

Feedbacks between soil engineers and vegetation can increase ecosystem robustness (Emergence of multi-scale regular vegetation patterns)

Corina E. Tarnita

How do small scale interactions lead to large scale patterns?

How do small scale interactions lead to large scale patterns?

(1) what are the ecological contexts that promote self-organization and the mechanisms that implement it? how do they differ across spatial scales?

How do small scale interactions lead to large scale patterns?

(1) what are the ecological contexts that promote self-organization and the mechanisms that implement it? how do they differ across spatial scales?

(2) what are the effects of self-organization at one scale on dynamics at others?

How do small scale interactions lead to large scale patterns?

(1) what are the ecological contexts that promote self-organization and the mechanisms that implement it? how do they differ across spatial scales?

(2) what are the effects of self-organization at one scale on dynamics at others?

(3) how does self-organization influence the robustness of systems in the face of perturbation, stress, and catastrophe?

Attraction & Repulsion

Group formation

Social behavior

Multicellularity

Tissue architecture

Human cooperation

Landscape architecture

Nedium-scale patterning, Bunker Reef

Mussel Beds in the Wadden Sea

Map data: Google, © 2015 Aerodata International Surveys

Labyrinth pattern, Niger

Two Guiding Questions:

How do patterns form?

Why do patterns *matter*? What are their effects on the ecosystem?

Local Behavior Leads To Large-Scale Patterns

10 hour time-lapse of mussels on concrete substrate

Video credit: J. van de Koppel

Local Behavior Leads To Large-Scale Patterns

10 hour time-lapse of mussels on concrete substrate

Video credit: J. van de Koppel

Dense soil

Dense soil

Sandy soil

Sandy soil

Range of facilitation (+)

Range of facilitation (+)

Range of facilitation (+)

Range of

Range of Range of inhibition (–) inhibition (–) facilitation (+)

Range of

Range of Range of inhibition (-) inhibition (–) facilitation (+)

Range of

Range of Range of inhibition (-) inhibition (–) facilitation (+)

Scale-dependent Feedbacks

Short-distance positive feedback

Distance

Long-distance negative feedback

Turing, *Phil Trans B*Levin and Segel, *SIAM*Klausmeier, *Science*Rietkerk and van de Koppel, *TREE*

Turing, Phil Trans B 1952

$$\frac{\partial P}{\partial t} = c \times g_{\max} \times \frac{W}{W + k_1} \times P - d \times P + D_p \Delta P,$$

$$\frac{\partial W}{\partial t} = \alpha \times O \frac{P + k_2 \times W_0}{P + k_2} - g_{\max} \times \frac{W}{W + k_1}$$

$$\times P - r_w \times W + D_w \Delta W,$$

$$\frac{\partial O}{\partial t} = R - \alpha \times O \frac{P + k_2 \times W_0}{P + k_2} + D_0 \Delta O,$$

 $P + k_2$

Rietkerk et al 2002, Am. Nat.

∂t

- c = Yield coefficient for plants (water use efficiency)
- ✤ g_{max} = Maximum plant growth rate.
- * k_1 = Growth efficiency for plants growing on water as limiting nutrient.
- ✤ d = Plant mortality rate.
- * $r_w = Evaporation/loss$ rate for underground water.
- alpha = Maximum infiltration rate for the soil.
- * k_2 = Infiltration efficiency of the soil.
- \bullet W₀ = With alpha and O, minimum water infiltration in the absence of vegetation
- * D_p = Plant dispersion rate.
- * $D_w = Diffusivity of soil water$
- * $D_o = Diffusivity of surface water$

Vegetation Patterns Can Be Early-Warning Indicators

(gm⁻²)

biomass

Vegetation

10¹

10⁻¹

Rietkerk et al (2004), Science Scheffer et al (2009), Nature

• Drylands cover >40% of Earth's land surface and are home to >38% of the populace. • The robustness/resilience of drylands is an urgent concern given the importance of these systems to human livelihoods and the increased frequency/ intensity of drought expected under climate change.

Drylands Source: CRU/UEA, UNEP/GRD

Approximate equatorial scale 1:115 million

What forms these spots?

Northwestern Tanzania

. The

24

4

the

Ten 1

1

金

© 2010 Europa Technologies © 2010 Google

Q.

2

代

e

1 Martin

100

鐵

43 95

能

53.4

23

What Is Under The Vegetation Clumps?

Termites modify nutrient and moisture availability

Sileshi et al. (2010), J. Veg. Sci.

Pringle et al. (2010), PLoS Biol

OPEN O ACCESS Freely available online

Spatial Pattern Enhances Ecosystem Functioning in an African Savanna

Robert M. Pringle^{1,2}*, Daniel F. Doak^{2,3}, Alison K. Brody^{2,4}, Rudy Jocqué⁵, Todd M. Palmer^{2,6}

1 Society of Fellows, Harvard University, Cambridge, Massachusetts, United States of America, 2 Mpala Research Centre, Nanyuki, Kenya, 3 Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, United States of America, 4 Department of Biology, University of Vermont, Burlington, Vermont, United States of America, 5 Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium, 6 Department of Biology, University of Florida, Gainesville, Florida, United States of America

• 0 . (AR Google earth

Image © 2016 DigitalGlobe

Agriculturalists use termite mounds to plant crops

Pre-Columbian raised fields in a savanna near Sinnamary, coastal French Guiana.

What mechanism could lead to this type of pattern?

Map data: Google, © 2015 CNES/Astrium

How Do Termites Organize Across the Landscape?

Juan Bonachela

100 meters

Tarnita et al, in review

Colony Growth

Colony Growth

Colony Reproduction

Colony Reproduction

Competition

Competition

Modeling Termite Colony Competition: When Do Conflicts Occur?

Modeling Termite Colony Competition: When Do Conflicts Occur?

Modeling Termite Colony Competition: When Do Conflicts Occur?

Modeling Termite Colony Competition: Who Wins Conflict?

Modeling Termite Colony Competition: Who Wins Conflict?

Dynamics

Dynamics

Competition and Conflict Result in Pattern: But Is It Similar To The Natural Pattern?

Spatial Statistics: A Voronoi Diagram Allows Comparison Between Patterns

Spatial Statistics: A Voronoi Diagram Allows Comparison Between Patterns

The Regular Pattern of Termite Mounds Arises from Competition and Conflict

Tarnita et al, in review

In general, same is true across several continents and different species of social insects

Tarnita et al, in review

Does the termite pattern tell us anything about robustness?

Map data: Google, © 2015 CNES/Astrium

Does the termite pattern tell us anything about robustness?

And what happens if both mechanisms coexist?

Map data: Google, © 2015 CNES/Astrium

$$\frac{\partial P}{\partial t} = c \times g_{\max} \times \frac{W}{W + k_1} \times P - d \times P + D_p \Delta P,$$

$$\frac{\partial W}{\partial t} = \alpha \times O \frac{P + k_2 \times W_0}{P + k_2} - g_{\max} \times \frac{W}{W + k_1}$$

$$\times P - r_w \times W + D_w \Delta W,$$

$$\frac{\partial O}{\partial t} = R - \alpha \times O \frac{P + k_2 \times W_0}{P + k_2} + D_0 \Delta O,$$

 $P + k_2$

Rietkerk et al 2002, Am. Nat.

∂t

- c = Yield coefficient for plants (water use efficiency)
- ✤ g_{max} = Maximum plant growth rate.
- * k_1 = Growth efficiency for plants growing on water as limiting nutrient.
- ✤ d = Plant mortality rate.
- * $r_w = Evaporation/loss$ rate for underground water.
- alpha = Maximum infiltration rate for the soil.
- * k_2 = Infiltration efficiency of the soil.
- \bullet W₀ = With alpha and O, minimum water infiltration in the absence of vegetation
- * D_p = Plant dispersion rate.
- * $D_w = Diffusivity of soil water$
- * $D_o = Diffusivity of surface water$

Termite induced heterogeneity in water use efficiency (increase 0-50%) and infiltration efficiency (increase 0-67%)

Simon Levin

Kelly Caylor

IUm

Distance from termite mound

Juan Bonachela

IUm

- ✤ g_{max} = Maximum plant growth rate.
- * k_1 = Growth efficiency for plants growing on water as limiting nutrient.
- ✤ d = Plant mortality rate.
- $r_w = Evaporation/loss rate for underground water.$
- alpha = Maximum infiltration rate for the soil.
- * k_2 = Infiltration efficiency of the soil.
- W_0 = With alpha and O, minimum water infiltration in the absence of
 - vegetation
- * D_p = Plant dispersion rate.
- * $D_w = Diffusivity of soil water$
- $D_0 = Diffusivity of surface water$
- R = precipitation

$$\frac{\partial P}{\partial t} = c \times g_{\max} \times \frac{W}{W + k_1} \times P - d \times P + D_p \Delta P,$$

$$\frac{\partial W}{\partial t} = \alpha \times O \frac{P + k_2 \times W_0}{P + k_2} - g_{\max} \times \frac{W}{W + k_1}$$

$$\times P - r_w \times W + D_w \Delta W,$$

$$\frac{\partial O}{\partial t} = R - \alpha \times O \frac{P + k_2 \times W_0}{P + k_2} + D_o \Delta O,$$

Rietkerk et al 2002, Am. Nat.

c = Yield coefficient for plants (water use efficiency)

Bonachela et al (2015), Science

Bonachela et al (2015), Science

Northwestern Tanzania

靈

5

C.

10

E.

Northwestern Tanzania

靈

5

C.

10

E.

Northwestern Tanzania

2

Prediction: we should see smaller scale vegetation patterns in between the mounds. But where were they?

In Between the Termite Mounds Vegetation Is Patterned

Jen Guyton

Model predictions match field observations Fourier Transform analysis and comparison of field images and simulations

Efrat Sheffer

So Is This Ecosystem in Danger of Collapse?

Map data: Google, © 2015 CNES/Astrium

With mounds

Vegetation biomass (gm-2)

Vegetation biomass (gm-2)

Vegetation biomass (gm⁻²)

10¹

Vegetation biomass (gm⁻²)

10¹

Mounds Increase Drought Resistance

Mounds Increase Drought Resistance

<text>

Grassland guardians Termite mounds help dryland habitats resist climate change

ECOLOGICAL FEEDBACKS

Termite mounds can increase the robustness of dryland ecosystems to climatic change

Juan A. Bonachela,¹* Robert M. Pringle,^{1,2} Efrat Sheffer,¹ Tyler C. Coverdale,¹ Jennifer A. Guyton,¹ Kelly K. Caylor,^{2,3} Simon A. Levin,¹ Corina E. Tarnita^{1,2}†

ARTICLE

Received 23 Mar 2014 | Accepted 11 Sep 2014 | Published 22 Oct 2014

DOI: 10.1038/ncomms6234

Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems

Quan-Xing Liu^{1,2}, Peter M.J. Herman¹, Wolf M. Mooij^{3,4}, Jef Huisman², Marten Scheffer⁴, Han Olff⁵ & Johan van de Koppel^{1,5}

Physics of Life Reviews

Available online 16 July 2016

In Press, Corrected Proof — Note to users

Review

Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns

Quan-Xing Liu^{a, b, h,} 📥 , 🔤 , Max Rietkerk^c, Peter M.J. Herman^b, Theunis Piersma^{d, e}, John M. Fryxell^f, Johan van de Koppel^{b, g,} 📥 [,] 🔤

Conclusions

Patterns are **common** in nature and are created by abiotic and biotic processes.

Patterns **matter**: Understanding patterns can help us explain ecosystem functioning and stability. But also **engineer** solutions.

Mechanisms matter: Similar patterns can arise from different processes and have different effects on the ecosystem.

Multiple mechanisms can coexist and interact, possibly at different scales.

Thank you!

Rob Pringle Juan Bonachela Efrat Sheffer Kelly Caylor Simon Levin Jen Guyton **Tyler Coverdale Ryan Long Jess Castillo-Vardaro**

