

Craig Jackson, Department of Mathematics and Computer Science, Ohio Wesleyan University

ZOOL 345: Marine Biology

Co-taught by Jackson and Dr. Amy Downing (Prof. of Zoology)

Incorporates significant math modeling + field work in St John USVI

ZOOL 345: Marine Biology

Co-taught by Jackson and Dr. Amy Downing (Prof. of Zoology)

Incorporates significant math modeling + field work in St John USVI

Nutrient

Na.9 NO₂ PO₄ 2,5 2,0 1,5 1,0 0,5 0,5 0,5

Plankton

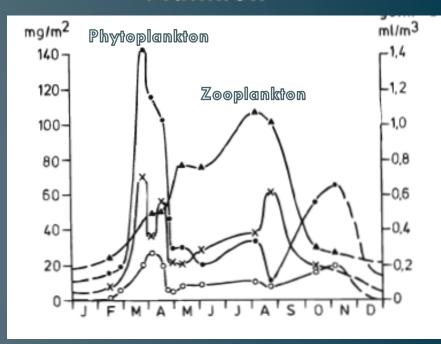
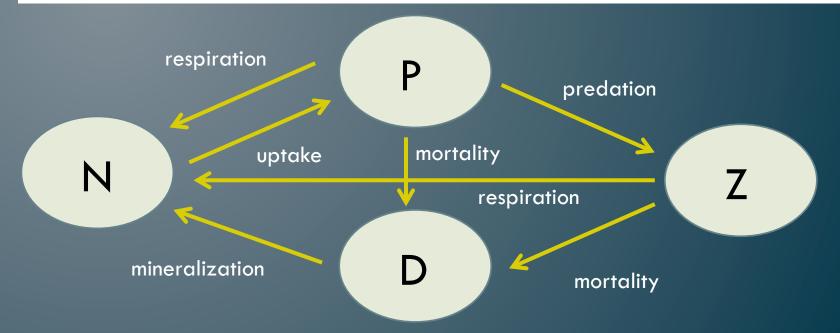
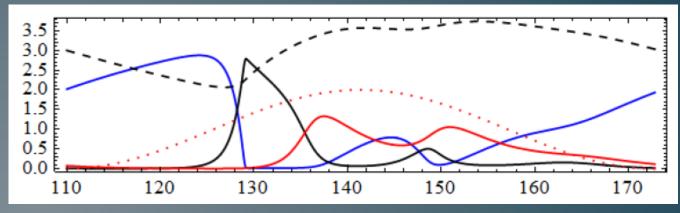


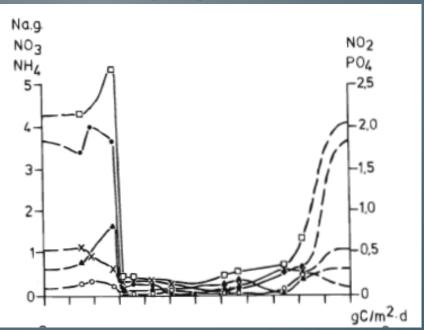
Figure 8.2: Annual cycle of nutrients (top) in the upper 10 meters and plankton (bottom) in the upper 25 meters measured at a central station, (Stat. No. 113), in the Arkona basin of the Baltic Sea. Upper panel: squares - total disolved inorganic nitrogen, dots - NO₃, triangles - NH₄, and crosses - PO₄, all in μ mol/m³. Lower panel: dots - chlorophyll A, in mg/m², circles - phaeopigment in mg/m², crosses - primary production in gC/m²/d, triangles - zooplankton biomass in ml/m³. [Image and caption taken from Fennel and Neumann (2004).]

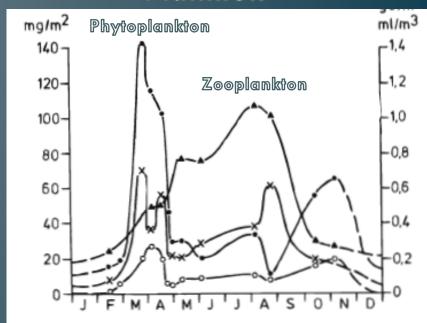

Nutrient, Phytoplankton, Zooplankton, Detritus with Irradiation Model

$$\frac{dN}{dt} = -h(I)f(N)P + l_{PN}P + l_{DN}D + l_{ZN}Z \qquad \qquad f(N) = \frac{r_{\max}N}{k_N + N}$$

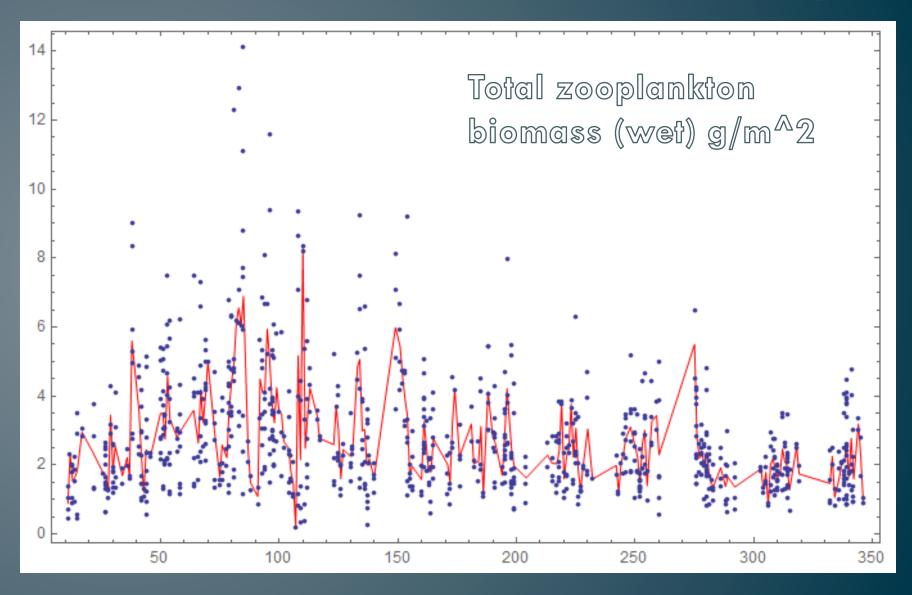

$$\frac{dP}{dt} = h(I)f(N)P - l_{PN}P - l_{PD}P - g(P)Z \qquad \qquad I(t) = \bar{I} - A\cos(bt)$$

$$\frac{dD}{dt} = l_{PD}P - l_{DN}D + l_{ZD}Z \qquad \qquad h(I) = \frac{I}{I_0 + I}$$


$$\frac{dZ}{dt} = g(P)Z - l_{ZN}Z - l_{ZD}Z \qquad \qquad g(P) = \frac{g_{\max}P}{k_Z + P}$$


Nutrient, Phytoplankton, Zooplankton, Detritus with Irradiation Model

Nutrient


Plankton

Incorporating real data?

#	**	**	*	***	**	**	**-	***	**			
#												
# "BATS (JGOFS	S-BATS)	: Zoop	lanktor	j biomass (data samp	led during th	e Bermuda A	tlantic Time	-series Study	y (B	ATS) pro	ject"
#												
#*	**	.**_	*	***	**	**_	**_	**	**			
#												
	OPEPO	D: 14-	Jun-20	13 (Web v	10.1)							
#												
	ık: <u>http</u> :	//www.	st.nmfs	s.noaa.gov/	plankton/d	lata/batsjgof	s/index.html					
#												
#						alternate dat	a formats					
#	а	re avail	able or	line at the	web link a	bove.						
#												
#												
#												
#SHP-CRUISE	YEAR	MON	DAY	TIMEamt	TIMEloc	LATITUDE	LONGITDE	UPPER_Z	LOWER_Z	Т	GEAR	MESH
#										-0		
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000	2	16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	2.400	2.400	31.603	-64.113	0.0	195.0	0	112	200
320G-000216	2000	2	16	2.400	2.400	31.603	-64.113	0.0	195.0	0	112	200

Real plankton population data is noisy

p is the number of species in the ecosystem we are studying

The state vectors \vec{X}_t for the system will generically be written as row vectors. That is:

$$\vec{X}_t = (x_{t,1}, \dots, x_{t,p})$$

where $x_{t,j}$ is the log of the abundance (biomass) of species j at time t.

$$X = \begin{bmatrix} x_{0,1} & x_{0,2} & \cdots & x_{0,p} \\ x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ \vdots & & & & \\ x_{t,1} & x_{t,2} & \cdots & x_{t,p} \\ \vdots & & & & \\ x_{N-1,1} & x_{N-1,2} & \cdots & x_{N-1,p} \end{bmatrix}$$

The community matrix: This is a $p \times p$ matrix

$$B = \begin{bmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,p} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{p,1} & b_{p,2} & \cdots & b_{p,p} \end{bmatrix}$$

with the usual meaning to its entries. Namely, $b_{i,j}$ relates to the direct effect of species j on the abundance of species i in the next generation. This term is 0 if and only if species j has no direct effect on species i from one generation to the next. However, there may be indirect effects through interactions with other species.

$$X_{t+1}^T = \vec{A} + BX_t^T + \varepsilon_t^T$$

$$Y_t = X_{t+1}$$

$$Y = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & & & & \\ x_{t+1,1} & x_{t+1,2} & \cdots & x_{t+1,p} \\ \vdots & & & & \\ x_{N,1} & x_{N,2} & \cdots & x_{N,p} \end{bmatrix}$$

$$X_{t+1}^T = \vec{A} + BX_t^T + \varepsilon_t^T$$

$$Y_t = X_{t+1}$$

$$Y = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & & & & \\ x_{t+1,1} & x_{t+1,2} & \cdots & x_{t+1,p} \\ \vdots & & & & \\ x_{N,1} & x_{N,2} & \cdots & x_{N,p} \end{bmatrix}$$

$$Y_t^T = \vec{A} + BX_t^T + \varepsilon_t^T$$

$$Z = \begin{bmatrix} 1 & x_{0,1} & \cdots & x_{0,p} \\ 1 & x_{1,1} & \cdots & x_{1,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N-1,1} & \cdots & x_{N-1,p} \end{bmatrix} \qquad D = \begin{bmatrix} a_1 & b_{1,1} & \cdots & b_{1,p} \\ a_2 & b_{2,1} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ a_p & b_{p,1} & \cdots & b_{p,p} \end{bmatrix}$$

$$D = \begin{bmatrix} a_1 & b_{1,1} & \cdots & b_{1,p} \\ a_2 & b_{2,1} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ a_p & b_{p,1} & \cdots & b_{p,p} \end{bmatrix}$$

$$Y_t^T = \vec{A} + BX_t^T + \varepsilon_t^T$$

$$Z = \begin{bmatrix} 1 & x_{0,1} & \cdots & x_{0,p} \\ 1 & x_{1,1} & \cdots & x_{1,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N-1,1} & \cdots & x_{N-1,p} \end{bmatrix} \qquad D = \begin{bmatrix} a_1 & b_{1,1} & \cdots & b_{1,p} \\ a_2 & b_{2,1} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ a_p & b_{p,1} & \cdots & b_{p,p} \end{bmatrix}$$

$$D = \begin{bmatrix} a_1 & b_{1,1} & \cdots & b_{1,p} \\ a_2 & b_{2,1} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ a_p & b_{p,1} & \cdots & b_{p,p} \end{bmatrix}$$

$$Y^T = DZ^T + E^T$$

$$Z = \begin{bmatrix} 1 & x_{0,1} & \cdots & x_{0,p} \\ 1 & x_{1,1} & \cdots & x_{1,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N-1,1} & \cdots & x_{N-1,p} \end{bmatrix} \qquad D = \begin{bmatrix} a_1 & b_{1,1} & \cdots & b_{1,p} \\ a_2 & b_{2,1} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ a_p & b_{p,1} & \cdots & b_{p,p} \end{bmatrix}$$

$$D = \begin{bmatrix} a_1 & b_{1,1} & \cdots & b_{1,p} \\ a_2 & b_{2,1} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ a_p & b_{p,1} & \cdots & b_{p,p} \end{bmatrix}$$

$$Y^T = DZ^T + E^T$$

$$D = Y^T Z (Z^T Z)^{-1}$$

From noisy time series data we have obtained an estimate of the community matrix!!

$$Z = \begin{bmatrix} 1 & x_{0,1} & \cdots & x_{0,p} \\ 1 & x_{1,1} & \cdots & x_{1,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N-1,1} & \cdots & x_{N-1,p} \end{bmatrix} \qquad D = \begin{bmatrix} a_1 & b_{1,1} & \cdots & b_{1,p} \\ a_2 & b_{2,1} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ a_p & b_{p,1} & \cdots & b_{p,p} \end{bmatrix}$$

$$D = \begin{bmatrix} a_1 & b_{1,1} & \cdots & b_{1,p} \\ a_2 & b_{2,1} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ a_p & b_{p,1} & \cdots & b_{p,p} \end{bmatrix}$$

$$Y^T = DZ^T + E^T$$

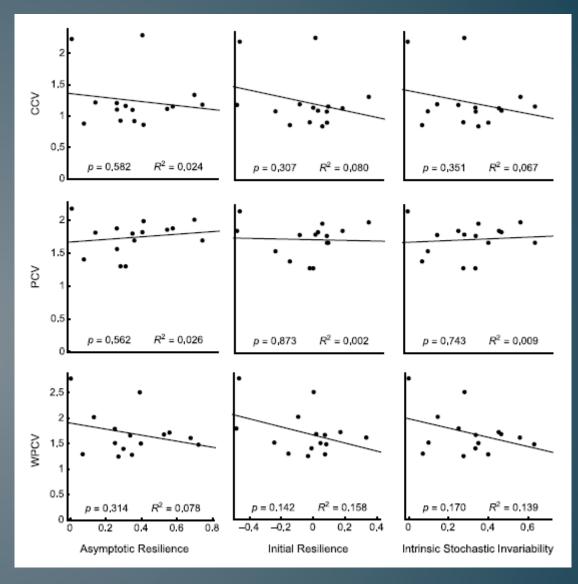
$$D = Y^T Z (Z^T Z)^{-1}$$

Estimation is similar with covariates (e.g., variable nutrient loads)

Applying MAR(1) estimates to investigate stability of food webs

15 different food webs x 2 nutrient treatments x 4 replicates per treatment = 120 tanks

Sampling intervals every 4-5 days May-Oct totaling 32 sampling dates (zooplankton, phytoplankton) = 3840 data points (256 per food web)


Q: How are different definitions of food web stability related?

Q: How are different definitions of food web stability related?

Empirical stability: coefficients of variation (both on individual species level and community level)

Theoretical stability: measure of system stability as measured from the community matrix

- Asymptotic Resilience: long term rate of recovery following a perturbation
- Initial Resilience: Worst case initial rate of recovery following a perturbation
- Intrinsic Stochastic Invariability: reciprocal of the worstcase variation due to white-noise forcing

No evidence of relationship between theoretical stability measures and empirical stability measures

Q: Does the relative abundance of weakly interacting species affect food web stability?

Q: Does the relative abundance of weakly interacting species affect food web stability?

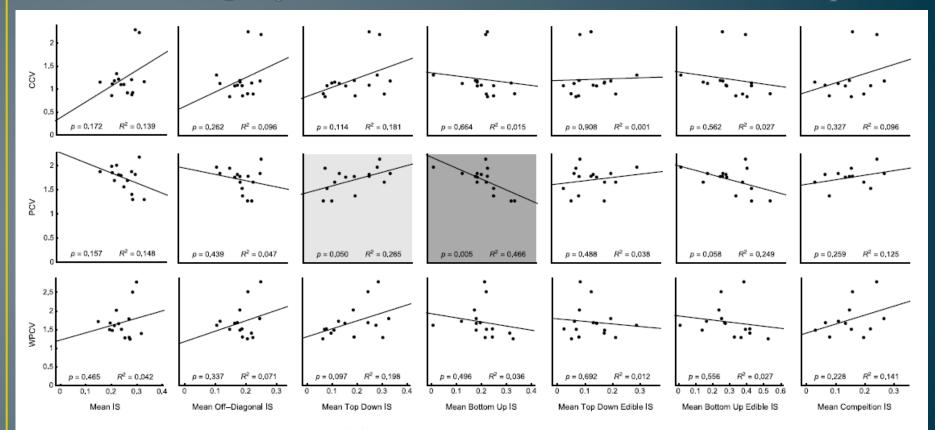


Figure 2: Comparison of interaction strengths (IS) and empirical stability. Figures are shaded light gray if p < 0.05 and dark gray if p < 0.01.

Comparison of interaction strengths to empirical stability measures (It. gray is p<.05, dk. gray is p<.01)

Q: Does the relative abundance of weakly interacting species affect food web stability?

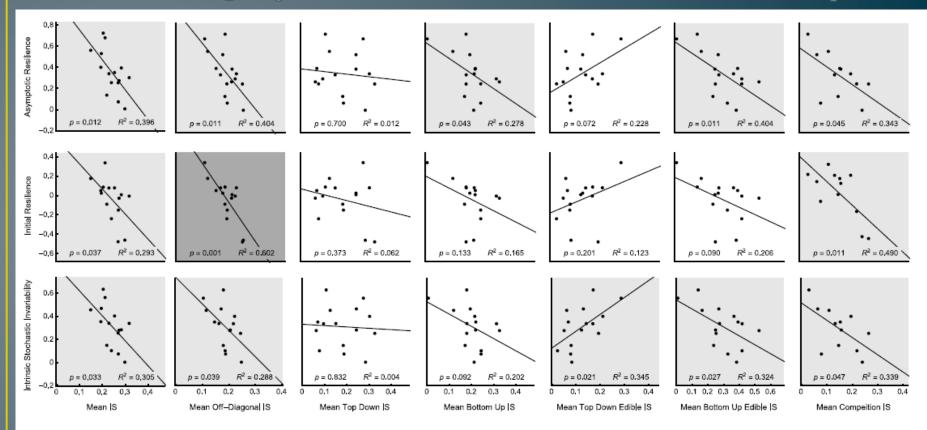


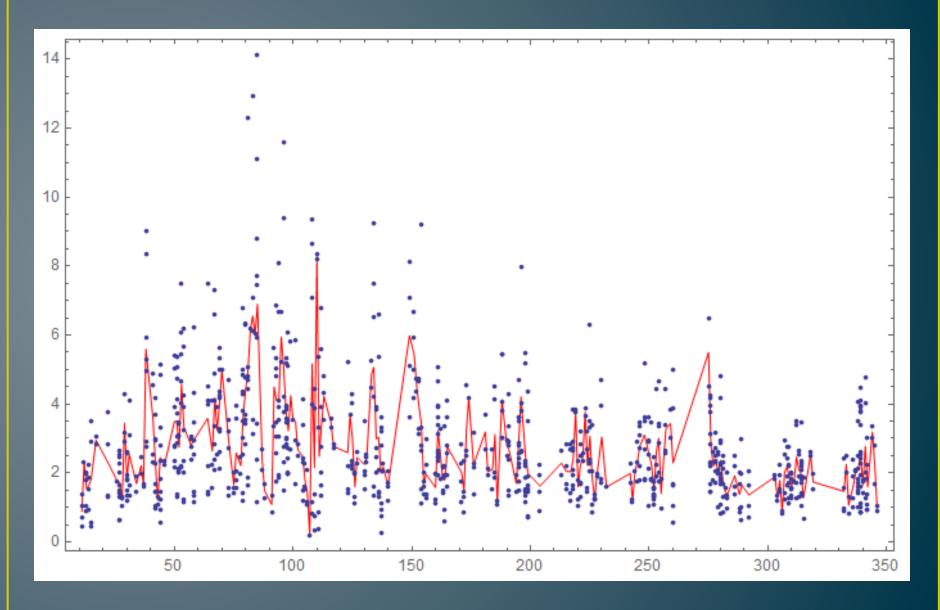
Figure 3: Comparison of interaction strengths (IS) and theoretical stability. Figures are shaded light gray if p < 0.05 and dark gray if p < 0.01.

Comparison of interaction strengths to theoretical stability measures (It. gray is p<.05, dk. gray is p<.01)

- We can learn a lot of interesting and important things from data about ourselves, our society, our world....
- We have lots of it lying around

- We can learn a lot of interesting and important things from data about ourselves, our society, our world....
- We have lots of it lying around

- We can learn a lot of interesting and important things from data about ourselves, our society, our world....
- We have lots of it lying around


But

• Data ≠ Information

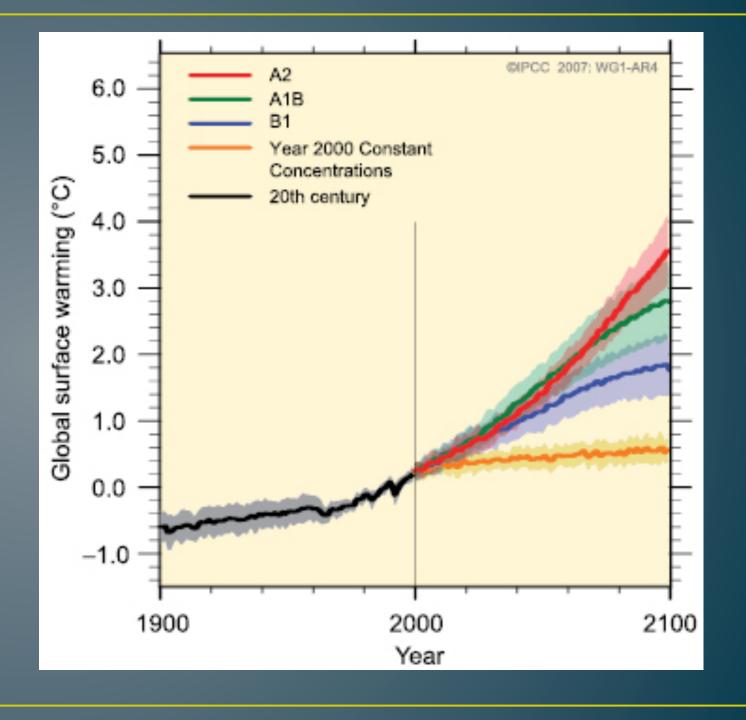
Data:

# * * *	* *	* *	*	* * *	* *	* * *	* * *	* * *	* * *			
#												
# "BATS (JGOFS	BATC)	· 7000	lanktor	hiomacc /	data cama	lod during th	o Bormuda A	tlantic Time	corios Stud	, /B	ATS) pro	ioct"
# 5413 (3901)	D-DATO)	. <u>200</u> p	aliktoi	i piorriass (uata samp	ied during th	e Demidua A	Manue IIIIe	selles Stud	ט) ע	ATO) pro	njeci
#*	* *	* *	*	* * *	* *	* * *	* * *	* * *	* * *			
#												
	ODEDO	D: 14	lun 20	13 (Web v	10.1)							
# 141411-3-0	OFLFO	D. 14-	Jun-20	15 (vveb v	10.1)							
	de: bttp:	Uhanana	et neef	noon and	plankton/s	lata/bataiaaf	s/index.html					
# Live-III	ік. пир.	//yvvvvv.	St.Hillis	s.fluaa.guv/	piankton/c	iata/batsjg0i:	s/index.num					
#	Λ	nrobon	oivo oc	ntont oum	man, and	alternate dat	a formata					
#				nitent sum line at the			a iormats					
#	a	re avaii	able of	lline at the	web link a	bove.						
#												
#												
	VEAD	MON	DAY	TIME	TIMEL	LATITUDE	LONGITOE	LIDDED 7	LOWED 7	_	CEAD	MECH
#SHP-CRUISE	YEAR	MON	DAY	TIMEamt	HIVIEIOC	LATITUDE	LONGITDE	UPPER_Z	LOWER_Z		GEAR	MESH
#			40	4.000	4.000	24.644	C4 404	0.0	400.0	_		
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	1.800	1.800	31.611	-64.124	0.0	190.0	0	112	200
320G-000216	2000		16	2.400	2.400	31.603	-64.113	0.0	195.0	0	112	200
320G-000216	2000	2	16	2.400	2.400	31.603	-64.113	0.0	195.0	0	112	200

Information:

- We can learn a lot of interesting and important things from data about ourselves, our society, our world....
- We have lots of it lying around

- Data ≠ Information
- Real data is often messy, incomplete, not suited to answer the questions we most want to ask of it


- We can learn a lot of interesting and important things from data about ourselves, our society, our world....
- We have lots of it lying around

- Data ≠ Information
- Real data is often messy, incomplete, not suited to answer the questions we most want to ask of it
- Real data can be wrong!

	А	В	С	D	Е	F	G	Н	
1			COMP	Cer_ug	Dapp_ug	Sca_ug		e_chl	i chl
2649	97	150	N_DAP	876.0693		102.4033	10.53007	2.68	0.3
2650	97	150	N_DAP	187.5769		52.5006	4.665915	3.29	0.26
2651	97	150	N_DAP	353.5519		133.1986	9.445592	17.33	1658.87
2652	97	150	N_DAP	130.3732		105.1579	5.465053	22.55	2566.01
2653	97	150	N_DAP	313.6929		139.2908	10.97183	30.51	317.32
2654	97	150	N_DAP	101.885		57.94207	3.445877	60.12	543.1
2655	97	150	N_DAP	290.2114		85.13787	9.06071	110.74	634.29
2656	97	150	N_DAP	54.66454		21.87718	1.038029	160.22	3020.48
2657	99	113.3	N_DAP	0.022		15.9594	0.13556	51.37	0.65
2658	99	176.9	N_DAP	0.022		47.8624	0.0339	122.8	-0.02
2659	99	139.3	N_DAP	0.821267		177.9185	0.13556	77.39	12.14
2660	99	104.4	N_DAP	0.022		245.2349	0.0339	49.97	-0.01
2661	99	170.6	N_DAP	0.022		130.6884	0.27112	60.96	5.42
2662	99	134.4	N_DAP	4.927604		86.19687	0.27112	40.45	0.005
2663	99	100.9	N_DAP	1.642535		95.48486	0.0339	42.4	1.67
2664	99	168.1	N_DAP	0.022		236.7112	0.0339	42.4	1.67
2665	99	132.5	N_DAP	0.022		414.0479	0.352611	63.93	0.005
2666	99	99.49	N_DAP	13.85858		2350.1	2.494924	28.56	0.67
2667	99	167.1	N_DAP	75.14475		2177.052	0.0339	1.7	0.05
2668	99	131.7	N_DAP	619.7909		35.26096	1.247462	1.23	0.3
2669	99	98.95	N_DAP	482.0288		0.454049	0.542239	1.59	0.08
2670	99	166.7	N_DAP	658.0386		154.3092	47.06997	3.05	50.99
2671	99	131.4	N_DAP	56.62793		10.00067	12.15635	1.79	0.12

- We can learn a lot of interesting and important things from data about ourselves, our society, our world....
- We have lots of it lying around

- Data ≠ Information
- Real data is often messy, incomplete, not suited to answer the questions we most want to ask of it
- Real data can be wrong!
- Many questions can't be answered with data at all!



- We can learn a lot of interesting and important things from data about ourselves, our society, our world....
- We have lots of it lying around

- Data ≠ Information
- Real data is often messy, incomplete, not suited to answer the questions we most want to ask of it
- Real data can be wrong!
- Many questions can't be answered with data at all
- Data can be misused

- We can learn a lot of interesting and important things from data about ourselves, our society, our world....
- We have lots of it lying around

- Data ≠ Information
- Real data is often messy, incomplete, not suited to answer the questions we most want to ask of it
- Real data can be wrong!
- Many questions can't be answered with data at all
- Data can be misused
- Collecting high quality data is hard!

Thanks!