle density measure.

Sharp Interface Limit

We first prove Γ -convergence of $\mathsf{E}_{\epsilon,\sigma}$ to the sharp interface energy,

$$\begin{aligned} \mathsf{E}_{\mu,\sigma}(u) &:= \frac{1}{2} \int_{\mathbb{T}^n} |\nabla u| + \sigma \int_{\mathbb{T}^n} (u(x) - 1)^2 \, d\mu(x) \\ &+ \frac{\gamma}{2} \int_{\mathbb{T}^n} \int_{\mathbb{T}^n} G(x, y) (u(x) - m) (u(y) - m) \, dx dy \end{aligned}$$

with $u \in BV(\mathbb{T}^2; \{-1, 1\})$, and where $\mu \in \mathscr{P}_{ac}(\mathbb{T}^n)$ represents the limiting nanoparticle density measure.

Notes on the Γ-limit:

- For the lower bound note that {u = 1} and {u = 1}^c are continuity sets of the measure μ.
- For the upper bound use the recovery sequence constructed by Sternberg for the perimeter. Combined with the weak-* convergence of the potentials to μ we get the upper bound.

Sharp Interface Limit

We first prove Γ -convergence of $\mathsf{E}_{\epsilon,\sigma}$ to the sharp interface energy,

$$\begin{aligned} \mathsf{E}_{\mu,\sigma}(u) &:= \frac{1}{2} \int_{\mathbb{T}^n} |\nabla u| + \sigma \int_{\mathbb{T}^n} (u(x) - 1)^2 \, d\mu(x) \\ &+ \frac{\gamma}{2} \int_{\mathbb{T}^n} \int_{\mathbb{T}^n} G(x, y) (u(x) - m) (u(y) - m) \, dx dy \end{aligned}$$

with $u \in BV(\mathbb{T}^2; \{-1, 1\})$, and where $\mu \in \mathscr{P}_{ac}(\mathbb{T}^n)$ represents the limiting nanoparticle density measure.

Notes on the Γ-limit:

- For the lower bound note that {u = 1} and {u = 1}^c are continuity sets of the measure μ.
- For the upper bound use the recovery sequence constructed by Sternberg for the perimeter. Combined with the weak-* convergence of the potentials to μ we get the upper bound.
- The nonlocal term is treated as a continuous perturbation of the perimeter.

A Penalized Isoperimetric Problem

We now restrict our attention to the **perimeter** and **penalization** terms, and neglect the nonlocal interactions, $\gamma = 0$ in $E_{\mu,\sigma,\gamma}$.

A Penalized Isoperimetric Problem

We now restrict our attention to the **perimeter** and **penalization** terms, and neglect the nonlocal interactions, $\gamma = 0$ in $E_{\mu,\sigma,\gamma}$.

For $\rho \in L^1(\mathbb{T}^n)$ = density of $\mu \in \mathscr{P}_{ac}(\mathbb{T}^n)$, minimization of $\mathsf{E}_{\mu,\sigma}$ is a geometric problem:

ninimize
$$\mathsf{E}_{\sigma}(\Omega) = \mathsf{Per}_{\mathbb{T}^n}(\Omega) + \sigma \int_{\Omega^c} \rho(x) \, dx$$

over $\Omega \subset \mathbb{T}^n$ with $|\Omega| = m$.

n

A Penalized Isoperimetric Problem

We now restrict our attention to the **perimeter** and **penalization** terms, and neglect the nonlocal interactions, $\gamma = 0$ in $E_{\mu,\sigma,\gamma}$.

For $\rho \in L^1(\mathbb{T}^n)$ = density of $\mu \in \mathscr{P}_{ac}(\mathbb{T}^n)$, minimization of $\mathsf{E}_{\mu,\sigma}$ is a geometric problem:

ninimize
$$\mathsf{E}_{\sigma}(\Omega) = \mathsf{Per}_{\mathbb{T}^n}(\Omega) + \sigma \int_{\Omega^c} \rho(x) \, dx$$

over $\Omega \subset \mathbb{T}^n$ with $|\Omega| = m$.

n

Similar in the spirit to finding **minimal boundaries** with respect to an **obstacle set**: minimize perimeter of Ω so that an obstacle set is $L \subset \Omega$. (Note: no mass constraint.)

Barozzi-Massari, Barozzi-Tamanini, Brézis-Kinderlehrer, Giusti, S. Rigot, etc.

Properties of Local Minimizers

Proposition (Regularity of Phase Boundaries)

If $\rho \in L^{\infty}(\mathbb{T}^n)$ then $\partial^*\Omega$ is of class $C^{1,\alpha}$ for some $\alpha \in (0,1)$.

Idea: Control the excess-like quantity: $\operatorname{Per}_{B_R(x_0)}(\Omega) - \operatorname{Per}_{B_R(x_0)}(\widetilde{\Omega}) \leq C R^n$ where $\widetilde{\Omega}$ minimizes perimeter in $B_R(x_0)$. See: Tamanini; Rigot

Properties of Local Minimizers

Proposition (Regularity of Phase Boundaries)

If $\rho \in L^{\infty}(\mathbb{T}^n)$ then $\partial^*\Omega$ is of class $C^{1,\alpha}$ for some $\alpha \in (0,1)$.

Idea: Control the excess-like quantity: $\operatorname{Per}_{B_R(x_0)}(\Omega) - \operatorname{Per}_{B_R(x_0)}(\widetilde{\Omega}) \leq C R^n$ where $\widetilde{\Omega}$ minimizes perimeter in $B_R(x_0)$. See: Tamanini; Rigot

The effect of the nanoparticle density ρ is to change the curvature of the phase boundary $\partial \Omega$:

```
Proposition (First Variation)
```

If $\rho \in C^1(\mathbb{T}^n)$ then

$$(n-1) H(x) - \sigma \rho(x) = \lambda$$
 for all $x \in \partial \Omega$.

Here λ =constant, and H=mean curvature of $\partial \Omega$.

Properties of Local Minimizers

Proposition (Regularity of Phase Boundaries)

If $\rho \in L^{\infty}(\mathbb{T}^n)$ then $\partial^*\Omega$ is of class $C^{1,\alpha}$ for some $\alpha \in (0,1)$.

Idea: Control the excess-like quantity: $\operatorname{Per}_{B_R(x_0)}(\Omega) - \operatorname{Per}_{B_R(x_0)}(\widetilde{\Omega}) \leq C R^n$ where $\widetilde{\Omega}$ minimizes perimeter in $B_R(x_0)$. See: Tamanini; Rigot

The effect of the nanoparticle density ρ is to change the curvature of the phase boundary $\partial \Omega$:

```
Proposition (First Variation)
```

```
If \rho \in C^1(\mathbb{T}^n) then
```

```
(n-1)H(x) - \sigma \rho(x) = \lambda for all x \in \partial \Omega.
```

Here λ =constant, and H=mean curvature of $\partial \Omega$.

- > This follows by adapting the calculations by Choksi-Sternberg.
- ► The equations are local on $\partial \Omega$, so if ρ is piecewise C^1 the curvature condition holds piecewise.

A special case: uniform nanoparticle density in a ball

Assume $\rho = \omega_n^{-1} r^{-n} \chi_{B_r}$ with $\omega_n r^n > m$. Then

$$\mathsf{E}_{\sigma}(\Omega) = \operatorname{\mathsf{Per}}_{\mathbb{T}^n}(\Omega) + \sigma \left(1 - \frac{|\Omega \cap B_r|}{\omega_n r^n}\right)$$

A special case: uniform nanoparticle density in a ball

Assume $\rho = \omega_n^{-1} r^{-n} \chi_{B_r}$ with $\omega_n r^n > m$. Then $\mathsf{E}_{\sigma}(\Omega) = \mathsf{Per}_{\mathbb{T}^n}(\Omega) + \sigma \left(1 - \frac{|\Omega \cap B_r|}{\omega_n r^n}\right)$

Since χ_{B_r} is piecewise C^1 the first variation condition holds locally:

$$(n-1) H(x) = \lambda \quad \text{for } x \in \partial\Omega \cap \text{int } B_r^c,$$

$$(n-1) H(x) = \lambda + \frac{\sigma}{\omega_n r^n} \quad \text{for } x \in \partial\Omega \cap \text{int } B_r.$$

A special case: uniform nanoparticle density in a ball

Assume $\rho = \omega_n^{-1} r^{-n} \chi_{B_r}$ with $\omega_n r^n > m$. Then $\mathsf{E}_{\sigma}(\Omega) = \mathsf{Per}_{\mathbb{T}^n}(\Omega) + \sigma \left(1 - \frac{|\Omega \cap B_r|}{\omega_n r^n}\right)$

Since χ_{B_r} is piecewise C^1 the first variation condition holds locally:

$$(n-1) H(x) = \lambda \quad \text{for } x \in \partial\Omega \cap \text{int } B_r^c,$$

$$(n-1) H(x) = \lambda + \frac{\sigma}{\omega_n r^n} \quad \text{for } x \in \partial\Omega \cap \text{int } B_r.$$

That is, critical $\Omega \subset \mathbb{T}^2$ consist of pieces of constant mean curvature hypersurfaces, glued together in a $C^{1,\alpha}$ fashion. For $\sigma > 0$, the mean curvature is strictly larger inside the nanoparticle region B_r than it is outside.

Recall: $E_{\sigma}(\Omega) = \operatorname{Per}_{\mathbb{T}^n}(\Omega) + \sigma \int_{\Omega^c} \rho(x) dx, |\Omega| = m.$ **Setup:** $\mathbb{T}^2 = [-1/2, 1/2) \times [1/2, 1/2), \text{ with } m \in [1/2, 1-1/\pi)$

Recall: $E_{\sigma}(\Omega) = \operatorname{Per}_{\mathbb{T}^n}(\Omega) + \sigma \int_{\Omega^c} \rho(x) dx, |\Omega| = m.$ **Setup:** $\mathbb{T}^2 = [-1/2, 1/2) \times [1/2, 1/2), \text{ with } m \in [1/2, 1 - 1/\pi)$

For such *m*, the solution to the **isoperimetric problem** is the **lamellar** pattern.

Recall: $E_{\sigma}(\Omega) = \operatorname{Per}_{\mathbb{T}^n}(\Omega) + \sigma \int_{\Omega^c} \rho(x) \, dx, \, |\Omega| = m.$ **Setup:** $\mathbb{T}^2 = [-1/2, 1/2) \times [1/2, 1/2), \, \text{with} \quad m \in [1/2, 1 - 1/\pi)$

For such *m*, the solution to the **isoperimetric problem** is the **lamellar** pattern.

$$ho = rac{1}{\pi r^2} \chi_{B_r}$$
 with $r > \sqrt{m/\pi}$

► Lamellar stripes must intersect nanoparticle set B_r , and disks B_R with area *m* lie inside B_r .

Recall: $\mathsf{E}_{\sigma}(\Omega) = \mathsf{Per}_{\mathbb{T}^n}(\Omega) + \sigma \int_{\Omega^c} \rho(x) \, dx, \, |\Omega| = m.$

Setup: $\mathbb{T}^2 = [-1/2, 1/2) \times [1/2, 1/2)$, with $m \in [1/2, 1-1/\pi)$

For such m, the solution to the isoperimetric problem is the lamellar pattern.

$$ho = rac{1}{\pi r^2} \chi_{B_r}$$
 with $r > \sqrt{m/\pi}$

- ► Lamellar stripes must intersect nanoparticle set B_r , and disks B_R with area *m* lie inside B_r .
- For $\sigma = 0$ lamellar is the winner but as soon as we turn on $\sigma > 0$ lamellar is not even a critical point. Regularity implies that $\partial \Omega$ is $C^{1,\alpha}$. Criticality implies that $H_{\text{inside}} > H_{\text{outside}}$ and they are constant.

What Other Patterns Are Possible?

Proposition

If Ω minimizes E_{σ} then

- if Ω is contractible in \mathbb{T}^2 then $A = B_R$ with $R = \sqrt{m/\pi}$;
- Ω^c cannot be contractible in \mathbb{T}^2 .

What Other Patterns Are Possible?

Proposition

If Ω minimizes E_{σ} then

- if Ω is contractible in \mathbb{T}^2 then $A = B_R$ with $R = \sqrt{m/\pi}$;
- Ω^c cannot be contractible in \mathbb{T}^2 .

Suppose **for now** that the min is **not** a disk. Assume **both** Ω and Ω^c are not contractible. Then each intersects both B_r and B_r^c .

What Other Patterns Are Possible?

Proposition

If Ω minimizes E_{σ} then

- if Ω is contractible in \mathbb{T}^2 then $A = B_R$ with $R = \sqrt{m/\pi}$;
- Ω^c cannot be contractible in \mathbb{T}^2 .

Suppose **for now** that the min is **not** a disk. Assume **both** Ω and Ω^c are not contractible. Then each intersects both B_r and B_r^c .

Criticality implies that $\partial \Omega$ is a union of arcs of circles and lines. **Regularity** implies that components of $\partial \Omega$ meet tangentially on ∂B_r . Recall **criticality** conditions:

 $\begin{aligned} H(x) &= \lambda \quad \text{for } x \in \partial \Omega \cap \text{int } B_r^c, \\ H(x) &= \lambda + \frac{\sigma}{2\pi r^2} \quad \text{for } x \in \partial \Omega \cap \text{int } B_r. \end{aligned}$

The Lagrange multiplier is either $\lambda = 0$ or $\lambda < 0$. If $\lambda > 0$ then $\partial \Omega$ consist of positively curved arcs of circles which is **not** possible

Case 1: $(\lambda = 0) \partial \Omega$ = arcs of circles inside B_r and straight lines outside B_r . We get **band-aid** patterns. Stationary but not global minimizers for any $\sigma > 0$.

Case 1: $(\lambda = 0) \partial \Omega$ = arcs of circles inside B_r and straight lines outside B_r . We get **band-aid** patterns. Stationary but not global minimizers for any $\sigma > 0$.

Case 2: ($\lambda < 0$) **Concave/convex strips.** $\partial \Omega$ consists of arcs of circles inside and outside of B_r : negatively curved outside of B_r and positively curved inside of B_r .

First pattern is unlikely to be a minimizer as the penalization term will be large for $\sigma > 0$. The second pattern is **not** a minimizer since it is contractible.

For sufficiently small $\sigma > 0$, **concave/convex** solutions exist (graphs over the lamellar stripe!)

For sufficiently small $\sigma > 0$, **concave/convex** solutions exist (graphs over the lamellar stripe!)

The criticality condition restricts the radii R_1 , R_2 ,

$$\frac{\sigma}{2\pi r^2} = \frac{1}{R_1} + \frac{1}{R_2}$$

For sufficiently small $\sigma > 0$, **concave/convex** solutions exist (graphs over the lamellar stripe!)

The criticality condition restricts the radii R_1 , R_2 ,

$$\frac{\sigma}{2\pi r^2} = \frac{1}{R_1} + \frac{1}{R_2}$$

Proposition

If Ω is a minimizer then $R_2 > r$ and $R_1 > 1/2 - r$. In particular, the convex-concave pattern can exist only if

$$\sigma=2\pi r^2\left(\frac{1}{R_1}+\frac{1}{R_2}\right)<\frac{2\pi r}{1-2r}.$$

There exists $\sigma_0 = \sigma_0(m, r)$ such that for all $\sigma > \sigma_0$ the set $B_R \subset B_r$ with $R = \sqrt{m/\pi}$ is the global minimizer of E_{σ} .

There exists $\sigma_0 = \sigma_0(m, r)$ such that for all $\sigma > \sigma_0$ the set $B_R \subset B_r$ with $R = \sqrt{m/\pi}$ is the global minimizer of E_{σ} .

• Suppose Ω is a global minimizer which is not $B_R \subset B_r$. Then $\Omega \cap B_r \neq \emptyset$.

There exists $\sigma_0 = \sigma_0(m, r)$ such that for all $\sigma > \sigma_0$ the set $B_R \subset B_r$ with $R = \sqrt{m/\pi}$ is the global minimizer of E_{σ} .

- Suppose Ω is a global minimizer which is not $B_R \subset B_r$. Then $\Omega \cap B_r \neq \emptyset$.
- There exists σ₁ = σ₁(r) > 0 such that for all σ > σ₁ the radius of ∂Ω ∩ B_r is bounded above by β r/2, with β = R²/4r² < ¹/₄.

There exists $\sigma_0 = \sigma_0(m, r)$ such that for all $\sigma > \sigma_0$ the set $B_R \subset B_r$ with $R = \sqrt{m/\pi}$ is the global minimizer of E_{σ} .

- Suppose Ω is a global minimizer which is not $B_R \subset B_r$. Then $\Omega \cap B_r \neq \emptyset$.
- There exists σ₁ = σ₁(r) > 0 such that for all σ > σ₁ the radius of ∂Ω ∩ B_r is bounded above by β r/2, with β = R²/4r² < ¹/₄.
- ▶ For $\sigma > \sigma_1$, $\Omega \cap B_r$ lies within the annular region $B_r \setminus B_{(1-\beta)r}$ and

 $|\Omega \cap B_r| < 2\pi r^2 \beta.$

There exists $\sigma_0 = \sigma_0(m, r)$ such that for all $\sigma > \sigma_0$ the set $B_R \subset B_r$ with $R = \sqrt{m/\pi}$ is the global minimizer of E_{σ} .

- Suppose Ω is a global minimizer which is not $B_R \subset B_r$. Then $\Omega \cap B_r \neq \emptyset$.
- There exists σ₁ = σ₁(r) > 0 such that for all σ > σ₁ the radius of ∂Ω ∩ B_r is bounded above by β r/2, with β = R²/4r² < ¹/₄.

For $\sigma > \sigma_1$, $\Omega \cap B_r$ lies within the annular region $B_r \setminus B_{(1-\beta)r}$ and $|\Omega \cap B_r| < 2\pi r^2 \beta$.

• Compare the energy of Ω to $B_R \subset B_r$:

$$\mathsf{E}_{\sigma}(\Omega) - \mathsf{E}_{\sigma}(B_R) \geqslant \left(2 - 2\pi R\right) + \sigma\left(\frac{R^2}{r^2} - \frac{|\Omega \cap B_r|}{\pi r^2}\right) > 0$$

if

$$\sigma > \max\left\{\sigma_1, \frac{4r^2(\pi R-2)}{R^2}\right\} =: \sigma_0(m,r).$$

On-going project: Are the convex-concave patterns locally/globally minimizing for σ > 0 but small? Connects to work of Acerbi-Fusco-Morini for the nonlocal isoperimetric problem.

- On-going project: Are the convex-concave patterns locally/globally minimizing for σ > 0 but small? Connects to work of Acerbi-Fusco-Morini for the nonlocal isoperimetric problem.
- ▶ What happens when one turns on the **nonlocal interaction** term? Scaling properties between *m*, γ (controlling nonlocality) and σ (controlling the penalization)?

- On-going project: Are the convex-concave patterns locally/globally minimizing for σ > 0 but small?
 Connects to work of Acerbi-Fusco-Morini for the nonlocal isoperimetric problem.
- ▶ What happens when one turns on the **nonlocal interaction** term? Scaling properties between *m*, γ (controlling nonlocality) and σ (controlling the penalization)?
- Dynamics: what is the law of motion of nanoparticles?

- On-going project: Are the convex-concave patterns locally/globally minimizing for σ > 0 but small?
 Connects to work of Acerbi-Fusco-Morini for the nonlocal isoperimetric problem.
- ▶ What happens when one turns on the **nonlocal interaction** term? Scaling properties between m, γ (controlling nonlocality) and σ (controlling the penalization)?
- Dynamics: what is the law of motion of nanoparticles?
- At the diffuse level, can we also minimize over the location of nanoparticles?

Thank you for your attention