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Diblock Copolymers

Diffuse-interface energy (Ohta-Kawasaki) passes to a sharp-interface model, a
nonlocal isoperimetric problem (NLIP). In a sharp-interface limit, minimizers form
phase domains, whose geometries depend on the volume fraction of the monomers
and the strength of the nonlocal interactions.
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f4 denotes the volume fraction of A-type monomers.
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Study by the research group of Fredrickson: first column shows , second column
shows high-density of nanoparticles.
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The Model — An Extension of Ohta—Kawasaki

Ginzburg-Qiu-Balacz, Polymer 43, (2002) 461-466
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The first three terms are Ohta-Kawasaki:
u € H'(T") is the phase parameter, e=thickness of the phase transition.
m e (—1,1) determines the volume fraction of polymers: m = [, u(x) dx.

~=strength of the bond between phases, G(x, y) denotes the Green’s function on
T".
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The last term models nanoparticle-polymer interactions:

e (T")N denotes the centers of N-many nanoparticles where each particle is
a ball of radius r, B(x;, r).

V=rapidly decreasing (compactly supported) repulsive potential.
Up € [—1, 1]=nanoparticle preference towards polymer phases;
n=nanoparticle density;
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The last term models nanoparticle-polymer interactions:

e (T")N denotes the centers of N-many nanoparticles where each particle is
a ball of radius r, B(x;, r).

V=rapidly decreasing (compactly supported) repulsive potential.
Up € [—1, 1]=nanoparticle preference towards polymer phases;
n=nanoparticle density;

We assume the nanoparticle locations X = (X;)n=1,... n are fixed.
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Large Number of Asymptotically Small Particles

up = 1, nanoparticles prefer u = 1;
V supported in balls B, [, V = 1.
For fixed N.-many points xi, ..., Xy, € T", we minimize:
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Large number of nanoparticles, but small volume fraction:
N, — oo, but N.r’ — 0

Assume the nanoparticles converge to a fixed distribution, p € Pac(T")
representing a limiting nanoparticle density measure:

Ner? S [y V(X =Xl /r)(u = 1)P dx =



Sharp Interface Limit

We first prove '-convergence of E. , to the sharp interface energy,
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Notes on the T -limit:

For the lower bound note that {u = 1} and {u = 1}° are continuity sets of the
measure .

For the upper bound use the recovery sequence constructed by Sternberg for
the perimeter. Combined with the weak-* convergence of the potentials to 1 we
get the upper bound.
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with u € BV(T?; {—1,1}), and where 1 € Z,,(T") represents the limiting
nanoparticle density measure.

Notes on the T -limit:
For the lower bound note that {u = 1} and {u = 1}° are continuity sets of the
measure .

For the upper bound use the recovery sequence constructed by Sternberg for
the perimeter. Combined with the weak-* convergence of the potentials to 1 we
get the upper bound.

The nonlocal term is treated as a continuous perturbation of the perimeter.
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A Penalized Isoperimetric Problem

We now restrict our attention to the perimeter and penalization terms, and neglect
the nonlocal interactions, v = 0 inE, o .

For p € L'(T") = density of ;1 € Zac(T"), minimization of E,, , is a geometric
problem:

minimize E-(Q2) = Per(Q) + a—/ p(x) dx
Qc

over Q C T" with |Q| = m.

Similar in the spirit to finding with respect to an
minimize perimeter of 2 so that an obstacle setis L C Q. (Note: no mass
constraint.)

Barozzi-Massari, Barozzi-Tamanini, Brézis-Kinderlehrer, Giusti, S. Rigot, etc.
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Proposition (Regularity of Phase Boundaries)
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Idea: Control the excess-like quantity: Perg, ) (Q) — Pers, ) (2) < CR"
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The effect of the nanoparticle density p is to change the curvature of the phase
boundary 0Q:

Proposition (First Variation)
Ifp e C'(T") then
(n—=1)H(x) — op(x) = X forall x € 99.

Here \=constant, and H=mean curvature of o).

This follows by adapting the calculations by Choksi-Sternberg.

The equations are local on 99, so if p is piecewise C' the curvature condition
holds piecewise.
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A special case: uniform nanoparticle density in a ball

Assume p = w, ' r~"xg, with w, r" > m. Then

_ _ Q2N By
E,(Q2) = Perm(Q) + o (1 o
Since 3, is piecewise C' the condition holds locally:

(n—1)H(x) = X forx € 9QNintB7,
g .
(n—1)H(x)=)\+m for x € 02 Nint B;.

That is, critical Q C T2 consist of pieces of constant mean curvature hypersurfaces,
glued together in a C"* fashion. For ¢ > 0, the mean curvature is strictly larger
inside the nanoparticle region B, than it is outside.
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An Example in 2-Dimensions

Recall: E,(Q) = Pern(Q) + o [oe p(x)dx, |Q = m.
T? =[-1/2,1/2) x [1/2,1/2), with me [1/2,1 —1/x)
For such m, the solution to the is the lamellar pattern.
p=-txg withr > \/m/x

Lamellar stripes must intersect nanoparticle set B,, and disks Bg with area m
lie inside B;.

For o = 0 lamellar is the winner as soon as we turn on o > 0 lamellar is
not even a critical point. implies that 9Q is C"°. implies

that Hinsige > Houtsise @and they are constant.

o > 0small? o > 0 large?
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What Other Patterns Are Possible?

Proposition

If Q minimizes E, then
if Q is contractible in T? then A = Bg with R = \/m/;
Q° cannot be contractible in T?.

Suppose for now that the min is not a disk. Assume both Q and Q° are not
contractible. Then each intersects both B, and B¢.

implies that 92 is a union of arcs of circles and lines. implies
that components of 02 meet tangentially on 05,. Recall conditions:

H(x) = X forx € 9QNint By,
g

H(x) = A+W for x € 02 Nint B;.

The Lagrange multiplier is A=0o0rX < 0.IfXx > 0then 0% consist of
positively curved arcs of circles which is not possible



(A = 0) 992 = arcs of circles inside B, and straight lines outside B,. We get
band-aid patterns. Stationary but not global minimizers for any o > 0.




(A = 0) 992 = arcs of circles inside B, and straight lines outside B,. We get
band-aid patterns. Stationary but not global minimizers for any o > 0.
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(A < 0) Concave/convex strips. 92 consists of arcs of circles inside and
outside of B;: negatively curved outside of B, and positively curved inside of B;.

.7 %
First pattern is unlikely to be a minimizer as the penalization term will be large for
o > 0. The second pattern is not a minimizer since it is contractible.

/
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For sufficiently small o > 0, concave/convex solutions exist (graphs over the
lamellar stripe!)

Ry

The condition restricts the radii Ry, Ro,

o _ 1.1
2nr2 o R1 Rg
Proposition

IfQ2 is a minimizer then R> > r and Ry > 1/2 — r. In particular, the convex-concave

pattern can exist only if
1 1 2rr
=onr? [ — + — —
7=t <R1 +R2) ST 2
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Proposition

There exists oo = oo(m, r) such that for all o > o¢ the set Bs C B, with R = \/m/x
is the global minimizer of E,,.

Suppose Q is a global minimizer which is not Bg C B;. Then QN B, # .

There exists o1 = o4(r) > 0 such that for all o > o4 the radius of 9Q2 N B; is
bounded above by 3 r/2, with 3 = R?/4r* < 1.

Foro > oy, QN B, lies within the annular region B; \ B;_gz)- and

QN B/ < 2xr? 8.

Compare the energy of Q to Bg C B;:

ra wr?

Eo(9) ~ Eo(Br) > (2 27R) + 0 (E _lan B,|) o

4r’(r R — 2) _
o > Mmax o1, ———pp—— ¢ = oo(m,r).
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Future Directions

Are the convex-concave patterns locally/globally minimizing
for o > 0 but small?

Connects to work of Acerbi-Fusco-Morini for the nonlocal isoperimetric
problem.

What happens when one turns on the nonlocal interaction term? Scaling
properties between m, ~ (controlling nonlocality) and o (controlling the
penalization)?

Dynamics: what is the law of motion of nanoparticles?

At the diffuse level, can we also minimize over the location of nanoparticles?



Thank you for your attention



