Linear Algebra as a Template for Applied Mathematics

Pavel Grinfeld Drexel University

September 30, 20162016 SIAM Conference on Applied Mathematics Education

1 Why Linear Algebra Is My Favorite Subject to Teach

Its important applications

Opportunity to start at the beginning

Linear algebra helps develop the students'
logical ability
algorithmic ability
verbal ability
abstraction and analogy
elementary geometry
big picture ability

It is more representative than other subjects of the way we do mathematics

2 Linear Algebra Is Different Things to Different People

Linear systems and related algorithms

Study of vectors and linear transformations

Interplay between algebra and geometry

3 A Typical Calculus Question

What is the derivative of $\sin ^{2} x /(1+\cos x)$?

$$
\begin{aligned}
\left(\frac{\sin ^{2} x}{1+\cos x}\right)^{\prime} & =\frac{\left(\sin ^{2} x\right)^{\prime}(1+\cos x)+\sin ^{2} x(1+\cos x)^{\prime}}{(1+\cos x)^{2}} \\
& =\frac{2 \sin x \sin ^{\prime} x(1+\cos x)+\sin ^{2} x(-\sin x)}{(1+\cos x)^{2}} \\
& =\frac{2 \sin x \cos x(1+\cos x)-\sin ^{3} x}{(1+\cos x)^{2}}
\end{aligned}
$$

4 A Typical Linear Algebra Question

Are vectors

$$
\left[\begin{array}{l}
21 \\
22 \\
23
\end{array}\right],\left[\begin{array}{l}
10 \\
15 \\
20
\end{array}\right],\left[\begin{array}{r}
97 \\
100 \\
103
\end{array}\right]
$$

linearly dependent?

5 Expressions Are More Alive

The subspace from the previous slide can be captured by the expression

$$
\left[\begin{array}{c}
\alpha \\
\frac{\alpha+\beta}{2} \\
\beta
\end{array}\right]
$$

But also by the expression

$$
\left[\begin{array}{c}
\alpha \\
\beta \\
2 \beta-\alpha
\end{array}\right]
$$

So

$$
\left[\begin{array}{c}
\alpha \\
\frac{\alpha+\beta}{2} \\
\beta
\end{array}\right]=\left[\begin{array}{c}
\alpha \\
\beta \\
2 \beta-\alpha
\end{array}\right]!
$$

6 ...Which Is Good Training

for many situations

$$
\begin{aligned}
\frac{\partial \frac{1}{2} x^{T} A x}{d x} & =A x \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q} & =0 \\
\int_{\Omega} d f & =\int_{\partial \Omega} f \\
|A| & =\frac{1}{3!} \delta_{r s t}^{i j k} A_{i}^{r} A_{j}^{s} A_{k}^{t}
\end{aligned}
$$

7 Abstraction and Analogy

The differential equation

$$
x^{2} u^{\prime \prime}+x u^{\prime}+\left(x^{2}-n^{2}\right) u=f(x)
$$

is

$$
A x=b .
$$

Therefore

$$
u(x)=u_{p}(x)+N(x)
$$

More specifically, since $\operatorname{dim} N=2$,

$$
u(x)=u_{p}(x)+\alpha J_{n}(x)+\beta Y_{n}(x)
$$

8 Overstepping analogy

Come up with three linearly independent vectors in the plane.

9 Overstepping the Analogy

Are the following polynomials linearly dependent?

$$
\left\{\begin{array}{l}
x^{2}-72 x+9 \\
13 x^{2}+54 x-113 \\
\pi x^{2}-17 x+\sqrt{2} \\
e x^{2}+\sqrt{19} x-4
\end{array}\right.
$$

10 Connection with Geometry

Linear Algebra can be seen as a meeting point between algebra and geometry.

11 My Favorite Problems

1. Construct a matrix with the following column space and null space:

$$
R=\alpha\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{l}
2 \\
0 \\
3 \\
1
\end{array}\right] \quad N=\alpha\left[\begin{array}{l}
7 \\
8 \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{l}
4 \\
2 \\
1 \\
2
\end{array}\right]
$$

2. Evaluate

$$
\left[\begin{array}{ccc}
110 & 55 & -164 \\
42 & 21 & -62 \\
88 & 44 & -131
\end{array}\right]^{2017}
$$

