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PDEs in Non–Divergence Form

Model Problem

Lu := −A : D2u = f in Ω ⊂ Rn, (1a)

u = 0 on ∂Ω, (1b)

where

D2u denotes the Hessian matrix, e.g.,

D2u =


∂2u

∂x2
1

∂2u

∂x1∂x2

∂2u

∂x1∂x2

∂2u

∂x2
2

 (n = 2).

A = A(x) ∈ Rn×n is SPD, but non–smooth.

A : D2u :=
∑n
i,j=1 Ai,j

∂2u
∂xi∂xj

is the Frobenius inner product.
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PDEs in Non–Divergence Form

Model Problem

Lu := −A : D2u = f in Ω ⊂ Rn, (1a)

u = 0 on ∂Ω, (1b)

Application I

Linearization of fully nonlinear operators give rise to problems of the form (1).

For example, the linearization of the Monge–Ampère operator v → det(D2v)

at u is
cof(D2u) : D2v.

Convergence analysis of numerical schemes for fully nonlinear problems and

iterative solvers.
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PDEs in Non–Divergence Form

Model Problem

Lu := −A : D2u = f in Ω ⊂ Rn, (1a)

u = 0 on ∂Ω, (1b)

Application II

The stationary Hamilton–Jacobi–Bellman problem is given by

sup
α∈A

(
Lαu− fα

)
= 0.

{Lα}α∈A denotes a family of elliptic operators in non-divergence form with

non–smooth coefficients.

The solution of the HJB problem characterizes the supremum of the cost

function associated with the optimally controlled stochastic process.
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Solution Concepts

Since A is non–smooth, a variational formulation using integration–by–parts

is not viable. Therefore, other solution concepts are needed.

Classical (Schauder): If A ∈ [C0,α(Ω)]n×n and ∂Ω ∈ C2,α, there exists a

unique u ∈ C2,α(Ω) satisfying the PDE.

Strong (Calderón–Zygmund): If A ∈ [C0(Ω)]n×n and ∂Ω ∈ C1,1 or if Ω is

convex, there exists a unique u ∈ H2(Ω) satisfying the PDE a.e. Moreover,

‖v‖H2(Ω) ≤ C‖Lv‖L2(Ω) ∀v ∈ H2(Ω) ∩H1
0 (Ω).
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Solution Concepts

Since A is non–smooth, a variational formulation using integration–by–parts

is not viable. Therefore, other solution concepts are needed.

Classical (Schauder): If A ∈ [C0,α(Ω)]n×n and ∂Ω ∈ C2,α, there exists a

unique u ∈ C2,α(Ω) satisfying the PDE.

Strong (Calderón–Zygmund): If A ∈ [C0(Ω)]n×n and ∂Ω ∈ C1,1 or if Ω is

convex, there exists a unique u ∈ H2(Ω) satisfying the PDE a.e. Moreover,

‖v‖H2(Ω) ≤ C‖Lv‖L2(Ω) ∀v ∈ H2(Ω) ∩H1
0 (Ω).

Remark

If A ∈ [L∞(Ω)]n×n, then uniqueness is generally lost for n ≥ 3. For example,

consider
A = In×n +

(
− 1 +

n− 1

1− λ

)xxT
|x|2

, Ω = B1(0)

with n > 2(2− λ). Then u = (|x|λ − 1)∈ H2(Ω) ∩H1
0 (Ω) satisfies −A : D2u = 0.
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Primal Finite Element Method: Derivation

The Obvious Difficulty

A finite element method is constructed by restricting the variational formulation

of a PDE to a finite dimensional space consisting of piecewise polynomials.
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Primal Finite Element Method: Derivation

The Obvious Difficulty

A finite element method is constructed by restricting the variational formulation

of a PDE to a finite dimensional space consisting of piecewise polynomials.

Assume for the moment that A is smooth (e.g., A ∈ [W 1,∞(Ω)]n×n).

Write f = −A : D2u = −∇ · (A∇u) + (∇ ·A) · ∇u.

A finite element method reads∫
Ω

(A∇uh) · ∇vh dx+

∫
Ω

(
(∇ ·A) · ∇uh

)
vh dx =

∫
Ω
fvh dx ∀vh ∈ Xh,

where Xh = {vh ∈ H1
0 (Ω) : vh|T ∈ Pk(T ) ∀T ∈ Th} is the Lagrange finite

element space.
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Primal Finite Element Method: Derivation

∫
Ω

(A∇uh) · ∇vh dx+

∫
Ω

(
(∇ ·A) · ∇uh

)
vh dx =

∫
Ω
fvh dx ∀vh ∈ Xh.

Integration-by-parts gives∫
Ω

(A∇uh) · ∇vh dx = −
∫

Ω
(A : D2

huh)vh dx+
∑
eEI
h

∫
e

[[
A∇uh

]]
vh ds

−
∫

Ω

(
(∇ ·A) · ∇uh

)
vh dx.

where D2
h is the piecewise Hessian operator, EIh denotes the set of interior

edges/faces in Th, and
[[
·
]]

is the “jump” operator.

Primal Finite Element Method: Find uh ∈ Xh such that for all vh ∈ Xh〈
Lhuh, vh

〉
:= −

∫
Ω

(A : D2
huh)vh dx+

∑
e∈EI

h

∫
e

[[
A∇uh

]]
vh dx =

∫
Ω
fvh dx. (2)
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Mixed Finite Element Method: Derivation

Define the matrix–valued, discontinuous finite element space

Σh := {σh ∈ [L2(Ω)]n×n : σh|T ∈ [Pk(T )]n×n ∀T ∈ Th}.

Finite Element Hessian

Define Hh : Xh → Σh such that∫
Ω
Hh(vh) : µh dx = −

∫
Ω
∇vh · (∇h · µh) dx+

∑
e∈Eh

∫
e

{{
∇vh

}}
·
[[
µh
]]
ds

for all µh ∈ Σh.

Mixed Finite Element Method: Find uh ∈ Xh such that for all vh ∈ Xh〈
Lhuh, vh

〉
:= −

∫
Ω

(
A : Hh(uh)

)
vh dx =

∫
Ω
fvh dx. (3)
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Remark

Both methods are relatively simple and can be implemented in current finite

element software packages (e.g., FEniCS, deal.II, Comsol, Dune, etc.)

Remark

If A is constant, then both methods reduce to∫
Ω

(A∇uh) · ∇vh dx =

∫
Ω
fvh dx ∀vh ∈ Xh.

Remark

The method is consistent in the sense that〈
Lhu, vh

〉
=

∫
Ω
fvh dx+

〈
Rhu, vh

〉
∀vh ∈ Xh

with Rhu→ 0 in X′h as h→ 0+. For the primal method, Rhu = 0.
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Convergence Analysis

The methods are consistent, and the problem is linear. Therefore, existence

and error estimates all reduce to the stability of the schemes.

Key Idea

Mimic the a priori estimate

‖v‖H2(Ω) . ‖Lv‖L2(Ω) ∀v ∈ H2(Ω) ∩H1
0 (Ω). (4)

A proof of the elliptic estimate (4) relies on the following observation.

Locally (e.g., in a small ball), the PDE behaves like a PDE with constant

coefficients (The discretization inherits the same behavior).

This observation leads to a Garding inequality

‖v‖H2(Ω) . ‖Lv‖L2(Ω) + ‖v‖L2(Ω) ∀v ∈ H2(Ω) ∩H1
0 (Ω).
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Convergence Analysis Based on the Discrete Adjoint Problem

Define L∗h : Vh → V ′h to be the discrete adjoint operator of Lh, i.e.,

〈
L∗hwh, vh

〉
=
〈
Lhvh, wh

〉
.

We obtain stability estimates of Lh by deriving stability estimates of L∗h.

The first step is the following local stability estimate for finite element

functions with small support.

Lemma (Local Stability)

There exists r† > 0 independent of h such that for D ⊂ Ω with diam(D) ≤ r†,

there holds

‖wh‖L2(D) . sup
vh∈Xh(Dh)\{0}

〈
L∗hwh, vh

〉
‖vh‖H2

h
(Dh)

∀wh ∈ Xh(D),

with Dh = {x ∈ Ω : dist(x,D) ≤ 2h}.
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Convergence Analysis Based on the Discrete Adjoint Problem

The local stability estimate leads to a Garding–type inequality.

Lemma (Garding Inequality)

There holds

‖wh‖L2(Ω) . sup
vh∈Xh\{0}

〈
L∗hwh, vh

〉
‖vh‖H2

h
(Ω)

+ ‖wh‖H−1(Ω) ∀wh ∈ Xh.

Lemma (Duality Argument)

Suppose that k ≥ 2. Then for any ε > 0, there exists hε > 0 such that for h ≤ hε,

there holds

‖wh‖H−1(Ω) . sup
vh∈Xh\{0}

〈
L∗hwh, vh

〉
‖vh‖H2

h
(Ω)

+ ε‖wh‖L2(Ω) ∀wh ∈ Xh.
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Convergence Analysis: Main Results

Theorem

There holds, for h sufficiently small and for k ≥ 2,

‖wh‖L2(Ω) . sup
vh∈Xh\{0}

〈
L∗hwh, vh

〉
‖vh‖H2

h
(Ω)

∀wh ∈ Xh.

Consequently,

‖vh‖H2
h

(Ω) . sup
wh∈Xh\{0}

〈
Lhvh, wh

〉
‖wh‖L2(Ω)

∀vh ∈ Xh.

Corollary

There exists a unique solution to the finite element methods. Moreover, the error

satisfies

‖u− uh‖H2
h

(Ω) ≤ Ch
s−1‖u‖Hs+1(Ω)

provided u ∈ Hs+1(Ω) with 1 ≤ s ≤ k.
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Numerical Test I.

The domain is the unit square Ω = (0, 1)2 and the coefficient matrix is

Aii = | sin(4((xi − 0.5))π))|1/5 + 1, Ai,j = cos(2x1x2π) (i 6= j).

The data is chosen such that that exact solution is

u =
x1x2 sin(2πx1) sin(3πx2)

(x2
1 + x2

2 + 1)

2−2 2−4 2−6 2−8
10−13

10−10

10−7

10−4

10−1

L2 Error

k = 1

k = 2

k = 3

k = 4

2−2 2−4 2−6 2−8

10−10

10−8

10−6

10−4

10−2

100

H1 Error

k = 1

k = 2

k = 3

k = 4

2−2 2−4 2−6 2−8

10−6

10−4

10−2

100

102

H2 Error

k = 1

k = 2

k = 3

k = 4

‖u− uh‖H2
h

(Ω)
= O(h

k−1
), ‖∇(u− uh)‖H1(Ω) = O(h

k
),

‖u− uh‖L2(Ω) = O(h
k+α

), ∃α ∈ (0, 1).
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Numerical Test II.

The domain is the square Ω = (−1, 1)2, Aii = 2,

A12 = A21 = sin
(
π(20x1x2 + 1/2)

) x1x2

|x1||x2|
.

2−2 2−4 2−6

10−5

10−4

10−3

10−2

10−1

100

101

L2 Error

k = 1

k = 2

k = 3

2−2 2−4 2−6

10−3

10−2

10−1

100

101

H1 Error

k = 1

k = 2

k = 3

2−2 2−4 2−6

100

101

102

H2 Error

k = 1

k = 2

k = 3

‖u− uh‖H2
h

(Ω)
= O(h

k−1
), ‖∇(u− uh)‖H1(Ω) = O(h

k
),

‖u− uh‖L2(Ω) = O(h
k+α

), ∃α ∈ (0, 1).
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Numerical Test III.

Consider the Hamilton–Jacobi–Bellman problem

sup
α∈A

(
Lαu− fα

)
= 0 in Ω := (0, 1)2,

u = 0 on ∂Ω

with u = x1x2(1− x1)(1− x2)((x1 − 0.5)2 + (x2 − 0.5)2)3/4,

Lαu : = −Aα : D2u, Aα = αTCα, C =

20 1

1 0.1


and A is the set of rotation matrices.

h ‖∇(u− uh)‖L2 rate

2−1 7.51E − 02

2−2 4.60E − 02 0.71

2−3 2.50E − 02 0.88

2−4 1.31E − 02 0.93

2−5 6.75E − 03 0.96

2−6 3.49E − 03 0.95
M. Neilan

FEMs for Non-Div PDEs



Outline

1 PDEs in Non–Divergence Form and Applications

2 Derivation of Finite Element Methods

3 Convergence Analysis

4 Numerical Experiments

5 Conclusions

M. Neilan

FEMs for Non-Div PDEs



Conclusions

Developed simple primal and mixed finite element methods for elliptic PDEs

in non–divergence form.

Optimal order error estimates in a H2–type norm.

The convergence analysis provides local error estimates for free.

Analysis may be extended to p 6= 2 case and other finite element methods

(e.g., DG methods).

Numerical experiments for HJB problem look promising.

Future Work

Discontinuous coefficients, k = 1, error estimates in lower order norms.

Revisit finite element convergence theory for fully nonlinear problems.

Convergence theory of HJB problem.
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