Matrices of Data and Singular Values

Gilbert Strang MIT
gilstrang@gmail.com

Problem: Find the important part of a matrix

Best approximation to A by a matrix B of rank k $\min \|A-B\|=\sigma_{k+1}$ for $B=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}$

$$
\begin{aligned}
S & =\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \quad \text { one independent column } \quad \text { rank }=1 \\
& =\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{ll}
1 & 2
\end{array}\right] \quad \text { column times row }(n \times 1)(1 \times n)=n \times n \\
& =5\left[\begin{array}{l}
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right] \quad \text { unit column vector } \mathbf{q} \\
& =\lambda \mathbf{q q}^{T} \quad \mathbf{q}=\text { eigenvector of } S, \lambda=5=\text { eigenvalue of } S
\end{aligned}
$$

Flag of France (rank 1)
$=\left[\begin{array}{llllll}B & B & W & W & R & R \\ B & B & W & W & R & R \\ B & B & W & W & R & R \\ B & B & W & W & R & R\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{llllll}B & B & W & W & R & R\end{array}\right]$

Symmetric matrices $S^{T}=S$

$S \mathbf{q}=\lambda \mathbf{q} \quad S\left[\mathbf{q}_{1} \ldots \mathbf{q}_{n}\right]=\left[\lambda_{1} \mathbf{q}_{1} \ldots \lambda_{n} \mathbf{q}_{n}\right] \quad S Q=Q \Lambda$
Orthogonal eigenvectors $Q^{T} Q=\left[\begin{array}{c}\mathbf{q}_{1}^{T} \\ \vdots \\ \mathbf{q}_{n}^{T}\end{array}\right]\left[\begin{array}{lll} & & \\ \mathbf{q}_{1} & \ldots & \mathbf{q}_{n}\end{array}\right]=\left[\begin{array}{lll}1 & & \\ & & \ddots \\ & & \\ & & \end{array}\right]$

$$
Q^{T}=Q^{-1} \text { and } S=Q \Lambda Q^{T}=\lambda_{1} \mathbf{q}_{1} \mathbf{q}_{1}^{T}+\cdots+\lambda_{n} \mathbf{q}_{n} \mathbf{q}_{n}^{T}
$$

Rank one pieces \rightarrow columns \mathbf{q} times rows \mathbf{q}^{T}
$\mathbf{A}=$ (rotation) (stretching) (rotation)

$$
=(\text { orthogonal } U) \quad(\text { diagonal } \Sigma) \quad\left(\text { orthogonal } V^{T}\right)
$$

Any matrix $A=U \Sigma V^{T}$
Symmetric matrix $S=Q \Lambda Q^{T}$
Singular Value Decomposition Spectral Theorem
$A V=U \Sigma$ means $A \mathbf{v}_{i}=\sigma_{i} \mathbf{u}_{i} \quad S Q=Q \Lambda$ means $S \mathbf{q}_{i}=\lambda_{i} \mathbf{q}_{i}$
$A^{T} A \mathbf{v}=\lambda \mathbf{v} \quad$ Multiply by $A \quad\left(A A^{T}\right) A \mathbf{v}=\lambda A \mathbf{v}$
$A A^{T}$ has same eigenvalues $\lambda>0$ as $A^{T} A$
$A A^{T}$ has eigenvectors $\mathbf{u}=\frac{A \mathbf{v}}{\sqrt{\lambda}}$
$A^{T} A=V \Lambda V^{T}$

$$
A A^{T}=U \Lambda U^{T}
$$

The goal is the SVD $A=U \Sigma V^{T}$ with $\sigma_{i}=\sqrt{\lambda_{i}}$
$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0 \quad \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$
v's are right singular vectors, u's are left singular vectors

Crazy proof of the SVD

$$
\begin{aligned}
A\left(A^{T} A\right) & =\left(A A^{T}\right) A \\
A V \Lambda V^{T} & =U \Lambda U^{T} A \\
U^{T} A V \Lambda & =\Lambda U^{T} A V
\end{aligned}
$$

$U^{T} A V$ commutes with diagonal matrix Λ
Suppose none of the λ 's is repeated $U^{T} A V$ is also diagonal!!! Call it Σ

Then $\Sigma^{T} \Sigma=\Lambda \quad \sigma_{i}=\sqrt{\lambda_{i}}$

$$
\begin{array}{lll}
A^{T} A & A A^{T} & A \\
\text { eigenvalues } \lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{r}>0 & \sigma_{i}=\sqrt{\lambda_{i}} \\
A^{T} A \mathbf{v}=\lambda \mathbf{v} & A A^{T} \mathbf{u}=\lambda \mathbf{u} & A \mathbf{v}=\sigma \mathbf{u} \\
V^{T} V=I & U^{T} U=I & \text { orthonormal u's and } \mathbf{v} \text { 's } \\
A^{T} A=V \Lambda V^{T} & A A^{T}=U \Lambda U^{T} & A=U \sqrt{\Lambda} V^{T} \text { (the SVD) } \\
=\lambda_{1} \mathbf{v}_{1} \mathbf{v}_{1}^{T}+ & =\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T}+ & =\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+ \\
\lambda_{2} \mathbf{v}_{2} \mathbf{v}_{2}^{T}+\cdots & \lambda_{2} \mathbf{u}_{2} \mathbf{u}_{2}^{T}+\cdots & \sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T}+\cdots
\end{array}
$$

Columns of V, U multiply rows of V^{T}, U^{T} : rank one pieces

Transmitting a rank one matrix $A=\mathbf{u v}^{T}$

Don't send $\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}\right] \quad$ Send $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

12 numbers instead of 36 numbers
$2 N$ numbers instead of N^{2} numbers
Flag with 3 stripes also has rank 1
Don't send $\left[\begin{array}{llllll}a & a & c & c & e & e \\ a & a & c & c & e & e \\ a & a & c & c & e & e \\ a & a & c & c & e & e \\ a & a & c & c & e & e \\ a & a & c & c & e & e\end{array}\right] \quad$ Send $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{llllll}a & a & c & c & e & e\end{array}\right]$
France, Italy, Germany, 20 more countries have 3 stripes

2 by 2 triangular matrix Rank 2

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
0 & 1
\end{array}\right]
$$

No saving to compress a 2 by 2 image!
The example shows rank $2=\mathbf{u}_{1} \mathbf{v}_{1}^{T}+\mathbf{u}_{2} \mathbf{v}_{2}^{T}$
Many choices for the u's and v's / this choice was not the SVD
The SVD choice: $\mathbf{u}_{1}^{T} \mathbf{u}_{2}=0 \quad \mathbf{v}_{1}^{T} \mathbf{v}_{2}=0 \quad\left\|\mathbf{u}_{2}\right\|\left\|\mathbf{v}_{2}\right\| \rightarrow \min$
$\mathbf{u}_{1} \mathbf{v}_{\mathbf{1}}{ }^{T}$ is the closest rank 1 matrix to A

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T} \\
\text { SVD gives } \sigma_{1}=\frac{\sqrt{5}+1}{2} \approx 1.6 \quad \sigma_{2}=\frac{\sqrt{5}-1}{2} \approx 0.6
\end{gathered}
$$

Remember $\sigma_{1}^{2}, \sigma_{2}^{2}=$ eigenvalues of $A^{T} A=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
Example $2=$ Hilbert matrix $=$ very compressible!

$$
H_{i j}=\frac{1}{i+j+1}=\text { symmetric positive definite }
$$

This Hilbert matrix is nearly singular and very ill-conditioned Determinant of H is incredibly small

Not much decay for a lower triangular matrix of 1's
Fast decay for the Hilbert matrix (and many others)

Key to applications

The nearest rank k matrix to A : Truncate the SVD

$$
A_{k}=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}
$$

"Pieces of A in order of importance"
Most useful when the σ 's are exponentially decreasing.

Symmetric $S=Q \Lambda Q^{T}=\lambda_{1} \mathbf{q}_{1} \mathbf{q}_{1}^{T}+\cdots+\lambda_{N} \mathbf{q}_{N} \mathbf{q}_{N}^{T}$
Any matrix $A=U \Sigma V^{T}=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+\cdots+\sigma_{N} \mathbf{u}_{N} \mathbf{v}_{N}^{T}$
Could find these pieces (column \times row) one at a time
The top eigenvector $\mathbf{x}=\mathbf{q}_{1}=\mathbf{u}_{1}$ gives λ_{1} and σ_{1}^{2}

$$
\begin{aligned}
& \lambda_{1}=\max \frac{\mathbf{x}^{T} S \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\text { largest eigenvalue of } S \\
& \sigma_{1}^{2}=\max \frac{\|A \mathbf{x}\|^{2}}{\|\mathbf{x}\|}=\max \frac{\mathbf{x}^{T} A^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=(\text { largest singular value })^{2}
\end{aligned}
$$

This shows how S (symmetric) corresponds to $A^{T} A$
λ (positive) corresponds to σ^{2}

Principal Component Analysis (PCA)

Find the closest line (or closest subspace) to n data points
Centered matrix $A=A_{0}$ ((average of each row)
Every row of A adds to zero: The mean has been subtracted.
n columns in original A_{0} give the data from the n individuals
One row could record heart rate for all individuals
Want to find the important information in A_{0} and A
Data comes in a matrix!

Principal Components when A has $m=2$ rows

Each column of A is a point (x, y). Each row adds to zero. Average x and average y are zero: data is centered at $(0,0)$ PCA finds the closest line to the data
Closest $=$ smallest sum of $(\text { perpendicular distances })^{2}$

$$
S=A A^{T}=(2 \text { by } n)(n \text { by } 2)=2 \text { by } 2
$$

Top eigenvector \mathbf{u}_{1} gives the closest line
Finance, genetics, model reduction, many applications
$S=A A^{T} /(N-1)$ is the sample covariance matrix
Each σ_{i}^{2} tells how much of S is "explained" by \mathbf{u}_{i}
Total variance $=\sigma_{1}^{2}+\cdots+\sigma_{m}^{2}=$ trace of S
In practice: Stop when σ_{i}^{2} is small
This gives the "effective rank" of S and A
$A=\left[\begin{array}{cccccc}3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7\end{array}\right]$ has $S=\frac{A A^{T}}{5}=\left[\begin{array}{ll}20 & 25 \\ 25 & 40\end{array}\right]$

Research question with Alex Townsend

Start from $f(x, y)$ on the square $0 \leq x \leq 1,0 \leq y \leq 1$
Create N by N matrix $A_{i j}=f\left(\frac{i}{N}, \frac{j}{N}\right)=$ "picture of f "
Is this matrix compressible like Hilbert?
Is it incompressible like this triangular flag? Circular flag?

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] \text { comes from } f(x, y)= \begin{cases}1 & x \geq y \\
0 & x<y\end{cases}
$$

US flag and UK flag are incompressible / they have diagonals What is the rank of the Japanese flag? Circle.
$1-0$ matrix A with a circular disk of all 1's. Radius R.

$\operatorname{rank} \approx 2\left(R-\frac{R}{\sqrt{2}}\right)=(2-\sqrt{2}) R$
Remarkable fact: singular values $\sigma \geq 1$ constant

Townsend found a description of compressible matrices C
Solve Sylvester's equation $A C-C B=F$

1. F should have rapidly decreasing σ 's
2. Eigenvalues of A should be separated from eigenvalues of B

Singular value decay for C depends on rational approximation
Rational approximation is often exponentially close

