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The Gross-Pitaevskii Equations

Seek non-constant time periodic solutions to the Gross-Pitaevskii (GP)

equations

u(x, t)(1 — Ju(x, 1))

e2

iug(x,t) = Au(x, t) + , (x,t) e D xR,

posed on the unit disc D, subject to the Dirichlet boundary conditions
(BC)

u(e”,t) = ga(0) := e, 0 c[027),t e R
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The Gross-Pitaevskii Equations

Seek non-constant time periodic solutions to the Gross-Pitaevskii (GP)

equations

u(x, t)(1 — Ju(x, 1))

e2

iug(x,t) = Au(x, t) + , (x,t) e D xR,

posed on the unit disc D, subject to the Dirichlet boundary conditions
(BC)

u(e”,t) = ga(0) := e, 0 c[027),t e R

’deg(gn, 0D, 0) = n. ‘
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Hamiltonian Structure

The flow (GP-BC) conserves the Ginzburg-Landau Energy,

1 1
E.(u) = / Vo2 + (1 - ul?)? dx. (0.1)
2 D 2e
Here 0 < £ < 1. Energetically, minimizers u. of GL prefer |u.| ~ 1. In the

limit £ — 0, topological restrictions from the boundary condition force
vortices.
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Renormalized Energy a /a Bethuel-Brezis-Helein

e The sequence of minimizers u. converge as ¢ — 0 to a nice

function wu., away from exactly n distinct points— vortices.
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Renormalized Energy a /a Bethuel-Brezis-Helein

e The sequence of minimizers u. converge as ¢ — 0 to a nice

function wu,, away from exactly n distinct points— vortices.

e u, satisfies the Harmonic map PDE away from these vortices and
has degree +1 about each of these. Vortices are located at a global

minimizer of the re-normalized energy W.
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Renormalized Energy a /a Bethuel-Brezis-Helein

e The sequence of minimizers u. converge as ¢ — 0 to a nice

function wu,, away from exactly n distinct points— vortices.

e u, satisfies the Harmonic map PDE away from these vortices and
has degree +1 about each of these. Vortices are located at a global

minimizer of the re-normalized energy W.

e More generally, for any positive number N > n, integers
di,i=1,--- N satisfying > d; = n, and distinct points

aj,i=1,---,N, and a boundary condition g taking values in S' with
deg(g,0D,0) = n
W(al7"'7aN;dlad27" ng *TI'delog|a,* ‘
i#j

+ boundary terms.
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Point Vortex Flow

The Hamiltonian system on C" associated to W :

daj\* 1 .
dJ<d1.'J> :_;vajwv Jj=1-,N (PVF)

Arises in fluid mechanics as a singular limit of 2D incompressible Euler,

(cf. Marchioro and Pulvirenti /Saffmann for more on this connection. )
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Point Vortex Flow

The Hamiltonian system on C" associated to W :

daj\* 1 .
dj<d1.'1> :_;vajwv Jj=1-,N (PVF)

Arises in fluid mechanics as a singular limit of 2D incompressible Euler,

(cf. Marchioro and Pulvirenti /Saffmann for more on this connection. )

Crucial to us: (PVF) captures effective dynamics of vortices to GP as
e — 0T, up to first collision time.

Made rigorous by Colliander-Jerrard /Lin-Xin/Jerrard-Spirn.

Rigorous results on the hydrodynamic/mean field limit of GP:
Jerrard-Spirn/Serfaty.
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Main Question

Given a time periodic solution to (PVF), can we construct time-periodic

solution to (GP), whose vortices follow the given periodic solution?
e Large time behavior for GP for € > 0 : given solutions to (PVF)
with vortices that never collide, can we construct solutions to (GP)
that follow these point vortices for all time, as € — 0" 7? Especially

interesting when vortices of opposite degrees persist.
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e More abstract question: say something about Hamiltonian dynamics
associated to Gamma converging sequence of energies, and effective

Hamiltonian dynamics?
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Main Question

Given a time periodic solution to (PVF), can we construct time-periodic
solution to (GP), whose vortices follow the given periodic solution?
e Large time behavior for GP for € > 0 : given solutions to (PVF)
with vortices that never collide, can we construct solutions to (GP)
that follow these point vortices for all time, as € — 0" 7? Especially
interesting when vortices of opposite degrees persist.

e More abstract question: say something about Hamiltonian dynamics
associated to Gamma converging sequence of energies, and effective

Hamiltonian dynamics?

Our (modest) contribution: in the very special case of (GP-BC),
using variational and symmetry arguments, we show that for a very
large class of time-periodic solutions, called relative equilibria to

(PVF), there exist time-periodic solutions to (GP) following them.
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Relative Equilibria

e Definition: Uniformly rotating periodic solutions to the system
(PVF).
e Obtained by pursuing the ansatz a;(t) = aje"(_m), where & € R.

e Results in nested rings of vortices, each with equal numbers of

rings, and all vortices of a ring having the same degree.

e Different rings may be aligned or staggered.
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Relative Equilibria

Not to scale.

Figure 2: An staggered configuration. The solid and hollow bullets indicate possibly different degrees. k = 4

Figure: A staggered configuration
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to scale.

Figure 1: An aligned configuration. The solid and hollow bullets indicate possibly different degrees. k = 6. Not

Figure: An aligned configuration

Venkatraman (Indiana University)

Periodic Orbits to Gross-Pitaevskii



Rotational Ansatz

Starting Point: Make a rotational ansatz:

u(x, t) = R(—kwt)v(R(£t)x),
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Rotational Ansatz

Starting Point: Make a rotational ansatz:

u(x, t) = R(—kwt)v(R(£t)x),

Here: R([3) is the counterclockwise rotation matrix by an angle 3; k., m
are integers and w € R.

Thanks to Bob Jerrard for suggesting this ansatz in the case n =1 of a
single vortex.
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An Elliptic PDE: Variational Formulations

Plugging in the ansatz into (GP) yields an elliptic PDE.

B+ 5P =w (s 2w o) yen,

V(eiO) _ einG.
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An Elliptic PDE: Variational Formulations

Plugging in the ansatz into (GP) yields an elliptic PDE.

B+ 5P =w (s 2w o) yen,

The boundary condition is compatible with the rotating frame ansatz
above, iff k|n and m = 7. Inspired by relative equilibria, look for v with
k—fold symmetry.

In case n = 0, use the ansatz with k =0 and m an arbitrary integer,
reflecting m—fold symmetry.
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Conserved Quantities

e Hamiltonians:

Gross-Pitaevskii: Ginzburg-Landau Energy:
. [Vul? (1= Jul?)?
E.(u) .:/D 5t 122 dx.

Point Vortex Flow: Renormalized Energy: W
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Conserved Quantities

e Hamiltonians:

Gross-Pitaevskii: Ginzburg-Landau Energy:

ul2 —|ul?
) [ IV, Gl

2
2 4e2 ox.

Point Vortex Flow: Renormalized Energy: W
e Momenta:

Gross-Pitaevskii:

Point Vortex Flow:

1 N
Jo(b,d) =—= E
2
=1
Venkatraman (Indiana University)
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Constrained Minimization Approach

The elliptic PDE above has a variational formulation based on

momentum-constrained minimization. Since this is a minimization
procedure, can only yield +1 vortices.
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Constrained Minimization Approach

The elliptic PDE above has a variational formulation based on
momentum-constrained minimization. Since this is a minimization
procedure, can only yield +1 vortices.

General Idea: Fix a relative equilibrium, to (PVF) whose vortices are
aligned rather than staggered. Then consider the problem

in E,
h £

Venkatraman (Indiana University) Periodic Orbits to Gross-Pitaevskii

July 15, 2016



Constrained Minimization Approach

The elliptic PDE above has a variational formulation based on
momentum-constrained minimization. Since this is a minimization
procedure, can only yield +1 vortices.

General Idea: Fix a relative equilibrium, to (PVF) whose vortices are
aligned rather than staggered. Then consider the problem

in E,
h £

e A: admissible set reflecting symmetry of the chosen relative
equilibrium, and

o J(u) = Jo(a1, - ,an).

w = w, arises as a Lagrange multiplier. This approach follows work by
Gelantalis and Sternberg.
Venkatraman (Indiana University)
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Constrained Minimization Approach

e Existence of minimizer: easy, provided the admissible set is

non-empty.
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Constrained Minimization Approach

e Existence of minimizer: easy, provided the admissible set is
non-empty.

e Assuming this, in the case of a single ring, the momentum
constraint value determines the position of the vortices up to a

rotation.
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Constrained Minimization Approach

e Existence of minimizer: easy, provided the admissible set is

non-empty.

e Assuming this, in the case of a single ring, the momentum
constraint value determines the position of the vortices up to a
rotation.

e Complete the proof using the vortex balls construction and the

Jacobian estimate.
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Limitations of the constrained minimization approach

e Unable to treat multiple ring solutions/staggered ring solutions.

e Unable to show w. — w where w is the speed corresponding to the

limit.
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Alternative approach: Linking

The main difficulty was inability to control w. arising as Lagrange

multipliers.
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Alternative approach: Linking

The main difficulty was inability to control w. arising as Lagrange
multipliers.

Fix a relative equilibrium (may have +1 vortices), and denote the
corresponding speed by wp. Solve above PDE with w = wy.
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Alternative approach: Linking

The main difficulty was inability to control w. arising as Lagrange
multipliers.

Fix a relative equilibrium (may have +1 vortices), and denote the
corresponding speed by wp. Solve above PDE with w = wy.

Good news: no need to control w. any more.
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Alternative approach: Linking

The main difficulty was inability to control w. arising as Lagrange

multipliers.

Fix a relative equilibrium (may have +1 vortices), and denote the

corresponding speed by wg. Solve above PDE with w = wy.
Good news: no need to control w. any more.

Bad news: we lose the constrained minimization formulation from above:

can't specify constraint value and Lagrange multiplier!
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Linking

Definition: Fix a Banach space V, a closed subset S C V and a

submanifold @, and denote its relative boundary by 0@. The sets S and
0Q are said to link if

eSNIR=10

e For any continuous map h: V — V such that h|yg = id, there
holds h(Q) NS # 0.

Venkatraman (Indiana University) Periodic Orbits to Gross-Pitaevskii July 15, 2016



Linking

Definition: Fix a Banach space V, a closed subset S C V and a

submanifold @, and denote its relative boundary by 0@. The sets S and
0Q are said to link if

eSNIR=10

e For any continuous map h: V — V such that h|yg = id, there
holds h(Q) NS # 0.

In the context of Ginzburg Landau, a linking method was used by F-H. Lin
to construct critical points of GL near critical points of W.
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Main Theorem

Theorem (V., '16)

Let (a,d) be a relative equilibrium, with speed wq. Write a(t) := ae'“ot,
For each € > 0 sufficiently small (depending on a), there exists a
non-trivial time periodic solution u. to (GP-BC), with the same period of
rotation as the given relative equilibrium, such that the Jacobian

Ju(-, deda(t

ase — 0, in W=H1(D), for each time t € R.

Here, one can think of Ju(-, t) := det(Vu.(-, t)) dx
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Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional & := E. — wgJ near a
given critical point (a, d) of H™*(a,d) := L W(a,d) — woJo(a, d)
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Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional & := E. — wgJ near a
given critical point (a, d) of H™*(a,d) := L W(a,d) — woJo(a, d)
Steps:

e Required critical point arises as the large time limit of the gradient

flow of &, by appeal to Leon Simon’s theorem.
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Some Details in the Proof of the Main Theorem
Main Goal: Find a critical point of the functional & := E. — wgJ near a
given critical point (a, d) of H™*(a,d) := L W(a,d) — woJo(a, d)

Steps:

e Required critical point arises as the large time limit of the gradient

flow of &, by appeal to Leon Simon’s theorem.

e [nitial data: well-prepared near the given critical point. Near
optimal construction yields an embedding of the neighborhood of the
critical point in C" into the Sobolev space H'.
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Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional & := E. — wgJ near a
given critical point (a, d) of H"“*(a,d) := 1 W(a,d) — woJo(a, d)

=
Steps:

e Required critical point arises as the large time limit of the gradient

flow of &, by appeal to Leon Simon’s theorem.

e [nitial data: well-prepared near the given critical point. Near
optimal construction yields an embedding of the neighborhood of the
critical point in C" into the Sobolev space H'.

e Use a sort of vortex ball construction, together with Besicovitch's

covering theorem to obtain a projection map, a sort of approximate

inverse to above embedding.
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Some Details in the Proof of the Main Theorem

e Linking structure: use negative and positive eigenvalues of the
Hessian D> "“°(a, d).
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Some Details in the Proof of the Main Theorem

e Linking structure: use negative and positive eigenvalues of the
Hessian D> "“°(a, d).

e Key Step: Construct a family of deformations of the linking
structure, which preserves the linking structure. Done at future times
using the projection map above, and some careful comparison

arguments.
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Some Details in the Proof of the Main Theorem

e Linking structure: use negative and positive eigenvalues of the
Hessian D?#H™“0(a, d).

e Key Step: Construct a family of deformations of the linking
structure, which preserves the linking structure. Done at future times
using the projection map above, and some careful comparison

arguments.

e Critical value of £.: Using this family, we can give an inf — sup
characterization of the critical value, which, upto multiples of = Iog%
and O(1) terms, is the energy H"“°(a, d).
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Some Details in the Proof of the Main Theorem

e Linking structure: use negative and positive eigenvalues of the
Hessian D?#H™“0(a, d).

e Key Step: Construct a family of deformations of the linking
structure, which preserves the linking structure. Done at future times
using the projection map above, and some careful comparison

arguments.

e Critical value of £.: Using this family, we can give an inf — sup
characterization of the critical value, which, upto multiples of = Iog%
and O(1) terms, is the energy H"“°(a, d).

e Conclusion of Critical Value Step: &. is Palais-Smale, so pass to the
large time limit, holding ¢ fixed. Obtain a critical point v. satisfying

1
E-(v2) — Nrlog — — H™(a) — Ny| = o.(1)
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What I've swept under the rug

e Directions of degeneracy of Hessian.
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What I've swept under the rug

e Directions of degeneracy of Hessian.
e Symmetry.
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What I've swept under the rug

e Directions of degeneracy of Hessian.
e Symmetry.

e Above argument only says energies are close. We need v. to have
zeroes close to the given critical point of . Follows from
Pohazaev-type identities and letting ¢ — 0.
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Afterthought: some examples

e For each integer k, there exists a solution to Gross-Pitaevskii with
boundary condition g = 1, and zeroes on the vertices of concentric

k—gons, one with +1 vortices, and the other, staggered, with —1
vortices.

Venkatraman (Indiana University) Periodic Orbits to Gross-Pitaevskii July 15, 2016



Afterthought: some examples

e For each integer k, there exists a solution to Gross-Pitaevskii with
boundary condition g = 1, and zeroes on the vertices of concentric
k—gons, one with +1 vortices, and the other, staggered, with —1

vortices.

e Given n, corresponding to the degree of the b.c., fix a divisor k of n.
Then there exists a periodic orbit to (GP-BC) containing { aligned

rings, each with k +1 vortices.

e When n is a prime, there's only one relative equilibrium to (GP-BC)
with all 41 vortices. Stability??
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