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PDEs in Non—Divergence Form

Lu:=—-A:D?>u=f inQCR",

(la)
u=0 on 02, (1b)

where

o D2y denotes the Hessian matrix, e.g.,

9%u 9%u
o2 Ox10x2
2, 1
D*u = 9% 9% (n=2).
Ox10x2 87335

o A= A(xz) € R"*" is SPD, but non-smooth.

. D24 — ST 9% ius i
o A:D?uy:= Zi,j:l A;j 005 1S the Frobenius inner product.




PDEs in Non—Divergence Form

Model Problem

Lu:=—A:D*>u=f inQCR", (1a)

u=0 on 02, (1b)

Application T

o Linearization of fully nonlinear operators give rise to problems of the form (1).

o For example, the linearization of the Monge-Ampere operator v — det(D?v)

at u is
cof (D?u) : D?v.

o Convergence analysis of numerical schemes for fully nonlinear problems and

iterative solvers.




PDEs in Non—Divergence Form

Model Problem

Lu:=—A:D*>u=f inQCR", (1a)

u=0 on 02, (1b)

Application II

o The stationary Hamilton—Jacobi-Bellman problem is given by

sup (Lau — fa) =0.
acA

o {La}aca denotes a family of elliptic operators in non-divergence form with

non—-smooth coefficients.

o The solution of the HJB problem characterizes the supremum of the cost

function associated with the optimally controlled stochastic process.




Solution Concepts

@ Since A is non—smooth, a variational formulation using integration—by—parts
is not viable. Therefore, other solution concepts are needed.

o Classical (Schauder): If A € [C?%(Q)]"X™ and 0Q € C?%, there exists a
unique u € C?%(Q) satisfying the PDE.

e Strong (Calderén-Zygmund): If A € [CO(Q)]"X™ and 0Q € C1! or if Q is

convex, there exists a unique v € H?(Q) satisfying the PDE a.e. Moreover,

lvllg2(0) < ClllvllLa@) Yo € H(Q) N Hy(Q). J




Solution Concepts

@ Since A is non—smooth, a variational formulation using integration—by—parts

is not viable. Therefore, other solution concepts are needed.
o Classical (Schauder): If A € [C?%(Q)]"X™ and 0Q € C?%, there exists a
unique u € C?%(Q) satisfying the PDE.

e Strong (Calderén-Zygmund): If A € [CO(Q)]"X™ and 0Q € C1! or if Q is

convex, there exists a unique v € H?(Q) satisfying the PDE a.e. Moreover,

lvllg2(0) < ClllvllLa@) Yo € H(Q) N Hy(Q). J

If A € [L>®(Q)]™*"™, then uniqueness is generally lost for n > 3. For ezample,

consider

_ T
n 1)3;:(: Q= B1(0)

14:171,><n‘i‘(_1"‘1_A Wv

with n > 2(2 — ). Then u = (|z| — 1)€ H3(Q) N H} (Q) satisfies —A : D?u = 0.
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Primal Finite Element Method: Derivation

The Obvious Difficulty
A finite element method is constructed by restricting the variational formulation

of a PDE to a finite dimensional space consisting of piecewise polynomials.




Primal Finite Element Method: Derivation

The Obvious Difficulty
A finite element method is constructed by restricting the variational formulation

of a PDE to a finite dimensional space consisting of piecewise polynomials.

o Assume for the moment that A is smooth (e.g., A € [W1°(Q)]"*").
o Write f = —A: D?u= -V - (AVu) + (V- A) - V.

o A finite element method reads

/(AVuh)Vvhdm—i-/ ((VA)VUh)’Uhdw:/ fopdz Vv, € Xy, J
Q Q Q

where Xp, = {v, € H}(Q) : vp|r € Py(T) VT € Tp,} is the Lagrange finite

element space.




Primal Finite Element Method: Derivation

/(AVuh)Vvhdx+/ ((V~A)-Vuh)vhdw:/ fvhdw VUhEXh. J
Q Q Q

o Integration-by-parts gives

/z(AVUh) - Vo, dr = — /Q(A : D,%uh)vh dx + Z/[[AVuh]]vh ds
<

eS}IL €
— / (V- A) - Vup)vp, da.
Q

where D,QL is the piecewise Hessian operator, S{L denotes the set of interior

edges/faces in T}, and [H] is the “jump” operator.




Primal Finite Element Method: Derivation

/(AVuh)Vvhdm—i-/ ((VA)VUh)’Uhdw:/ fopdz Vv, € X, J
Q Q Q

o Integration-by-parts gives

/ (AVup) - Vop dz = — /Q(A : D,%uh)vh dx + Z/[[AVuh]]vh ds
Q

eS}IL €
— / (V- A) - Vup)vp, da.
Q

where D,QL is the piecewise Hessian operator, E{L denotes the set of interior

edges/faces in T}, and [H] is the “jump” operator.

Primal Finite Element Method: Find u; € X} such that for all vy, € Xp,

(Lhuh,vh> = —/Q(A:D%uh)vhdz+ Z /[[AVuh]]vh dx:/vah de. (2)

1
e€ly




Mixed Finite Element Method: Derivation

o Define the matrix—valued, discontinuous finite element space

Sh = {on € [LAQ]™" ¢ onlr € [PR(T)]™" VT € Ty }.

Define Hy, : X}, — Xj, such that

/QHh('Uh) sy do = —/Q Von - (Vi -pn)dz+ > [ Lo} - [ua] ds

ec&p V€

for all up € p,.




Mixed Finite Element Method: Derivation

o Define the matrix—valued, discontinuous finite element space

S 1= {on € [LAQ)™" ¢ oulr € [Be(T)]™ " VT € T},

Finite Element Hessian

Define Hy, : X}, — Xj, such that

/QHh('Uh) sy do = —/Q Von - (Vi -pn)dz+ > [ Lo} - [ua] ds

ec&p V€

for all up € p,.

Mixed Finite Element Method: Find uj € X} such that for all v, € Xp,




Both methods are relatively simple and can be implemented in current finite

element software packages (e.g., FEniCS, deal.II, Comsol, Dune, etc.)

Remark

If A is constant, then both methods reduce to

/ (AVup) - Vop dz = / fop dz Yop, € Xp.
Q Q

Remark

The method is consistent in the sense that

<Lhu,vh> =/ fop dx + <32hu,vh> Y € Xp,
Q

with Rpu — 0 in X;L as h — 0F. For the primal method, Rpu = 0.

Non-Div PDEs
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Convergence Analysis

o The methods are consistent, and the problem is linear. Therefore, existence

and error estimates all reduce to the stability of the schemes.

Mimic the a priori estimate

vl g2y S 16vll2) Vo € H?(Q) N Hg (). (4)

e A proof of the elliptic estimate (4) relies on the following observation.

Locally (e.g., in a small ball), the PDE behaves like a PDE with constant
coefficients (The discretization inherits the same behavior). J

o This observation leads to a Garding inequality

vl 20y S I1L0ll2(a) +lvll2@) Yo € HA(Q) N Hg ().




Convergence Analysis Based on the Discrete Adjoint Problem

o Define £} : V}, — V,; to be the discrete adjoint operator of Ly, i.e.,

<L’;Lwh,vh> = <£/h’Uh,’LUh>.

o We obtain stability estimates of £}, by deriving stability estimates of L .




Convergence Analysis Based on the Discrete Adjoint Problem

o Define £} : V}, — V,{ to be the discrete adjoint operator of Ly, i.e.,
<L;wh, ”Uh> = <thh,wh>.

o We obtain stability estimates of £}, by deriving stability estimates of L .

o The first step is the following local stability estimate for finite element

functions with small support.

Lemma (Local Stability)

There exists ry > 0 independent of h such that for D C Q with diam(D) < ri,
there holds
(L} wh,vn)

sup Vwyp, € Xp(D),
vn€Xn (D0} 1ol a2(p,)

lwnllL2(py S

with Dy, = {x € Q: dist(z, D) < 2h}.

M. Neilan

r Non-Div PDEs



Convergence Analysis Based on the Discrete Adjoint Problem

o The local stability estimate leads to a Garding—type inequality.

Lemma (Garding Inequality)

There holds

(L3wp,vp)

sup + lwnllg-1(q) Ywn € Xp.
vp €Xp \{0} H'”hHH,?l(Q)

||’wh||L2(Q) S




Convergence Analysis Based on the Discrete Adjoint Problem

o The local stability estimate leads to a Garding—type inequality.

Lemma (Garding Inequality)

There holds

(Lhwn, vh)

sup —————— +[wpllg-10) Ywn € Xp.
vp €Xp \{0} H”hHH)?l(Q)

||’wh||L2(Q) S

Lemma (Duality Argument)

Suppose that k > 2. Then for any € > 0, there exists he > 0 such that for h < he,
there holds
(Lhwh, vn)

sup JF5||wh||L2(Q) Vwp, € Xp.
vneXp\{0} lValle2 (q)

||wh||H—1(Q) S

M. Neilan
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Convergence Analysis: Main Results

Theorem

There holds, for h sufficiently small and for k > 2,

LFwp, vp
lonliay S sup  SSRUMUR) g oo
v €Xp \{0} ”Uh“HfL(Q)
Consequently,
Lpvp, wp
||Uh||H2(Q) S sup Q Yoy, € Xp,.
n wpeXp\ {0} lwnllrz(0)

Corollary
There exists a unique solution to the finite element methods. Moreover, the error

satisfies

e — whl 2 0y < Ch*~Hlullgres1 (g

provided u € H3T1(Q) with 1 < s < k.




Outline

@ Numerical Experiments




Numerical Test I.

The domain is the unit square Q = (0,1)? and the coefficient matrix is
Ayi = |sin(4((z; — 0.5))m))|V/5 + 1, A;j = cos(2zizam) (1 # 7).

The data is chosen such that that exact solution is
_ x1@esin(27xy) sin(3wxa)
(@2 +22+1)

L? Error H! Error H? Error

1001
1074

1077

10-10 |-

1075 |
10-13 LT I I I T I I I T 1 1 1

lu = wnll g2 @y = O, V(= un) g1 (q) = O(RY),

e = unll 20y = OR*T), 3a € (0,1).




Numerical Test II.

The domain is the square Q = (—1,1)2, A;; = 2,

1T
A12 = Aap = sin (71'(20.’131{172 + 1/2)) = 1||332 |
1|2

— k
lu = unll gz oy = OG* ) 19w = un)ll s ) = O,

llu = unllp2(y = O ), Ja € (0,1).




Numerical Test III.

Consider the Hamilton—Jacobi-Bellman problem

sup (Lau - fa) =0 in © := (0, 1)2,
acA

u=0 on 92

with u=z122(1 — 21)(1 — 22)((21 — 0.5)% + (22 — 0.5)2)3/4,

20 1
1 0.1

Lou:=—Aqy : D?u, Ag =aTCa, C=

and A is the set of rotation matrices.

h IV(u —wun)ll,2 rate
2~ ! 7.51E — 02
272 4.60E — 02 0.71
273 2.50E — 02 0.88
274 1.31E — 02 0.93
2% 6.75E — 03 0.96

26 3.49E — 03 0.95




Outline

© Conclusions




Conclusions

@ Developed simple primal and mixed finite element methods for elliptic PDEs

in non—divergence form.

e Optimal order error estimates in a H2—type norm.

The convergence analysis provides local error estimates for free.

o Analysis may be extended to p # 2 case and other finite element methods

(e.g., DG methods).

o Numerical experiments for HJB problem look promising.
Future Work

o Discontinuous coefficients, k = 1, error estimates in lower order norms.

o Revisit finite element convergence theory for fully nonlinear problems.

o Convergence theory of HJB problem.
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