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Motivation

The magnetic field exerts a force on magnetic materials such as magnetic
nanoparticles (MNPs). MNPs under the action of external magnetic field are
used in:

I medical sciences:

I as contrast agents to enhance the contrast in MRI
I as carriers for targeted drug delivery, for instance, to treat cancer

cells, tumors (< 0.1% is taken by tumor cells)
I in gene therapy
I in magnetized stem-cells

I magnetic tweezers

I lab-on-a-chip systems that include magnetic particles or fluids

I magnetofection a transfection method
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Magnetic drug targeting (MDT)

Experimental setup ([Shapiro et al., 2013])
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What are engineers interested in?
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I Pull in or attract particles (left): there are already human trials on this.

I Key difficulty: To push or to control particles (center and right). In
region A the force is pointing outward, allowing us to push particles.

I The success of the aforementioned applications highly depend on the
accurate control of the magnetic force.

I Goal: how to approximate a desired magnetic force f by a fixed
configuration of magnetic field sources.

I Approach:

min
F

∫ T

0

‖F− f‖2L2(D) dt for T > 0 and D ⊂ Rd, d = 2, 3.
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How does magnetic field manipulate MNPs?

I Magnetic force: Magnetic field gradient is required to exert a force and
such a force is given by [Rosensweig ’97]:

F = (m · ∇)H.

I A simplification: After some simplifications (weakly diamagnetic medium,
no current sources) and using curlH = 0, the force on a single MNP

F =
Vm∆χ

2
∇|H|2

Vm: is the volume of the particle
∆χ = χp − χm: effective susceptibility.

I Fundamental difficulty: magnetic field intensity H is not parallel to the
magnetic force F.
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Minimization problem and control action
I Ω ⊂ Rd, d = 2, 3 open, bounded
Dt ⊂ Ω: time dependent subdomain.

I Maxwell’s equations: We consider magnetic sources outside Ω then

curlH = 0, divH = 0 in Ω.

I Dipole approximation:

H(x, t) =

np∑
i=1

αi(t)

(
d

(x− xi)(x− xi)>

|x− xi|2
− I

)
d̂i

|x− xi|d
=

np∑
i=1

αi(t)Hi(x)

xi ∈ Rd \ Ω: dipole positions

d̂i ∈ Rd: field direction

OctoMag. IRIS - Institute (Zürich)
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Problem 1: Fixed final time
I Minimization problem:

min
α∈Had

J (α), with
1

2

∫ T

0

‖∇|H(α)|2 − f‖2L2(Dt)
dt+

λ

2

∫ T

0

|dtα|2dt,

with α(t) := (α1(t), . . . , αnp(t))> in

Had :=
{
α ∈ [H1(0, T )]np : α(0) = α0 and α∗ ≤ α(t) ≤ α∗, ∀t ∈ [0, T ]

}
.

I Reformulation:

min
α∈Had

J (α), with J (α) =
1

2

∫ T

0

 d∑
i=1

‖α>Piα− fi‖2L2(Dt)
+ λ|dtα|2

 dt.
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Problem 2: Minimizing the final time
I Unknown f . Since the final time TF is an unknown, thus f is not

meaningful quantity. We treat f as an unknown.

I Let ρ ∈ C1[0, sF ] be a parameterization of C with respect to arc length.

I Assume that the barycenter xC(t) of Dt moves along curve C at speed
θ(t) > 0 with initial position xI and final xF such that∫ TF

0

θ(τ)dτ = sF .

I We define the map σ(·) : [0, TF ]→ [0, sF ] as

s = σ(t) =

∫ t

0

θ(τ)dτ.

I Whence xC(·) = ρ ◦ σ(·). Also dtxC(t) = θ(t)dtρ(σ(t)).
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Problem 2: Minimizing the final time

min
(α,θ)∈Had×Vad

F(α, θ)

with

F(α, θ) :=

∫ sF

0

(
1

2θ(s)

d∑
i=1

‖α(s)>Piα(s)− ρ′i(s)θ(s)‖
2
L2(Ds)

+
β

θ(s)
+
λ

2
|dsα(s)|2 +

η

2
|dsθ(s)|2

)
ds

and

Uad :=
{
α ∈ H1(0, sF ) : α(0) = α0 and α∗ ≤ α(s) ≤ α∗, ∀s ∈ [0, sF ]

}
,

Vad :=
{
θ ∈ H1(0, sF ) : θ(0) = θ0 and 0 < θ∗ ≤ θ(s) ≤ θ∗, ∀s ∈ [0, sF ]

}
.
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Well-posedness of continuous problem

I Existence of solution. If f ∈ [L2(0, T ; L2(Ω))]d then using direct method
of calculus of variations, there exist a solution to Problem 1. Same holds
for Problem 2 if ρ is C1.

I First order necessary optimality conditions.

I If ᾱ ∈ Uad solves Problem 1 then

J ′(ᾱ)(α− ᾱ) ≥ 0 ∀α ∈ Had.

I If (ᾱ, θ̄) ∈ Uad × Vad solves Problem 2 then

∇F(ᾱ, θ̄)(δα, δθ) ≥ 0 ∀(α, θ) ∈ Uad × Vad

where δα = α− ᾱ, δθ = θ − θ̄.

I Second order sufficient condition. Under the assumption

J ′′(ᾱ)(δα)2 ≥ ω|δα|2H1(0,T ) ∀δα ∈ A(ᾱ)

where A(α) :=
{
h ∈ H1

0(0, T ) : α+ ζh ∈ Had, ζ > 0
}

there exists a

local unique solution to Problem 1. Same applies to Problem 2.
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Problem 1: Reference domain

I Reference domain. We define a reference domain D̂ ⊂ Rd and a map

X : [0, T ]× D̂ → Ω, such that for all t ∈ [0, T ]

X(t, ·) :D̂ → Dt

x̂→ X(t, x̂) = ψ(t) + ψ(t)x̂,

ψ : [0, T ]→ Rd, ψ : [0, T ]→ (0,+∞), and ψ, ψ ∈ H1(0, T ). Moreover,

D̂ = D0.

I Reference domain cost. Then, we rewrite J as

J (α) =
1

2

d∑
i=1

∫ T

0

‖α>P̂iα− f̂i‖2L2(D̂)
+
λ

2

∫ T

0

|dtα|2 = J 1(α) +J 2(α)

with P̂i(t, x̂) := Pi(X(t, x̂))ψ(t)d/2 and f̂i(t, x̂) = vi(t,X(t, x̂))ψ(t)d/2,
for i = 1, . . . , d.
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Problem 1: Time discretization
I Let us fix N ∈ N and let τ := T/N be the time step. Now, for

n = 1, . . . , N , we define tn := nτ , P̂n
i = P̂i(t

n) and f̂ni to be

f̂ni (·) =
1

τ

∫ tn

tn−1

f̂i(t, ·)dt, i = 1, . . . , d,

which in turn allows us to incorporate a general f .

I Time discrete problem: given the initial condition α0 =: ᾱτ (0), find
ᾱτ ⊂ Hτad solving

ᾱτ = argmin
ατ∈Hτad

Jτ (ατ ), Jτ (ατ ) = J 1
τ (ατ ) + J 2

τ (ατ ),

where

J 1
τ (ατ ) + J 2

τ (ατ )

= τ
N∑
n=1

1

2

d∑
i=1

‖(αnτ )>P̂n
i α

n
τ − f̂ni ‖2L2(D̂)

+ τ
N∑
n=1

λ

2τ2
|αnτ −αn−1

τ |2.

and

Hτad := {ατ ∈ H1(0, T ) : ατ |[tn−1,tn] ∈ P1, n = 1, . . . , N} ∩ Had.
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Convergence of scheme

Theorem. The family of minimizers {ᾱτ}τ>0 to the discrete problem is

I uniformly bounded in H1(0, T ).

I it contains a subsequence that converges weakly to ᾱ in H1(0, T ).

I limτ→0 Jτ (ᾱτ ) = J (ᾱ).

The proof is motivated by Γ convergence.
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Strong convergence to local minimizers

I Auxiliary problem: For a fixed ε > 0, we construct a family {αετ}τ>0

upon solving the minimization problem

αετ = argmin
ατ∈Hτ,εad

Jτ (ατ ),

where Hτ,εad =
{
ατ ∈ Hτad : ‖Πτ ᾱ−ατ‖L2(0,T ) ≤ ε

}
.

I Next using the second order sufficient condition we show that {αετ}τ>0

forms a local solution to our discrete problem.

I We conclude by showing that ‖αετ − ᾱ‖H1(0,T ) → 0 as τ → 0.

This approach is inspired by Casas and Troeltzsch ’02.
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Problem 2: Discretization
I We consider the following discrete problem: given an initial condition

(α0, θ0) =: (ακ(0), θκ(0)) find a solution (ακ, θκ) ∈ Uκad × Vκad to

min
(ακ,θκ)∈Uκad×V

κ
ad

Fκ(ακ, θκ) := F1
κ(ακ, θκ) +F2

κ(θκ) +F3
κ(ακ) +F4

κ(θκ)

where

F1
κ(ακ, θκ) =

M∑
m=1

κ

2θmκ

d∑
i=1

‖(αmκ )>P̃m
i α

m
κ − ρ′i(s

m)θmκ ‖2L2(D̂)

F2
κ(θκ) =

M∑
m=1

βκ

θmκ
, F3

κ(ακ) = κ

M∑
m=1

λ

2κ2
|αmκ −αm−1

κ |2,

F4
κ(θκ) = κ

M∑
m=1

η

2κ2
|θmκ − θm−1

κ |2.

I and admissible sets

Uκad :=
{
ακ ∈ H1(0, sF ) : ακ|[sm−1,sm] ∈ P1,m = 1, . . . ,M

}
∩ Uad,

Vκad :=
{
θκ ∈ H1(0, sF ) : θκ|[sm−1,sm] ∈ P1,m = 1, . . . ,M

}
∩ Vad.

I We again show the weak convergence using Γ-convergence.
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Numerical examples

I Ω = B1(0, 0) ⊂ R2, D̂ = B0.2(−0.75, 0)

I xk+1 = 1.2(cos(kπ/4), sin(kπ/4))

I d̂k+1 = (cos(kπ/4), sin(kπ/4)), k = 0, . . . , 7 (np = 8)
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Problem 1: approximate f1(x, t) = (1, 0)>

I T = 1, λ = 10−5.

I α∗ = (2, . . . , 2) ∈ R8 and α∗ = (−2, . . . ,−2) ∈ R8.
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Problem 1: approximate f1(x, t) = (1, 0)>

Magnetic force at t = 0.0125, 0.5, and 1.
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Dipoles on the left (dipoles 4, 5 and 6) have small intensities at initial times.
This is expected because D1,t is close to the boundary of Ω, where H is large,
thus it is difficult for dipoles 4, 5 and 6 to “push” in the f1 direction.



Problem 1: approximate f1(x, t) = (1, 0)>

Loading movie ... Loading movie ...

Play/Pause Play/Pause


plot_circle_r1_move_L_R_case3_1k_t50_e_comp1.mpg
Media File (video/mpeg)


plot_circle_r1_move_L_R_case3_1k_c_comp1.mpg
Media File (video/mpeg)



Problem 1: approximate f2(x, t) = (sin(π(1− t)),− cos(π(1− t))>
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Problem 1: approximate f2(x, t) = (sin(π(1− t)),− cos(π(1− t))>

Magnetic force at t = 0.015, 0.375 and 0.75.
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Problem 1: approximate f2(x, t) = (sin(π(1− t)),− cos(π(1− t))>

Loading movie ... Loading movie ...

Play/Pause Play/Pause
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plot_circle_r1_1k_move_curve_kk1_r6_D2_v2.mpg
Media File (video/mpeg)


plot_circle_r1_1k_move_curve_kk1_r6_D2_b.mpg
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Problem 2

I Let the curve C is parameterized by

ρ(s) = xI + s
(xF − xI)
‖xF − xI‖

, s ∈ [0, 0.75]

with xI = (0,−0.75) and xF = (0, 0).

I (α∗,α
∗, θ∗, θ

∗) = (−1, 1, 10−10, 10).

I β = 10−1, λ = 10−6, and η = 10−4).
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Application: concentration transport

I MNPs. We assume a concentration of magnetic nanoparticles confined in
a domain Ω ⊂ Rd, d = 2, 3.

I Drug concentration is evolved using

∂c

∂t
+ div

(
−A∇c+ cu + γ1cf(H)

)
= 0 in Ω× (0, T )

c = 0 on ∂Ω× (0, T ) c(x, 0) = c0 in Ω

curlH = 0 in Ω div (H) = 0 in Ω

where A = 10−3 is a diffusion coefficient matrix, u is a fixed velocity
vector and f is the Kelvin force.

I Goal. Move c0 from one subdomain to another (desired location) using
the magnetic force f while minimizing the spreading.
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Application: concentration transport

We solve the parabolic problem with magnetic force given by Problem 1 with f1.

Loading movie ... Loading movie ...
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plot_circle_r1_20k_USFEM_b_comp.mpg
Media File (video/mpeg)
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Conclusions

I We have approximated a vector field by using the Kelvin force. In
particular, we study two problems:

I Fixed final time
I Unknown final time

I We prove the existence of solution and using second order sufficient
conditions we show the local uniqueness.

I Motivated by Γ-convergence we show the H1-weak convergence of the
time-discrete problems.

I In presence of second order sufficient condition, a H1-strong local
convergence result is proved for Problem 1.

I As an application, we study the control of magnetic nanoparticles as those
used in magnetic drug delivery. The optimized Kelvin force is used to
transport the drug to a desired location.
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