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Diblock Copolymers

Diffuse-interface energy (Ohta-Kawasaki) passes to a sharp-interface model, a
nonlocal isoperimetric problem (NLIP). In a sharp-interface limit, minimizers form
phase domains, whose geometries depend on the volume fraction of the monomers
and the strength of the nonlocal interactions.

Polymers 2010, 2              
 

 

471 

BCPs are well understood. For virtually all coil-coil BCPs, the various equilibrium morphologies can 
be completely described by a phase diagram such as that depicted in Figure 1a [3]. The self-assembled 
domain shapes can be tuned by adjusting the relative volume fraction of each block (f), Flory-Huggins 
interaction parameter χ, and the degree of polymerization N. In a typical BCP, the dimension of the 
domains range from 10 nm to 100 nm and can be controlled by changing the overall molecular weight 
of the macromolecule. BCP structures described in the phase diagram are schematically shown in 
Figure 1b [1]. This set of properties enables BCPs to be used as a general route for patterning a variety 
of materials into periodic structures. Transferring the self-assembled BCP pattern into the supporting 
substrate constitutes the most common example [4,5], while templating of magnetic materials [6], 
nanoparticles [7-11], and continuous thin metal films [12] have all been reported. 

Figure 1. (a) Typical phase diagram of a coil-coil diblock copolymer. f: Volume fraction 
of one block. χ: Flory-Huggins interaction parameter. N: degree of polymerization. L: 
lamellae, H: hexagonally packed cylinders, Q230: double-gyroid phase, Q229: body-centered 
spheres, CPS: closed-packed spheres, DIS: disordered. Reprinted with permission from 
Reference [3]. Copyright 2006 American Chemical Society. (b) Structures of the different 
phases described in (a). fA is the volume fraction of block A. Reprinted from Materials 
Today, Vol. 13, I. Botiz and S.B. Darling, Optoelectronics using block copolymers [25]. 
Copyright 2010 with permission from Elsevier. 

 
(a)       (b) 

Among the plethora of potential applications for BCPs, two topical technologies will be addressed 
here: microelectronic manufacturing and photovoltaic cells. The former is already approaching 
commercialization, whereas the latter is just beginning to show its promise. Potential for these specific 
applications derives primarily from the fact that BCPs are amenable to solution-based processing 
methods and the nanostructures they generate can be applied inexpensively and quickly over a large 
area. This property leads to high throughput and is fundamentally important for both cases. At present, 
photolithography presents a bottleneck for throughput in the microelectronics manufacturing process, 
and the success of any competing patterning technology would need to have a similar throughput; not 
all lithography techniques are suitable [13]. In this respect, BCP-based lithography holds an advantage 

fA denotes the volume fraction of A-type monomers.

Extensive literature: Acerbi-Fusco-Morini, Alberti-Choksi-Otto, Bonacini-Cristoferi,
Choksi-Glasner, Choksi-Peletier, Choksi-Ren, Choksi-Sternberg,
Goldman-Muratov-Serfaty, Knüpfer-Muratov, Lu-Otto, Muratov, Ren-Wei,
Shirokoff-Choksi-Nave, Sternberg-Topalaglu.



How to Influence Phase Separation?

I Goal (applications): alter the morphology of the phase domains.

I Idea: add filler nanoparticles, which are coated so as to prefer one of the
polymer phases.

I By adjusting the density of the nanoparticles we hope to confine the domains to
specified regions and select a different minimizing morphology.

Study by the research group of Fredrickson: first column shows low-density, second column
shows high-density of nanoparticles.
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The Model – An Extension of Ohta–Kawasaki

Ginzburg-Qiu-Balacz, Polymer 43, (2002) 461-466

Eε,γ,η,m,r,up,N(u; x) :=
3ε
8

ˆ
Tn
|∇u|2 dx +

3
16ε

ˆ
Tn

(u2 − 1)2 dx

+
γ

2

ˆ
Tn

ˆ
Tn

G(x , y)(u(x)−m)(u(y)−m) dxdy

+ η

ˆ
Tn

N∑
i=1

V (|x − xi |)(u − up)2 dx .

The first three terms are Ohta-Kawasaki:

u ∈ H1(Tn) is the phase parameter, ε=thickness of the phase transition.

m ∈ (−1, 1) determines the volume fraction of polymers: m =
´
Tn u(x) dx .

γ=strength of the bond between phases, G(x , y) denotes the Green’s function on
Tn.
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The last term models nanoparticle-polymer interactions:

I x ∈ (Tn)N denotes the centers of N-many nanoparticles where each particle is
a ball of radius r , B(xi , r).

I V=rapidly decreasing (compactly supported) repulsive potential.
I up ∈ [−1, 1]=nanoparticle preference towards polymer phases;
I η=nanoparticle density;

We assume the nanoparticle locations x = (xi )n=1,...,N are fixed.
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Large Number of Asymptotically Small Particles

Choices of parameters:
I up = 1, nanoparticles prefer u = 1;

I V supported in balls Brε ,
´
Tn V = 1.

I For fixed Nε-many points x1, . . . , xNε ∈ Tn, we minimize:

Eε,σ(u) :=
ε

2

ˆ
Tn
|∇u|2 dx +

1
4ε

ˆ
Tn

(u2 − 1)2 dx

+
γ

2

ˆ
Tn

ˆ
Tn

G(x , y)(u(x)−m)(u(y)−m) dxdy

+
σ

Nε r n
ε

Nε∑
i=1

ˆ
B(xi ,rε)

V (|x − xi |/rε)(u − 1)2 dx

I Large number of nanoparticles, but small volume fraction:

Nε →∞, but Nεr n
ε → 0

I Assume the nanoparticles converge to a fixed distribution, µ ∈Pac(Tn)
representing a limiting nanoparticle density measure:

Nε r n
ε

∑Nε
i=1

´
B(xi ,rε)

V (|x − xi |/rε)(u − 1)2 dx ⇀ µ
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Sharp Interface Limit

We first prove Γ-convergence of Eε,σ to the sharp interface energy,

Eµ,σ(u) :=
1
2

ˆ
Tn
|∇u| + σ

ˆ
Tn

(u(x)− 1)2 dµ(x)

+
γ

2

ˆ
Tn

ˆ
Tn

G(x , y)(u(x)−m)(u(y)−m) dxdy

with u ∈ BV (T2; {−1, 1}), and where µ ∈Pac(Tn) represents the limiting
nanoparticle density measure.

Notes on the Γ-limit:

I For the lower bound note that {u = 1} and {u = 1}c are continuity sets of the
measure µ.

I For the upper bound use the recovery sequence constructed by Sternberg for
the perimeter. Combined with the weak-* convergence of the potentials to µ we
get the upper bound.

I The nonlocal term is treated as a continuous perturbation of the perimeter.
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A Penalized Isoperimetric Problem

We now restrict our attention to the perimeter and penalization terms, and neglect
the nonlocal interactions, γ = 0 in Eµ,σ,γ .

For ρ ∈ L1(Tn) = density of µ ∈Pac(Tn), minimization of Eµ,σ is a geometric
problem:

minimize Eσ(Ω) = PerTn (Ω) + σ

ˆ
Ωc
ρ(x) dx

over Ω ⊂ Tn with |Ω| = m.

Similar in the spirit to finding minimal boundaries with respect to an obstacle set:
minimize perimeter of Ω so that an obstacle set is L ⊂ Ω. (Note: no mass
constraint.)

Barozzi-Massari, Barozzi-Tamanini, Brézis-Kinderlehrer, Giusti, S. Rigot, etc.
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Properties of Local Minimizers

Proposition (Regularity of Phase Boundaries)

If ρ ∈ L∞(Tn) then ∂∗Ω is of class C1,α for some α ∈ (0, 1).

Idea: Control the excess-like quantity: PerBR (x0)(Ω)− PerBR (x0)(Ω̃) 6 C Rn

where Ω̃ minimizes perimeter in BR(x0). See: Tamanini; Rigot

The effect of the nanoparticle density ρ is to change the curvature of the phase
boundary ∂Ω:

Proposition (First Variation)

If ρ ∈ C1(Tn) then

(n − 1) H(x) − σ ρ(x) = λ for all x ∈ ∂Ω.

Here λ=constant, and H=mean curvature of ∂Ω.

I This follows by adapting the calculations by Choksi-Sternberg.
I The equations are local on ∂Ω, so if ρ is piecewise C1 the curvature condition

holds piecewise.
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A special case: uniform nanoparticle density in a ball

Assume ρ = ω−1
n r−n χBr with ωn r n > m. Then

Eσ(Ω) = PerTn (Ω) + σ

(
1− |Ω ∩ Br |

ωn r n

)

Since χBr is piecewise C1 the first variation condition holds locally:

(n − 1) H(x) = λ for x ∈ ∂Ω ∩ int Bc
r ,

(n − 1) H(x) = λ+
σ

ωn r n for x ∈ ∂Ω ∩ int Br .

That is, critical Ω ⊂ T2 consist of pieces of constant mean curvature hypersurfaces,
glued together in a C1,α fashion. For σ > 0, the mean curvature is strictly larger
inside the nanoparticle region Br than it is outside.
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An Example in 2-Dimensions

Recall: Eσ(Ω) = PerTn (Ω) + σ
´

Ωc ρ(x) dx , |Ω| = m.

Setup: T2 = [−1/2, 1/2) × [1/2, 1/2), with m ∈ [1/2, 1− 1/π)

I For such m, the solution to the isoperimetric problem is the lamellar pattern.

ρ = 1
πr2χBr with r >

√
m/π

I Lamellar stripes must intersect nanoparticle set Br , and disks BR with area m
lie inside Br .

I For σ = 0 lamellar is the winner but as soon as we turn on σ > 0 lamellar is
not even a critical point. Regularity implies that ∂Ω is C1,α. Criticality implies
that Hinside > Houtside and they are constant.

σ = 0 σ > 0 small? σ > 0 large?
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What Other Patterns Are Possible?

Proposition
If Ω minimizes Eσ then

I if Ω is contractible in T2 then A = BR with R =
√

m/π;
I Ωc cannot be contractible in T2.

Suppose for now that the min is not a disk. Assume both Ω and Ωc are not
contractible. Then each intersects both Br and Bc

r .

Criticality implies that ∂Ω is a union of arcs of circles and lines. Regularity implies
that components of ∂Ω meet tangentially on ∂Br . Recall criticality conditions:

H(x) = λ for x ∈ ∂Ω ∩ int Bc
r ,

H(x) = λ+
σ

2πr 2 for x ∈ ∂Ω ∩ int Br .

The Lagrange multiplier is either λ = 0 or λ < 0. If λ > 0 then ∂Ω consist of
positively curved arcs of circles which is not possible
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H(x) = λ for x ∈ ∂Ω ∩ int Bc
r ,

H(x) = λ+
σ

2πr 2 for x ∈ ∂Ω ∩ int Br .

The Lagrange multiplier is either λ = 0 or λ < 0. If λ > 0 then ∂Ω consist of
positively curved arcs of circles which is not possible
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Case 1: (λ = 0) ∂Ω = arcs of circles inside Br and straight lines outside Br . We get
band-aid patterns. Stationary but not global minimizers for any σ > 0.

Case 2: (λ < 0) Concave/convex strips. ∂Ω consists of arcs of circles inside and
outside of Br : negatively curved outside of Br and positively curved inside of Br .

First pattern is unlikely to be a minimizer as the penalization term will be large for
σ > 0. The second pattern is not a minimizer since it is contractible.
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For sufficiently small σ > 0, concave/convex solutions exist (graphs over the
lamellar stripe!)

The criticality condition restricts the radii R1,R2,

σ

2πr 2 =
1

R1
+

1
R2

Proposition
If Ω is a minimizer then R2 > r and R1 > 1/2− r . In particular, the convex-concave
pattern can exist only if

σ = 2πr 2
(

1
R1

+
1

R2

)
<

2πr
1− 2r

.
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Proposition

There exists σ0 = σ0(m, r) such that for all σ > σ0 the set BR ⊂ Br with R =
√

m/π
is the global minimizer of Eσ.

I Suppose Ω is a global minimizer which is not BR ⊂ Br . Then Ω ∩ Br 6= ∅.

I There exists σ1 = σ1(r) > 0 such that for all σ > σ1 the radius of ∂Ω ∩ Br is
bounded above by β r/2, with β = R2/4r 2 < 1

4 .

I For σ > σ1, Ω ∩ Br lies within the annular region Br \ B(1−β)r and

|Ω ∩ Br | < 2π r 2 β.

I Compare the energy of Ω to BR ⊂ Br :

Eσ(Ω)− Eσ(BR) >
(
2− 2πR

)
+ σ

(
R2

r 2 −
|Ω ∩ Br |
π r 2

)
> 0

if

σ > max
{
σ1,

4r 2(πR − 2)

R2

}
=: σ0(m, r).
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Future Directions

I On-going project: Are the convex-concave patterns locally/globally minimizing
for σ > 0 but small?
Connects to work of Acerbi-Fusco-Morini for the nonlocal isoperimetric
problem.

I What happens when one turns on the nonlocal interaction term? Scaling
properties between m, γ (controlling nonlocality) and σ (controlling the
penalization)?

I Dynamics: what is the law of motion of nanoparticles?

I At the diffuse level, can we also minimize over the location of nanoparticles?
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Thank you for your attention


