Data-Driven Applications Inspiring Linear Algebra

Heather Moon
Lewis-Clark State College
Joint Work with:
Tom Asaki, Washington State University
Marie Snipes, Kenyon College,
Chris Camfield, Hendrix College
Jodi Frost (Assessment), Indiana State University

September 30, 2016

Funded by NSF IUSE-1642095

Project Inspiration

Project Inspiration

- Many times, upper-division mathematics is taught as "theoretical," and students are looking for applicability.

Project Inspiration

- Many times, upper-division mathematics is taught as "theoretical," and students are looking for applicability.
- We've been asked, "What can I do with a math degree besides teach?"

Project Inspiration

- Many times, upper-division mathematics is taught as "theoretical," and students are looking for applicability.
- We've been asked, "What can I do with a math degree besides teach?"
- To clear up misconceptions that the material in these courses is only useful to the students going on to graduate school.

Project Inspiration

- Many times, upper-division mathematics is taught as "theoretical," and students are looking for applicability.
- We've been asked, "What can I do with a math degree besides teach?"
- To clear up misconceptions that the material in these courses is only useful to the students going on to graduate school.
- To introduce students to techniques we as researchers use.

Project Inspiration

- Many times, upper-division mathematics is taught as "theoretical," and students are looking for applicability.
- We've been asked, "What can I do with a math degree besides teach?"
- To clear up misconceptions that the material in these courses is only useful to the students going on to graduate school.
- To introduce students to techniques we as researchers use.
- Students preparing to graduate need skills for graduate school and/or a career in industry.

Overview of project

Overview of project

- Team of 4 Mathematicians

Overview of project

- Team of 4 Mathematicians
- Classroom modules to inspire upper division math concepts in courses such as Real Analysis, Linear Algebra, PDEs, ODEs, and Mathematical Modeling

Overview of project

- Team of 4 Mathematicians
- Classroom modules to inspire upper division math concepts in courses such as Real Analysis, Linear Algebra, PDEs, ODEs, and Mathematical Modeling
- Modules are being tested at several types of schools and classroom set ups, for transportability.

Overview of project

- Team of 4 Mathematicians
- Classroom modules to inspire upper division math concepts in courses such as Real Analysis, Linear Algebra, PDEs, ODEs, and Mathematical Modeling
- Modules are being tested at several types of schools and classroom set ups, for transportability.
- After each implementation, we are editing and adding to the materials.

Module Concept

Common Application-Based Learning	

Module Concept

Common Application-Based Learning	
Mathematical Tools Development	

Module Concept

Common Application-Based Learning	
Mathematical Tools Development	
\Downarrow	
Explore Pedagogical Examples	

Module Concept

Common Application-Based Learning	
Mathematical Tools Development \Downarrow Explore Pedagogical Examples \Downarrow Current Challenging Application	

Module Concept

Common Application-Based	
Learning	
Mathematical Tools Development	
\Downarrow	
Explore Pedagogical Examples	
\Downarrow	
Current Challenging Application	
\Downarrow	
Apply Tools	

Module Concept

Common Application-Based Learning	Application-Inspired Learning
Mathematical Tools Development	
\Downarrow	
Explore Pedagogical Examples	
\Downarrow	
Current Challenging Application	
\Downarrow	
Apply Tools	

Module Concept

Common Application-Based Learning	Application-Inspired Learning
Mathematical Tools Development	Current Challenging Application
\Downarrow	
Explore Pedagogical Examples	
\Downarrow	
Current Challenging Application	
\Downarrow	
Apply Tools	

Module Concept

Common Application-Based Learning	Application-Inspired Learning
Mathematical Tools Development	Current Challenging Application
\Downarrow	
\Downarrow	
Explore Pedagogical Examples	Creative Exploration
\Downarrow	
Current Challenging Application	
\Downarrow	
Apply Tools	

Module Concept

Common Application-Based Learning	Application-Inspired Learning
Mathematical Tools Development \Downarrow Explore Pedagogical Examples \Downarrow	Current Challenging Application \Downarrow Current Challenging Application \Downarrow
Creative Exploration	
\Downarrow	
Apply Tools	Examine Solution Paths

Module Concept

Common Application-Based Learning	Application-Inspired Learning
Mathematical Tools Development \Downarrow Explore Pedagogical Examples \Downarrow	Current Challenging Application \Downarrow Current Challenging Application \Downarrow
Creative Exploration \Downarrow Apply Tools	Examine Solution Paths
\Downarrow	
	Forge Mathematical Tools

Radiography/Tomography Example

Radiography/Tomography Example

Radiography/Tomography Example

Radiography/Tomography Example

Project: Reconstruct
Given radiographs with Noise
Reconstruct the object that produced them

Radiography/Tomography Example

Project: Reconstruct
Given radiographs with Noise
Reconstruct the object that produced them

Radiography/Tomography Example

Project: Reconstruct
Given radiographs with Noise
Reconstruct the object that produced them

Tools Learned:
Exploration
Linear Algebra Concepts
Writing
Matlab/Octave Commands

Common Application-Based Learning: The Nullspace

Common Application-Based Learning: The Nullspace

Definition: Let (V and W be vector spaces and $T: V \rightarrow W$ be a linear transformation. We define the nullspace of T to be

$$
\operatorname{null}(T)=\{v \in V: T(v)=0\} .
$$

Common Application-Based Learning: The Nullspace

Definition: Let (V and W be vector spaces and $T: V \rightarrow W$ be a linear transformation. We define the nullspace of T to be

$$
\operatorname{null}(T)=\{v \in V: T(v)=0\} .
$$

Example 1: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the linear transformation defined by $\overline{T(a, b)=a+b \text {. Then, }}$

$$
\operatorname{null}(T)=\left\{(a, b) \in \mathbb{R}^{2}: a+b=0\right\} .
$$

Common Application-Based Learning: The Nullspace

Definition: Let (V and W be vector spaces and $T: V \rightarrow W$ be a linear transformation. We define the nullspace of T to be

$$
\operatorname{null}(T)=\{v \in V: T(v)=0\} .
$$

Example 1: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the linear transformation defined by $\overline{T(a, b)=a}+b$. Then,

$$
\operatorname{null}(T)=\left\{(a, b) \in \mathbb{R}^{2}: a+b=0\right\} .
$$

Example 2:...

Common Application-Based Learning: The Nullspace

Definition: Let (V and W be vector spaces and $T: V \rightarrow W$ be a linear transformation. We define the nullspace of T to be

$$
\operatorname{null}(T)=\{v \in V: T(v)=0\} .
$$

Example 1: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the linear transformation defined by $\overline{T(a, b)=a}+b$. Then,

$$
\operatorname{null}(T)=\left\{(a, b) \in \mathbb{R}^{2}: a+b=0\right\} .
$$

Example 2:...

Common Application-Based Learning: The Nullspace

Definition: Let (V and W be vector spaces and $T: V \rightarrow W$ be a linear transformation. We define the nullspace of T to be

$$
\operatorname{null}(T)=\{v \in V: T(v)=0\} .
$$

Example 1: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the linear transformation defined by $\overline{T(a, b)}=a+b$. Then,

$$
\operatorname{null}(T)=\left\{(a, b) \in \mathbb{R}^{2}: a+b=0\right\} .
$$

Example 2:...

Example N: Let us now consider the real-life example of the linear transformation called the radiographic transformation...

Application-Inspired Learning: The Nullspace

Application-Inspired Learning: The Nullspace

Setup:

Application-Inspired Learning: The Nullspace

Setup:

- Introduction of problem.

Application-Inspired Learning: The Nullspace

Setup:

- Introduction of problem.
- Lab 1: Students are introduced to images. They play with arithmetic operations of images recognizing (without knowing previously about) vector space properties of the set of images. This leads to a discussion of linear combinations, span, and linear dependence of images.

Application-Inspired Learning: The Nullspace

Setup:

- Introduction of problem.
- Lab 1: Students are introduced to images. They play with arithmetic operations of images recognizing (without knowing previously about) vector space properties of the set of images. This leads to a discussion of linear combinations, span, and linear dependence of images.
- Lab2: Students create example radiographic transformations and find out later that these transformations are linear transformations.

Application-Inspired Learning: The Nullspace

In Lab 3,

Application-Inspired Learning: The Nullspace

In Lab 3, we ask questions relevant to the radiographic scenario.

Application-Inspired Learning: The Nullspace

In Lab 3, we ask questions relevant to the radiographic scenario. Choosing one of the radiographic transformations from Lab 2, we ask:

- Is it possible for two different objects to produce the same radiograph? If so, give an example.

Application-Inspired Learning: The Nullspace

In Lab 3, we ask questions relevant to the radiographic scenario. Choosing one of the radiographic transformations from Lab 2, we ask:

- Is it possible for two different objects to produce the same radiograph? If so, give an example.
- As someone interpreting radiographs, why would it be important to know the answer to this question?

Application-Inspired Learning: The Nullspace

In Lab 3, we ask questions relevant to the radiographic scenario. Choosing one of the radiographic transformations from Lab 2, we ask:

- Is it possible for two different objects to produce the same radiograph? If so, give an example.
- As someone interpreting radiographs, why would it be important to know the answer to this question?
- Are any nonzero objects invisible to this operator? If so, give an example.

Application-Inspired Learning: The Nullspace

In Lab 3, we ask questions relevant to the radiographic scenario. Choosing one of the radiographic transformations from Lab 2, we ask:

- Is it possible for two different objects to produce the same radiograph? If so, give an example.
- As someone interpreting radiographs, why would it be important to know the answer to this question?
- Are any nonzero objects invisible to this operator? If so, give an example.
- Describe the set of all invisible objects.

Application-Inspired Learning: The Nullspace

In Lab 3, we ask questions relevant to the radiographic scenario. Choosing one of the radiographic transformations from Lab 2, we ask:

- Is it possible for two different objects to produce the same radiograph? If so, give an example.
- As someone interpreting radiographs, why would it be important to know the answer to this question?
- Are any nonzero objects invisible to this operator? If so, give an example.
- Describe the set of all invisible objects.

This lab is followed up with a discussion of "invisible" vectors. Because of their importance, we define the space of "invisible" vectors as the nullspace.

Results

Results

Based on limited survey data (from our first year), we can say that

Results

Based on limited survey data (from our first year), we can say that

- Students definitely increased their self-efficacy regarding the material in these classes.

Results

Based on limited survey data (from our first year), we can say that

- Students definitely increased their self-efficacy regarding the material in these classes.
- The data suggests that the modules may have increased students' positive feelings towards mathematics.

Results

Based on limited survey data (from our first year), we can say that

- Students definitely increased their self-efficacy regarding the material in these classes.
- The data suggests that the modules may have increased students' positive feelings towards mathematics.

In our second year, we have plans to collect a larger sample of data to get a better picture.

What Students Say

What Students Say

What Students Say

What Students Say

What Students Say

"I enjoyed learning about radiography-tomography It was cool to be able to apply math and understand where this is used in real life."

Contact Us

Heather Moon, hamoon@lcsc.edu
Tom Asaki, tasaki@wsu.edu Marie Snipes, snipesm@kenyon.edu Chris Camfield, camfield@hendrix.edu

Our Website: http://www.imagemath.org

Contact Us

Heather Moon, hamoon@lcsc.edu
Tom Asaki, tasaki@wsu.edu
Marie Snipes, snipesm@kenyon.edu
Chris Camfield, camfield@hendrix.edu

Our Website: http://www.imagemath.org

We're looking for beta testers for this spring.

