Minimizers of an Energy Modelling Nanoparticle-Polymer Blends

Stan Alama
McMaster University
joint work with Lia Bronsard and Ihsan Topaloglu (McMaster)

SIAM Boston 2016

Diblock Copolymers

Diffuse-interface energy (Ohta-Kawasaki) passes to a sharp-interface model, a nonlocal isoperimetric problem (NLIP). In a sharp-interface limit, minimizers form phase domains, whose geometries depend on the volume fraction of the monomers and the strength of the nonlocal interactions.

f_{A} denotes the volume fraction of A-type monomers.
Extensive literature: Acerbi-Fusco-Morini, Alberti-Choksi-Otto, Bonacini-Cristoferi, Choksi-Glasner, Choksi-Peletier, Choksi-Ren, Choksi-Sternberg, Goldman-Muratov-Serfaty, Knüpfer-Muratov, Lu-Otto, Muratov, Ren-Wei, Shirokoff-Choksi-Nave, Sternberg-Topalaglu.

How to Influence Phase Separation?

- Goal (applications): alter the morphology of the phase domains.

How to Influence Phase Separation?

- Goal (applications): alter the morphology of the phase domains.
- Idea: add filler nanoparticles, which are coated so as to prefer one of the polymer phases.

How to Influence Phase Separation?

- Goal (applications): alter the morphology of the phase domains.
- Idea: add filler nanoparticles, which are coated so as to prefer one of the polymer phases.
- By adjusting the density of the nanoparticles we hope to confine the domains to specified regions and select a different minimizing morphology.

How to Influence Phase Separation?

- Goal (applications): alter the morphology of the phase domains.
- Idea: add filler nanoparticles, which are coated so as to prefer one of the polymer phases.
- By adjusting the density of the nanoparticles we hope to confine the domains to specified regions and select a different minimizing morphology.

Study by the research group of Fredrickson: first column shows low-density, second column shows high-density of nanoparticles.

The Model - An Extension of Ohta-Kawasaki

Ginzburg-Qiu-Balacz, Polymer 43, (2002) 461-466

$$
\begin{aligned}
\mathrm{E}_{\epsilon, \gamma, \eta, m, r, u_{p}, N}(u ; \mathbf{x}):= & \frac{3 \epsilon}{8} \int_{\mathbb{T}^{n}}|\nabla u|^{2} d x+\frac{3}{16 \epsilon} \int_{\mathbb{T}^{n}}\left(u^{2}-1\right)^{2} d x \\
& +\frac{\gamma}{2} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} G(x, y)(u(x)-m)(u(y)-m) d x d y \\
& +\eta \int_{\mathbb{T}^{n}} \sum_{i=1}^{N} V\left(\left|x-x_{i}\right|\right)\left(u-u_{p}\right)^{2} d x
\end{aligned}
$$

The first three terms are Ohta-Kawasaki:
$u \in H^{1}\left(\mathbb{T}^{n}\right)$ is the phase parameter, $\epsilon=$ thickness of the phase transition.
$m \in(-1,1)$ determines the volume fraction of polymers: $m=\int_{\mathbb{T}^{n}} u(x) d x$.
$\gamma=$ strength of the bond between phases, $G(x, y)$ denotes the Green's function on \mathbb{T}^{n}.

The Model - An Extension of Ohta-Kawasaki

Ginzburg-Qiu-Balacz, Polymer 43, (2002) 461-466

$$
\begin{aligned}
& \mathrm{E}_{\epsilon, \gamma, \eta, m, r, u_{p}, N}(u ; \mathbf{x}):=\frac{3 \epsilon}{8} \int_{\mathbb{T}^{n}}|\nabla u|^{2} d x+\frac{3}{16 \epsilon} \int_{\mathbb{T}^{n}}\left(u^{2}-1\right)^{2} d x \\
&+\frac{\gamma}{2} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} G(x, y)(u(x)-m)(u(y)-m) d x d y \\
&+\eta \int_{\mathbb{T}^{n}} \sum_{i=1}^{N} V\left(\left|x-x_{i}\right|\right)\left(u-u_{p}\right)^{2} d x
\end{aligned}
$$

The last term models nanoparticle-polymer interactions:

- $\mathbf{x} \in\left(\mathbb{T}^{n}\right)^{N}$ denotes the centers of N-many nanoparticles where each particle is a ball of radius $r, B\left(x_{i}, r\right)$.
- $V=$ rapidly decreasing (compactly supported) repulsive potential.
- $u_{p} \in[-1,1]=$ nanoparticle preference towards polymer phases;
- $\eta=$ nanoparticle density;

The Model - An Extension of Ohta-Kawasaki

Ginzburg-Qiu-Balacz, Polymer 43, (2002) 461-466

$$
\begin{aligned}
& \mathrm{E}_{\epsilon, \gamma, \eta, m, r, u_{p}, N}(u ; \mathbf{x}):=\frac{3 \epsilon}{8} \int_{\mathbb{T}^{n}}|\nabla u|^{2} d x+\frac{3}{16 \epsilon} \int_{\mathbb{T}^{n}}\left(u^{2}-1\right)^{2} d x \\
&+\frac{\gamma}{2} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} G(x, y)(u(x)-m)(u(y)-m) d x d y \\
&+\eta \int_{\mathbb{T}^{n}} \sum_{i=1}^{N} V\left(\left|x-x_{i}\right|\right)\left(u-u_{p}\right)^{2} d x
\end{aligned}
$$

The last term models nanoparticle-polymer interactions:

- $\mathbf{x} \in\left(\mathbb{T}^{n}\right)^{N}$ denotes the centers of N-many nanoparticles where each particle is a ball of radius $r, B\left(x_{i}, r\right)$.
- $V=$ rapidly decreasing (compactly supported) repulsive potential.
- $u_{p} \in[-1,1]=$ nanoparticle preference towards polymer phases;
- $\eta=$ nanoparticle density;

We assume the nanoparticle locations $\mathbf{x}=\left(x_{i}\right)_{n=1, \ldots, N}$ are fixed.

Large Number of Asymptotically Small Particles

Choices of parameters:

- $u_{p}=1$, nanoparticles prefer $u=1$;

Large Number of Asymptotically Small Particles

Choices of parameters:

- $u_{p}=1$, nanoparticles prefer $u=1$;
- V supported in balls $B_{r_{\epsilon}}, \int_{\mathbb{T}^{n}} V=1$.

Large Number of Asymptotically Small Particles

Choices of parameters:

- $u_{p}=1$, nanoparticles prefer $u=1$;
- V supported in balls $B_{r_{\epsilon}}, \int_{\mathbb{T}^{n}} V=1$.
- For fixed N_{ϵ}-many points $x_{1}, \ldots, x_{N_{\epsilon}} \in \mathbb{T}^{n}$, we minimize:

$$
\begin{aligned}
\mathrm{E}_{\epsilon, \sigma}(u):= & \frac{\epsilon}{2} \int_{\mathbb{T}^{n}}|\nabla u|^{2} d x+\frac{1}{4 \epsilon} \int_{\mathbb{T}^{n}}\left(u^{2}-1\right)^{2} d x \\
& +\frac{\gamma}{2} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} G(x, y)(u(x)-m)(u(y)-m) d x d y \\
& +\frac{\sigma}{N_{\epsilon} r_{\epsilon}^{n}} \sum_{i=1}^{N_{\epsilon}} \int_{B\left(x_{i}, r_{\epsilon}\right)} V\left(\left|x-x_{i}\right| / r_{\epsilon}\right)(u-1)^{2} d x
\end{aligned}
$$

Large Number of Asymptotically Small Particles

Choices of parameters:

- $u_{p}=1$, nanoparticles prefer $u=1$;
- V supported in balls $B_{r_{\epsilon}}, \int_{\mathbb{T}^{n}} V=1$.
- For fixed N_{ϵ}-many points $x_{1}, \ldots, x_{N_{\epsilon}} \in \mathbb{T}^{n}$, we minimize:

$$
\begin{aligned}
\mathrm{E}_{\epsilon, \sigma}(u):= & \frac{\epsilon}{2} \int_{\mathbb{T}^{n}}|\nabla u|^{2} d x+\frac{1}{4 \epsilon} \int_{\mathbb{T}^{n}}\left(u^{2}-1\right)^{2} d x \\
& +\frac{\gamma}{2} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} G(x, y)(u(x)-m)(u(y)-m) d x d y \\
& +\frac{\sigma}{N_{\epsilon} r_{\epsilon}^{n}} \sum_{i=1}^{N_{\epsilon}} \int_{B\left(x_{i}, r_{\epsilon}\right)} V\left(\left|x-x_{i}\right| / r_{\epsilon}\right)(u-1)^{2} d x
\end{aligned}
$$

- Large number of nanoparticles, but small volume fraction:

$$
N_{\epsilon} \rightarrow \infty, \text { but } N_{\epsilon} r_{\epsilon}^{n} \rightarrow 0
$$

Large Number of Asymptotically Small Particles

Choices of parameters:

- $u_{p}=1$, nanoparticles prefer $u=1$;
- V supported in balls $B_{r_{\epsilon}}, \int_{\mathbb{T}^{n}} V=1$.
- For fixed N_{ϵ}-many points $x_{1}, \ldots, x_{N_{\epsilon}} \in \mathbb{T}^{n}$, we minimize:

$$
\begin{aligned}
\mathrm{E}_{\epsilon, \sigma}(u):= & \frac{\epsilon}{2} \int_{\mathbb{T}^{n}}|\nabla u|^{2} d x+\frac{1}{4 \epsilon} \int_{\mathbb{T}^{n}}\left(u^{2}-1\right)^{2} d x \\
& +\frac{\gamma}{2} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} G(x, y)(u(x)-m)(u(y)-m) d x d y \\
& +\frac{\sigma}{N_{\epsilon} r_{\epsilon}^{n}} \sum_{i=1}^{N_{\epsilon}} \int_{B\left(x_{i}, r_{\epsilon}\right)} V\left(\left|x-x_{i}\right| / r_{\epsilon}\right)(u-1)^{2} d x
\end{aligned}
$$

- Large number of nanoparticles, but small volume fraction:

$$
N_{\epsilon} \rightarrow \infty, \text { but } N_{\epsilon} r_{\epsilon}^{n} \rightarrow 0
$$

- Assume the nanoparticles converge to a fixed distribution, $\mu \in \mathscr{P}_{\mathrm{ac}}\left(\mathbb{T}^{n}\right)$ representing a limiting nanoparticle density measure:

$$
N_{\epsilon} r_{\epsilon}^{n} \sum_{i=1}^{N_{\epsilon}} \int_{B\left(x_{i}, r_{\epsilon}\right)} V\left(\left|x-x_{i}\right| / r_{\epsilon}\right)(u-1)^{2} d x \rightharpoonup \mu
$$

Sharp Interface Limit

We first prove Γ-convergence of $\mathrm{E}_{\epsilon, \sigma}$ to the sharp interface energy,

$$
\begin{aligned}
\mathrm{E}_{\mu, \sigma}(u):= & \frac{1}{2} \int_{\mathbb{T}^{n}}|\nabla u|+\sigma \int_{\mathbb{T}^{n}}(u(x)-1)^{2} d \mu(x) \\
& +\frac{\gamma}{2} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} G(x, y)(u(x)-m)(u(y)-m) d x d y
\end{aligned}
$$

with $u \in B V\left(\mathbb{T}^{2} ;\{-1,1\}\right)$, and where $\mu \in \mathscr{P}_{\mathrm{ac}}\left(\mathbb{T}^{n}\right)$ represents the limiting nanoparticle density measure.

Sharp Interface Limit

We first prove Γ-convergence of $\mathrm{E}_{\epsilon, \sigma}$ to the sharp interface energy,

$$
\begin{aligned}
\mathrm{E}_{\mu, \sigma}(u):= & \frac{1}{2} \int_{\mathbb{T}^{n}}|\nabla u|+\sigma \int_{\mathbb{T}^{n}}(u(x)-1)^{2} d \mu(x) \\
& +\frac{\gamma}{2} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} G(x, y)(u(x)-m)(u(y)-m) d x d y
\end{aligned}
$$

with $u \in B V\left(\mathbb{T}^{2} ;\{-1,1\}\right)$, and where $\mu \in \mathscr{P}_{\mathrm{ac}}\left(\mathbb{T}^{n}\right)$ represents the limiting nanoparticle density measure.

Notes on the Γ-limit:

- For the lower bound note that $\{u=1\}$ and $\{u=1\}^{c}$ are continuity sets of the measure μ.
- For the upper bound use the recovery sequence constructed by Sternberg for the perimeter. Combined with the weak-* convergence of the potentials to μ we get the upper bound.

Sharp Interface Limit

We first prove Γ-convergence of $\mathrm{E}_{\epsilon, \sigma}$ to the sharp interface energy,

$$
\begin{aligned}
\mathrm{E}_{\mu, \sigma}(u):= & \frac{1}{2} \int_{\mathbb{T}^{n}}|\nabla u|+\sigma \int_{\mathbb{T}^{n}}(u(x)-1)^{2} d \mu(x) \\
& +\frac{\gamma}{2} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} G(x, y)(u(x)-m)(u(y)-m) d x d y
\end{aligned}
$$

with $u \in B V\left(\mathbb{T}^{2} ;\{-1,1\}\right)$, and where $\mu \in \mathscr{P}_{\mathrm{ac}}\left(\mathbb{T}^{n}\right)$ represents the limiting nanoparticle density measure.

Notes on the Γ-limit:

- For the lower bound note that $\{u=1\}$ and $\{u=1\}^{c}$ are continuity sets of the measure μ.
- For the upper bound use the recovery sequence constructed by Sternberg for the perimeter. Combined with the weak-* convergence of the potentials to μ we get the upper bound.
- The nonlocal term is treated as a continuous perturbation of the perimeter.

A Penalized Isoperimetric Problem

We now restrict our attention to the perimeter and penalization terms, and neglect the nonlocal interactions, $\gamma=0$ in $\mathbb{E}_{\mu, \sigma, \gamma}$.

A Penalized Isoperimetric Problem

We now restrict our attention to the perimeter and penalization terms, and neglect the nonlocal interactions, $\gamma=0$ in $\mathrm{E}_{\mu, \sigma, \gamma}$.

For $\rho \in L^{1}\left(\mathbb{T}^{n}\right)=$ density of $\mu \in \mathscr{P}_{\text {ac }}\left(\mathbb{T}^{n}\right)$, minimization of $\mathrm{E}_{\mu, \sigma}$ is a geometric problem:

$$
\text { minimize } \quad \mathrm{E}_{\sigma}(\Omega)=\operatorname{Per}_{\mathbb{T}^{n}}(\Omega)+\sigma \int_{\Omega^{c}} \rho(x) d x
$$

over $\Omega \subset \mathbb{T}^{n}$ with $|\Omega|=m$.

A Penalized Isoperimetric Problem

We now restrict our attention to the perimeter and penalization terms, and neglect the nonlocal interactions, $\gamma=0$ in $\mathrm{E}_{\mu, \sigma, \gamma}$.

For $\rho \in L^{1}\left(\mathbb{T}^{n}\right)=$ density of $\mu \in \mathscr{P}_{\mathrm{ac}}\left(\mathbb{T}^{n}\right)$, minimization of $\mathrm{E}_{\mu, \sigma}$ is a geometric problem:

$$
\text { minimize } \quad \mathrm{E}_{\sigma}(\Omega)=\operatorname{Per}_{\mathbb{T}^{n}}(\Omega)+\sigma \int_{\Omega^{c}} \rho(x) d x
$$

over $\Omega \subset \mathbb{T}^{n}$ with $|\Omega|=m$.
Similar in the spirit to finding minimal boundaries with respect to an obstacle set: minimize perimeter of Ω so that an obstacle set is $L \subset \Omega$. (Note: no mass constraint.)
Barozzi-Massari, Barozzi-Tamanini, Brézis-Kinderlehrer, Giusti, S. Rigot, etc.

Properties of Local Minimizers

Proposition (Regularity of Phase Boundaries)

If $\rho \in L^{\infty}\left(\mathbb{T}^{n}\right)$ then $\partial^{*} \Omega$ is of class $C^{1, \alpha}$ for some $\alpha \in(0,1)$.
Idea: Control the excess-like quantity: $\operatorname{Per}_{B_{R}\left(x_{0}\right)}(\Omega)-\operatorname{Per}_{B_{R}\left(x_{0}\right)}(\widetilde{\Omega}) \leqslant C R^{n}$ where $\widetilde{\Omega}$ minimizes perimeter in $B_{R}\left(x_{0}\right)$. See: Tamanini; Rigot

Properties of Local Minimizers

Proposition (Regularity of Phase Boundaries)

If $\rho \in L^{\infty}\left(\mathbb{T}^{n}\right)$ then $\partial^{*} \Omega$ is of class $C^{1, \alpha}$ for some $\alpha \in(0,1)$.
Idea: Control the excess-like quantity: $\operatorname{Per}_{B_{R}\left(x_{0}\right)}(\Omega)-\operatorname{Per}_{B_{R}\left(x_{0}\right)}(\widetilde{\Omega}) \leqslant C R^{n}$ where $\widetilde{\Omega}$ minimizes perimeter in $B_{R}\left(x_{0}\right)$. See: Tamanini; Rigot

The effect of the nanoparticle density ρ is to change the curvature of the phase boundary $\partial \Omega$:

Proposition (First Variation)

If $\rho \in C^{1}\left(\mathbb{T}^{n}\right)$ then

$$
(n-1) H(x)-\sigma \rho(x)=\lambda \quad \text { for all } x \in \partial \Omega .
$$

Here $\lambda=$ constant, and $H=$ mean curvature of $\partial \Omega$.

Properties of Local Minimizers

Proposition (Regularity of Phase Boundaries)

If $\rho \in L^{\infty}\left(\mathbb{T}^{n}\right)$ then $\partial^{*} \Omega$ is of class $C^{1, \alpha}$ for some $\alpha \in(0,1)$.
Idea: Control the excess-like quantity: $\operatorname{Per}_{B_{R}\left(x_{0}\right)}(\Omega)-\operatorname{Per}_{B_{R}\left(x_{0}\right)}(\widetilde{\Omega}) \leqslant C R^{n}$ where $\widetilde{\Omega}$ minimizes perimeter in $B_{R}\left(x_{0}\right)$. See: Tamanini; Rigot

The effect of the nanoparticle density ρ is to change the curvature of the phase boundary $\partial \Omega$:

Proposition (First Variation)

If $\rho \in C^{1}\left(\mathbb{T}^{n}\right)$ then

$$
(n-1) H(x)-\sigma \rho(x)=\lambda \quad \text { for all } x \in \partial \Omega .
$$

Here $\lambda=$ constant, and $H=$ mean curvature of $\partial \Omega$.

- This follows by adapting the calculations by Choksi-Sternberg.
- The equations are local on $\partial \Omega$, so if ρ is piecewise C^{1} the curvature condition holds piecewise.

A special case: uniform nanoparticle density in a ball

Assume $\rho=\omega_{n}^{-1} r^{-n} \chi_{B_{r}}$ with $\omega_{n} r^{n}>m$. Then

$$
\mathrm{E}_{\sigma}(\Omega)=\operatorname{Per}_{\mathbb{T}^{n}}(\Omega)+\sigma\left(1-\frac{\left|\Omega \cap B_{r}\right|}{\omega_{n} r^{n}}\right)
$$

A special case: uniform nanoparticle density in a ball
Assume $\rho=\omega_{n}^{-1} r^{-n} \chi_{B_{r}}$ with $\omega_{n} r^{n}>m$. Then

$$
\mathrm{E}_{\sigma}(\Omega)=\operatorname{Per}_{\mathbb{T}^{n}}(\Omega)+\sigma\left(1-\frac{\left|\Omega \cap B_{r}\right|}{\omega_{n} r^{n}}\right)
$$

Since $\chi_{B_{r}}$ is piecewise C^{1} the first variation condition holds locally:

$$
\begin{aligned}
& (n-1) H(x)=\lambda \quad \text { for } x \in \partial \Omega \cap \operatorname{int} B_{r}^{c}, \\
& (n-1) H(x)=\lambda+\frac{\sigma}{\omega_{n} r^{n}} \quad \text { for } x \in \partial \Omega \cap \operatorname{int} B_{r} .
\end{aligned}
$$

A special case: uniform nanoparticle density in a ball
Assume $\rho=\omega_{n}^{-1} r^{-n} \chi_{B_{r}}$ with $\omega_{n} r^{n}>m$. Then

$$
\mathrm{E}_{\sigma}(\Omega)=\operatorname{Per}_{\mathbb{T} n}(\Omega)+\sigma\left(1-\frac{\left|\Omega \cap B_{r}\right|}{\omega_{n} r^{n}}\right)
$$

Since $\chi_{B_{r}}$ is piecewise C^{1} the first variation condition holds locally:

$$
\begin{aligned}
& (n-1) H(x)=\lambda \quad \text { for } x \in \partial \Omega \cap \operatorname{int} B_{r}^{c}, \\
& (n-1) H(x)=\lambda+\frac{\sigma}{\omega_{n} r^{n}} \quad \text { for } x \in \partial \Omega \cap \operatorname{int} B_{r} .
\end{aligned}
$$

That is, critical $\Omega \subset \mathbb{T}^{2}$ consist of pieces of constant mean curvature hypersurfaces, glued together in a $C^{1, \alpha}$ fashion. For $\sigma>0$, the mean curvature is strictly larger inside the nanoparticle region B_{r} than it is outside.

An Example in 2-Dimensions

Recall: $\mathrm{E}_{\sigma}(\Omega)=\operatorname{Per}_{\mathbb{T} n}(\Omega)+\sigma \int_{\Omega c} \rho(x) d x,|\Omega|=m$.
Setup: $\mathbb{T}^{2}=[-1 / 2,1 / 2) \times[1 / 2,1 / 2)$, with $\quad m \in[1 / 2,1-1 / \pi)$

An Example in 2-Dimensions

Recall: $\mathrm{E}_{\sigma}(\Omega)=\operatorname{Per}_{\mathbb{T}^{n}}(\Omega)+\sigma \int_{\Omega^{c}} \rho(x) d x,|\Omega|=m$.
Setup: $\mathbb{T}^{2}=[-1 / 2,1 / 2) \times[1 / 2,1 / 2)$, with $\quad m \in[1 / 2,1-1 / \pi)$

- For such m, the solution to the isoperimetric problem is the lamellar pattern.

An Example in 2-Dimensions

Recall: $\mathrm{E}_{\sigma}(\Omega)=\operatorname{Per}_{\mathbb{T}^{n}}(\Omega)+\sigma \int_{\Omega^{c}} \rho(x) d x,|\Omega|=m$.
Setup: $\mathbb{T}^{2}=[-1 / 2,1 / 2) \times[1 / 2,1 / 2)$, with $\quad m \in[1 / 2,1-1 / \pi)$

- For such m, the solution to the isoperimetric problem is the lamellar pattern.

$$
\rho=\frac{1}{\pi r^{2}} \chi_{B_{r}} \text { with } r>\sqrt{m / \pi}
$$

- Lamellar stripes must intersect nanoparticle set B_{r}, and disks B_{R} with area m lie inside B_{r}.

An Example in 2-Dimensions

Recall: $\mathrm{E}_{\sigma}(\Omega)=\operatorname{Per}_{\mathbb{T}^{n}}(\Omega)+\sigma \int_{\Omega^{c}} \rho(x) d x,|\Omega|=m$.
Setup: $\mathbb{T}^{2}=[-1 / 2,1 / 2) \times[1 / 2,1 / 2)$, with $\quad m \in[1 / 2,1-1 / \pi)$

- For such m, the solution to the isoperimetric problem is the lamellar pattern.

$$
\rho=\frac{1}{\pi r^{2}} \chi_{B_{r}} \text { with } r>\sqrt{m / \pi}
$$

- Lamellar stripes must intersect nanoparticle set B_{r}, and disks B_{R} with area m lie inside B_{r}.
- For $\sigma=0$ lamellar is the winner but as soon as we turn on $\sigma>0$ lamellar is not even a critical point. Regularity implies that $\partial \Omega$ is $C^{1, \alpha}$. Criticality implies that $H_{\text {inside }}>H_{\text {outside }}$ and they are constant.

$\sigma=0$

$\sigma>0$ small?

$\sigma>0$ large?

What Other Patterns Are Possible?

Proposition

If Ω minimizes E_{σ} then

- if Ω is contractible in \mathbb{T}^{2} then $A=B_{R}$ with $R=\sqrt{m / \pi}$;
- Ω^{c} cannot be contractible in \mathbb{T}^{2}.

What Other Patterns Are Possible?

Proposition

If Ω minimizes E_{σ} then

- if Ω is contractible in \mathbb{T}^{2} then $A=B_{R}$ with $R=\sqrt{m / \pi}$;
- Ω^{c} cannot be contractible in \mathbb{T}^{2}.

Suppose for now that the min is not a disk. Assume both Ω and Ω^{c} are not contractible. Then each intersects both B_{r} and B_{r}^{c}.

What Other Patterns Are Possible?

Proposition

If Ω minimizes E_{σ} then

- if Ω is contractible in \mathbb{T}^{2} then $A=B_{R}$ with $R=\sqrt{m / \pi}$;
$-\Omega^{c}$ cannot be contractible in \mathbb{T}^{2}.

Suppose for now that the min is not a disk. Assume both Ω and Ω^{c} are not contractible. Then each intersects both B_{r} and B_{r}^{c}.

Criticality implies that $\partial \Omega$ is a union of arcs of circles and lines. Regularity implies that components of $\partial \Omega$ meet tangentially on ∂B_{r}. Recall criticality conditions:

$$
\begin{aligned}
& H(x)=\lambda \quad \text { for } x \in \partial \Omega \cap \operatorname{int} B_{r}^{c}, \\
& H(x)=\lambda+\frac{\sigma}{2 \pi r^{2}} \quad \text { for } x \in \partial \Omega \cap \operatorname{int} B_{r} .
\end{aligned}
$$

The Lagrange multiplier is either $\lambda=0$ or $\lambda<0$. If $\lambda>0$ then $\partial \Omega$ consist of positively curved arcs of circles which is not possible

Case 1: $(\lambda=0) \partial \Omega=\operatorname{arcs}$ of circles inside B_{r} and straight lines outside B_{r}. We get band-aid patterns. Stationary but not global minimizers for any $\sigma>0$.

Case 1: $(\lambda=0) \partial \Omega=\operatorname{arcs}$ of circles inside B_{r} and straight lines outside B_{r}. We get band-aid patterns. Stationary but not global minimizers for any $\sigma>0$.

Case 2: $(\lambda<0)$ Concave/convex strips. $\partial \Omega$ consists of arcs of circles inside and outside of B_{r} : negatively curved outside of B_{r} and positively curved inside of B_{r}.

First pattern is unlikely to be a minimizer as the penalization term will be large for $\sigma>0$. The second pattern is not a minimizer since it is contractible.

For sufficiently small $\sigma>0$, concave/convex solutions exist (graphs over the lamellar stripe!)

For sufficiently small $\sigma>0$, concave/convex solutions exist (graphs over the lamellar stripe!)

The criticality condition restricts the radii R_{1}, R_{2},

$$
\frac{\sigma}{2 \pi r^{2}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

For sufficiently small $\sigma>0$, concave/convex solutions exist (graphs over the lamellar stripe!)

The criticality condition restricts the radii R_{1}, R_{2},

$$
\frac{\sigma}{2 \pi r^{2}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Proposition

If Ω is a minimizer then $R_{2}>r$ and $R_{1}>1 / 2-r$. In particular, the convex-concave pattern can exist only if

$$
\sigma=2 \pi r^{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)<\frac{2 \pi r}{1-2 r} .
$$

Proposition

There exists $\sigma_{0}=\sigma_{0}(m, r)$ such that for all $\sigma>\sigma_{0}$ the set $B_{R} \subset B_{r}$ with $R=\sqrt{m / \pi}$ is the global minimizer of E_{σ}.

Proposition

There exists $\sigma_{0}=\sigma_{0}(m, r)$ such that for all $\sigma>\sigma_{0}$ the set $B_{R} \subset B_{r}$ with $R=\sqrt{m / \pi}$ is the global minimizer of E_{σ}.

- Suppose Ω is a global minimizer which is not $B_{R} \subset B_{r}$. Then $\Omega \cap B_{r} \neq \emptyset$.

Proposition

There exists $\sigma_{0}=\sigma_{0}(m, r)$ such that for all $\sigma>\sigma_{0}$ the set $B_{R} \subset B_{r}$ with $R=\sqrt{m / \pi}$ is the global minimizer of E_{σ}.

- Suppose Ω is a global minimizer which is not $B_{R} \subset B_{r}$. Then $\Omega \cap B_{r} \neq \emptyset$.
- There exists $\sigma_{1}=\sigma_{1}(r)>0$ such that for all $\sigma>\sigma_{1}$ the radius of $\partial \Omega \cap B_{r}$ is bounded above by $\beta r / 2$, with $\beta=R^{2} / 4 r^{2}<\frac{1}{4}$.

Proposition

There exists $\sigma_{0}=\sigma_{0}(m, r)$ such that for all $\sigma>\sigma_{0}$ the set $B_{R} \subset B_{r}$ with $R=\sqrt{m / \pi}$ is the global minimizer of E_{σ}.

- Suppose Ω is a global minimizer which is not $B_{R} \subset B_{r}$. Then $\Omega \cap B_{r} \neq \emptyset$.
- There exists $\sigma_{1}=\sigma_{1}(r)>0$ such that for all $\sigma>\sigma_{1}$ the radius of $\partial \Omega \cap B_{r}$ is bounded above by $\beta r / 2$, with $\beta=R^{2} / 4 r^{2}<\frac{1}{4}$.
- For $\sigma>\sigma_{1}, \Omega \cap B_{r}$ lies within the annular region $B_{r} \backslash B_{(1-\beta) r}$ and

$$
\left|\Omega \cap B_{r}\right|<2 \pi r^{2} \beta .
$$

Proposition

There exists $\sigma_{0}=\sigma_{0}(m, r)$ such that for all $\sigma>\sigma_{0}$ the set $B_{R} \subset B_{r}$ with $R=\sqrt{m / \pi}$ is the global minimizer of E_{σ}.

- Suppose Ω is a global minimizer which is not $B_{R} \subset B_{r}$. Then $\Omega \cap B_{r} \neq \emptyset$.
- There exists $\sigma_{1}=\sigma_{1}(r)>0$ such that for all $\sigma>\sigma_{1}$ the radius of $\partial \Omega \cap B_{r}$ is bounded above by $\beta r / 2$, with $\beta=R^{2} / 4 r^{2}<\frac{1}{4}$.
- For $\sigma>\sigma_{1}, \Omega \cap B_{r}$ lies within the annular region $B_{r} \backslash B_{(1-\beta) r}$ and

$$
\left|\Omega \cap B_{r}\right|<2 \pi r^{2} \beta
$$

- Compare the energy of Ω to $B_{R} \subset B_{r}$:

$$
\mathrm{E}_{\sigma}(\Omega)-\mathrm{E}_{\sigma}\left(B_{R}\right) \geqslant(2-2 \pi R)+\sigma\left(\frac{R^{2}}{r^{2}}-\frac{\left|\Omega \cap B_{r}\right|}{\pi r^{2}}\right)>0
$$

if

$$
\sigma>\max \left\{\sigma_{1}, \frac{4 r^{2}(\pi R-2)}{R^{2}}\right\}=: \sigma_{0}(m, r) .
$$

Future Directions

- On-going project: Are the convex-concave patterns locally/globally minimizing for $\sigma>0$ but small?
Connects to work of Acerbi-Fusco-Morini for the nonlocal isoperimetric problem.

Future Directions

- On-going project: Are the convex-concave patterns locally/globally minimizing for $\sigma>0$ but small?
Connects to work of Acerbi-Fusco-Morini for the nonlocal isoperimetric problem.
- What happens when one turns on the nonlocal interaction term? Scaling properties between m, γ (controlling nonlocality) and σ (controlling the penalization)?

Future Directions

- On-going project: Are the convex-concave patterns locally/globally minimizing for $\sigma>0$ but small?
Connects to work of Acerbi-Fusco-Morini for the nonlocal isoperimetric problem.
- What happens when one turns on the nonlocal interaction term? Scaling properties between m, γ (controlling nonlocality) and σ (controlling the penalization)?
- Dynamics: what is the law of motion of nanoparticles?

Future Directions

- On-going project: Are the convex-concave patterns locally/globally minimizing for $\sigma>0$ but small?
Connects to work of Acerbi-Fusco-Morini for the nonlocal isoperimetric problem.
- What happens when one turns on the nonlocal interaction term? Scaling properties between m, γ (controlling nonlocality) and σ (controlling the penalization)?
- Dynamics: what is the law of motion of nanoparticles?
- At the diffuse level, can we also minimize over the location of nanoparticles?

Thank you for your attention

