Conceptual Climate Models Minitutorial Part II

Jim Walsh
Oberlin College
SIAM MPE Conference
Philadelphia, PA
September 30, 2016

Resources:

- https://mcrn.hubzero.org/resources/81\#series. Videos of lectures and lecture slides from Introduction to the Mathematics of Climate, taught by Richard McGehee, School of Mathematics, University of Minnesota.
- https://mcrn.hubzero.org/resources/523/supportingdocs. Material developed for the MAA-NCS Summer Seminar Conceptual Climate Models, held in Minneapolis, July 2013. Contributors: A. Barry, R. McGehee, S. Oestreicher, J.A. Walsh, E. Widiasih.
- J.A. Walsh, Climate modeling in differential equations, The UMAP Journal 36 (4) (2015), 325-363.

Coupled zonal temperature - ice line model

$$
\left\{\begin{aligned}
R \frac{\partial T}{\partial t} & =Q s(y)(1-\alpha(y, \eta))-(A+B T)-C(T-\bar{T}) \\
\frac{d \eta}{d t} & =\epsilon\left(T(\eta, t)-T_{c}\right), \quad \epsilon>0
\end{aligned}\right.
$$

- An infinite-dimensional dynamical system
- Symmetry assumption \longrightarrow functions are even in y
- Consider an approximating system of ODEs

$$
R \frac{\partial T}{\partial t}=Q s(y)(1-\alpha(y, \eta))-(A+B T)-C(T-\bar{T})
$$

$$
\int_{0}^{1} s(y) d y=1
$$

Dashed: actual (current) values
Solid: $s(y)=s_{0} p_{0}(y)+s_{2} p_{2}(y), p_{0}(y)=1, p_{2}(y)=\frac{1}{2}\left(3 y^{2}-1\right)$
the first two even Legendre polys, $s_{0}=1, s_{2}=-0.482$

$$
R \frac{\partial T}{\partial t}=Q s(y)(1-\alpha(y, \eta))-(A+B T)-C(T-\bar{T})
$$

$$
R \frac{\partial T}{\partial t}=Q s(y)(1-\alpha(y, \eta))-(A+B T)-C(T-\bar{T})
$$

Equilibrium temperature profiles $T_{\eta}^{*}(y)$ (piecewise quadratic)

$$
T(\eta, t)=\frac{1}{2}\left(\lim _{y \uparrow \eta} T(y, t)+\lim _{y \downarrow \eta} T(y, t)\right)
$$

$$
s(y)=s_{0} p_{0}(y)+s_{2} p_{2}(y)
$$

$$
\left\{\begin{aligned}
R \frac{\partial T}{\partial t} & =Q s(y)(1-\alpha(y, \eta))-(A+B T)-C(T-\bar{T}) \\
\frac{d \eta}{d t} & =\epsilon\left(T(\eta, t)-T_{c}\right), \quad \epsilon>0
\end{aligned}\right.
$$

$$
\begin{gathered}
T(y, t)=\left\{\begin{aligned}
U(y, t), & y<\eta \\
V(y, t), & y>\eta
\end{aligned}\right. \\
U(y, t)=u_{0}(t) p_{0}(y)+u_{2}(t) p_{2}(y) \\
V(y, t)=v_{0}(t) p_{0}(y)+v_{2}(t) p_{2}(y) \\
T(\eta, t)=\frac{1}{2}(U(\eta, t)+V(\eta, t))
\end{gathered}
$$

R. McGehee and E. Widiasih, A quadratic approximation to Budyko's ice albedo feedback model with ice line dynamics, SIAM J. Appl. Dyn. Syst. 13 (2014), 518-536.

Approximating system of ODEs

$$
p_{0}(y)=1, p_{2}(y)=\frac{1}{2}\left(3 y^{2}-1\right)
$$

$$
R \frac{\partial T}{\partial t}=Q s(y)(1-\alpha(y, \eta))-(B+C) T-A+C \bar{T}
$$

$$
T(y, t)=\left\{\begin{array}{lll}
U(y, t), & y<\eta & U(y, t)=u_{0}(t) p_{0}(y)+u_{2}(t) p_{2}(y) \\
V(y, t), & y>\eta & V(y, t)=v_{0}(t) p_{0}(y)+v_{2}(t) p_{2}(y)
\end{array}\right.
$$

$$
y<\eta
$$

$$
\begin{aligned}
R \frac{\partial T}{\partial t} & =R\left(\dot{u}_{0} p_{0}(y)+\dot{u}_{2} p_{2}(y)\right) \\
Q s(y)(1-\alpha(y, \eta)) & =Q\left(s_{0} p_{0}(y)+s_{2} p_{2}(y)\right)\left(1-\alpha_{1}\right) \\
(B+C) T & =(B+C)\left(u_{0} p_{0}(y)+u_{2} p_{2}(y)\right) \\
-A+C \bar{T} & =(-A+C \bar{T}) p_{0}(y)
\end{aligned}
$$

plug in, equate coefficients of $p_{0}(y)$ and $p_{2}(y)$, respectively...

$$
\begin{aligned}
& T(y, t)=\left\{\begin{array}{cc}
U(y, t), & y<\eta \\
V(y, t), & y>\eta
\end{array}\right. \\
& U(y, t)=u_{0}(t) p_{0}(y)+u_{2}(t) p_{2}(y) \\
& V(y, t)=v_{0}(t) p_{0}(y)+v_{2}(t) p_{2}(y)
\end{aligned}
$$

$$
\begin{aligned}
& R \dot{u}_{0}=Q\left(1-\alpha_{1}\right)-(B+C) u_{0}-A+C \bar{T} \\
& R \dot{u}_{2}=Q s_{2}\left(1-\alpha_{1}\right)-(B+C) u_{2}
\end{aligned}
$$

Repeat for $\boldsymbol{y}>\boldsymbol{\eta}$:

$$
\begin{aligned}
& R \dot{v}_{0}=Q\left(1-\alpha_{2}\right)-(B+C) v_{0}-A+C \bar{T} \\
& R \dot{v}_{2}=Q s_{2}\left(1-\alpha_{2}\right)-(B+C) v_{2}
\end{aligned}
$$

Include the ice line equation...
$R \dot{u}_{0}=Q\left(1-\alpha_{1}\right)-(B+C) u_{0}-A+C \bar{T}$
$R \dot{u}_{2}=Q s_{2}\left(1-\alpha_{1}\right)-(B+C) u_{2}$
$R \dot{v}_{0}=Q\left(1-\alpha_{2}\right)-(B+C) v_{0}-A+C \bar{T}$
$R \dot{v}_{2}=Q s_{2}\left(1-\alpha_{2}\right)-(B+C) v_{2}$
$\dot{\eta}=\epsilon\left(T(\eta, t)-T_{c}\right)$
$\bullet \bar{T}=\int_{0}^{\eta} U(y, t) d y+\int_{\eta}^{1} V(y, t) d y=\bar{T}\left(u_{0}, u_{2}, v_{0}, v_{2}, \eta\right)$

- $T(\eta, t)=\frac{1}{2}(U(\eta, t)+V(\eta, t))=T\left(u_{0}, u_{2}, v_{0}, v_{2}, \eta\right)$

$$
\text { change variables } w=\frac{1}{2}\left(u_{0}+v_{0}\right), z=u_{0}-v_{0}
$$

$$
\left(\alpha_{0}=\frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)\right)
$$

$R \dot{w}$	$=Q\left(1-\alpha_{0}\right)-(B+C) w-A+C \bar{T}$
$R \dot{z}$	$=Q\left(\alpha_{2}-\alpha_{1}\right)-(B+C) z$
$R \dot{u}_{2}$	$=Q s_{2}\left(1-\alpha_{1}\right)-(B+C) u_{2}$
$R \dot{v}_{2}$	$=Q s_{2}\left(1-\alpha_{2}\right)-(B+C) v_{2}$
$\dot{\eta}$	$=\epsilon\left(T(\eta, t)-T_{c}\right)$

$\bullet \bar{T}=\bar{T}\left(w, z, u_{2}, v_{2}, \eta\right) \quad \bullet T(\eta, t)=T\left(w, z, u_{2}, v_{2}, \eta\right)$

Assume z, u_{2}, v_{2} are at equilibrium $\longrightarrow \bullet \bar{T}=\bar{T}(w, \eta)$

- $T(\eta, t)=T(w, \eta)$

$$
\begin{array}{rl|l}
\dot{\boldsymbol{w}}=-\tau(\boldsymbol{w}-\boldsymbol{F}(\boldsymbol{\eta})) & F(\boldsymbol{\eta})=\gamma(\boldsymbol{\eta})-A / B & (\boldsymbol{F}(\eta) \text { cubic in } \eta ; \tau=B / R) \\
\dot{\boldsymbol{\eta}}=\boldsymbol{\epsilon}(\boldsymbol{w}-\boldsymbol{\sigma}(\boldsymbol{\eta})), & \boldsymbol{G}(\boldsymbol{\eta}) \text { quadratic in } \boldsymbol{\eta} &
\end{array}
$$

$$
\begin{array}{rl|l}
\dot{\boldsymbol{w}}=-\tau(\boldsymbol{w}-\boldsymbol{F}(\boldsymbol{\eta})) & F(\boldsymbol{\eta})=\gamma(\boldsymbol{\eta})-A / B & (\boldsymbol{F}(\eta) \text { cubic in } \eta ; \tau=B / R) \\
\dot{\boldsymbol{\eta}}=\boldsymbol{\epsilon}(\boldsymbol{w}-\boldsymbol{\sigma}(\boldsymbol{\eta})), & \boldsymbol{G}(\boldsymbol{\eta}) \text { quadratic in } \boldsymbol{\eta} &
\end{array}
$$

Approximating system of ODEs

$$
T(y, t)=\left\{\begin{array}{ll}
U(y, t), & y<\eta \\
V(y, t), & y>\eta
\end{array} \quad V(y, t)=u_{0}(t) p_{0}(y)+u_{2}(t) p_{2}(y)\right.
$$

Black: Equlibrium profile

$$
T_{\eta}^{*}(y)
$$

Red: Observations

$$
\begin{array}{cl|ll}
\dot{w}=-\tau(w-F(\eta)) & F(\eta)=\gamma(\eta)-A / B & (\boldsymbol{F}(\eta) \text { cubic in } \eta ; \tau=B / R) \\
\dot{\boldsymbol{\eta}}=\boldsymbol{\epsilon}(\boldsymbol{w}-\boldsymbol{\eta}(\boldsymbol{\eta})), & G(\boldsymbol{\eta}) \text { quadratic in } \boldsymbol{\eta} &
\end{array}
$$

$$
\begin{aligned}
\dot{\boldsymbol{w}} & =-\tau(\boldsymbol{w}-\boldsymbol{F}(\boldsymbol{\eta})) & & F(\boldsymbol{\eta})=\gamma(\boldsymbol{\eta})-A / B \\
\dot{\boldsymbol{\eta}} & =\boldsymbol{\epsilon}(\boldsymbol{w}-\boldsymbol{\sigma}(\boldsymbol{\eta})), & \boldsymbol{G}(\boldsymbol{\eta}) \text { quadratic in } \boldsymbol{\eta} &
\end{aligned}
$$

$$
\begin{array}{cl|ll}
\dot{\boldsymbol{w}}=-\boldsymbol{\tau}(\boldsymbol{w}-\boldsymbol{F}(\boldsymbol{\eta})) & \boldsymbol{F}(\boldsymbol{\eta})=\gamma(\boldsymbol{\eta})-A / B & (\boldsymbol{F}(\boldsymbol{\eta}) \text { cubic in } \eta ; \tau=B / \boldsymbol{R}) \\
\dot{\boldsymbol{\eta}}=\boldsymbol{\epsilon}(\boldsymbol{w}-\boldsymbol{\sigma}(\boldsymbol{\eta})), & \boldsymbol{G}(\boldsymbol{\eta}) \text { quadratic in } \boldsymbol{\eta} &
\end{array}
$$

$$
A=213 \mathrm{~W} / \mathrm{m}^{2}
$$

Snowball Earth!

Approximating system of ODEs

Approximating system of ODEs

$$
\begin{aligned}
\dot{w} & =-\tau(\boldsymbol{w}-\boldsymbol{F}(\boldsymbol{\eta})) \\
\dot{\boldsymbol{\eta}} & =\boldsymbol{\epsilon}(\boldsymbol{w}-G(\boldsymbol{\eta}))
\end{aligned}
$$

Saturday, October 1 MS13
 Mathematics and Conceptual Climate Modeling
 9:30-9:55 Conceptual Models: Understanding Past Climate Through Mathematics, Esther Widiasih

Meridional heat transport

$$
\begin{aligned}
R \frac{\partial T}{\partial t} & =E_{\mathrm{in}}-E_{\text {out }}-E_{\text {transport }} \\
& =Q s(y)\left(1-\alpha_{\eta}(y)\right)-(A+B T(y, t))-C(T(y, t)-\overbrace{\int_{0}^{1} T(y, t) d y}^{\bar{T}})
\end{aligned}
$$

- $E_{\text {transport }}=C(T-\bar{T}) \quad$ (relaxation to the mean $)$
- $E_{\text {transport }}=D \nabla^{2} T=D \frac{\partial}{\partial y}\left(1-y^{2}\right) \frac{\partial T}{\partial y} \quad$ (diffusion process)

Models: Heat flux resulting from horizontal redistribution by the circulations of the oceans and atmosphere

Thermohaline Circulation

Image Credit: NASA
thermo: heat haline: salt

The rate of circulation is a function of the temperature and salinity and can change over time.

Atlantic Meridional Overturning Circulation

Part of the thermohaline circulation

illustration by jg. Source for Earth's topology: NASA/JPL-Caltech

An ocean box model

Resources:

- H. Stommel, Thermohaline convection with two stable regimes of flow, Tellus XIII (2) (1961)
- https://mcrn.hubzero.org/resources/81\#series. Videos of lectures and lecture slides from Introduction to the Mathematics of Climate, taught by Richard McGehee, School of Mathematics, University of Minnesota.
- H. Kaper and H. Engler, Mathematics and Climate, SIAM (2013)

Stommel's ocean box model

Low latitudes

High latitudes

	bath 1	bath 2
temperature	\mathcal{T}^{*}	$-\mathcal{T}^{*}$
salinity	\mathcal{S}^{*}	$-\mathcal{S}^{*}$

Capillary flow: assumed to be proportional to density differences

$$
\text { Density: }\left\{\begin{array}{l}
\text { Decreases as temperature }(\mathrm{T}) \text { increases } \\
\text { Inreases as salinity }(\mathrm{S}) \text { increases }
\end{array}\right.
$$

Stommel's ocean box model

Low latitudes

Temperature

$$
\begin{aligned}
& \dot{T}_{1}=c\left(\mathcal{T}^{*}-T_{1}\right)-|q|\left(T_{1}-T_{2}\right) \\
& \dot{T}_{2}=c\left(-\mathcal{T}^{*}-T_{2}\right)+|q|\left(T_{1}-T_{2}\right)
\end{aligned}
$$

$$
\frac{d}{d t}\left(T_{1}+T_{2}\right)=-c\left(T_{1}+T_{2}\right) \Rightarrow T_{1}+T_{2} \rightarrow 0 . \quad \text { Set } T_{1}=-T_{2}=T
$$

Stommel's ocean box model

Low latitudes

Temperature

$$
\begin{aligned}
& \dot{T}_{1}=c\left(\mathcal{T}^{*}-T_{1}\right)-|q|\left(T_{1}-T_{2}\right) \\
& \dot{T}_{2}=c\left(-\mathcal{T}^{*}-T_{2}\right)+|q|\left(T_{1}-T_{2}\right)
\end{aligned}
$$

Salinity
$\dot{S}_{1}=d\left(\mathcal{S}^{*}-S_{1}\right)-|q|\left(S_{1}-S_{2}\right)$

$$
\dot{S}_{2}=d\left(-\mathcal{S}^{*}-S_{2}\right)+|q|\left(S_{1}-S_{2}\right)
$$

$$
\frac{d}{d t}\left(T_{1}+T_{2}\right)=-c\left(T_{1}+T_{2}\right) \Rightarrow T_{1}+T_{2} \rightarrow 0 . \quad \text { Set } T_{1}=-T_{2}=T
$$

Similarly, set $S_{1}=-S_{2}=S$

Stommel's ocean box model

Low latitudes

$$
\begin{aligned}
\dot{T} & =c\left(\mathcal{T}^{*}-T\right)-2|q| T \\
\dot{S} & =d\left(\mathcal{S}^{*}-S\right)-2|q| S
\end{aligned}
$$

Flow rate q : proportional to density differences

$$
k q=\rho_{1}-\rho_{2}
$$

Density $\rho=\rho(T, S)=\rho_{0}(1-\alpha T+\beta S), \quad \alpha, \beta>0$
ρ_{0} reference density

Flow rate: $k q=\rho_{1}-\rho_{2}=2 \rho_{0}(-\alpha T+\beta S)$

$$
\begin{aligned}
\dot{T} & =c\left(\mathcal{T}^{*}-T\right)-2|q| T \\
\dot{S} & =d\left(\mathcal{S}^{*}-S\right)-2|q| S
\end{aligned}
$$

$$
k q=2 \rho_{0}(-\alpha T+\beta S)
$$

Nondimensionalize ... and more!

$$
y=\frac{T}{\mathcal{T}^{*}}, x=\frac{S}{\mathcal{S}^{*}}, \quad \tau=c t, \quad \delta=\frac{d}{c}, \quad f=2 \frac{q}{c}
$$

$$
\begin{aligned}
& \frac{d x}{d \tau}=\delta(1-x)-|f| x \\
& \frac{d y}{d \tau}=1-y-|f| y
\end{aligned}
$$

Stommel's ocean box model

$$
\begin{array}{r}
y=\frac{T}{\mathcal{T}^{*}}, x=\frac{S}{\mathcal{S}^{*}}, \tau=c t, \delta= \\
\begin{array}{l}
\frac{d x}{d \tau}=\delta(1-x)-|f| x \\
\frac{d y}{d \tau}=1-y-|f| y
\end{array}
\end{array}
$$

$$
\begin{aligned}
& k q=2 \rho_{0}(-\alpha T+\beta S) \\
& R x)=k \frac{c f}{2} \quad\left(R=\frac{\beta \mathcal{S}^{*}}{\alpha \mathcal{T}^{*}}\right)
\end{aligned}
$$

$$
f=\frac{1}{\lambda}(-y+R x), \quad \lambda=\frac{c k}{4 \rho_{0} \alpha \mathcal{T}^{*}}
$$

Stommel's ocean box model

$$
y=\frac{T}{\mathcal{T}^{*}}, x=\frac{S}{\mathcal{S}^{*}}
$$

$$
\begin{aligned}
& \frac{d x}{d \tau}=\delta(1-x)-|f| x \\
& \frac{d y}{d \tau}=1-y-|f| y
\end{aligned}
$$

$$
f=\frac{1}{\lambda}(-y+R x), \quad \lambda=\frac{c k}{4 \rho_{0} \alpha \mathcal{T}^{*}}
$$

At equilibrium: $\quad x^{*}=\frac{\delta}{\delta+|f|}, y^{*}=\frac{1}{1+|f|}$

$$
\lambda f=-y^{*}+R x^{*}=-\frac{1}{1+|f|}+R \frac{\delta}{\delta+|f|}=\phi(f, R, \delta)
$$

Solutions of $\lambda f=\phi(f, R, \delta)$ yield equilibria (x^{*}, y^{*})

$$
y=\frac{\boldsymbol{T}}{\mathcal{T}^{*}}, x=\frac{S}{\mathcal{S}^{*}}
$$

$$
\begin{aligned}
\lambda f=\phi(f ; R, \delta) & =-\frac{1}{1+|f|}+\frac{R \delta}{\delta+|f|} \\
& =-y^{*}+R x^{*}
\end{aligned}
$$

salinity dominates capillary flow: warm to cold
temperature dominates capillary flow: cold to warm

$$
\begin{aligned}
& y=\frac{\boldsymbol{T}}{\mathcal{T}^{*}}, x=\frac{S}{\mathcal{S}^{*}} \\
& \lambda f=-y+R x
\end{aligned}
$$

$$
y=\frac{T}{\mathcal{T}^{*}}, x=\frac{S}{\mathcal{S}^{*}}
$$

temperature dominates capillary flow: cold to warm

$$
\begin{array}{|l}
\hline \delta=1 / 6 \\
R=2 \\
\lambda=1 / 5 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \frac{d x}{d \tau}=\delta(1-x)-|f| x \\
& \frac{d y}{d \tau}=1-y-|f| y
\end{aligned}
$$

$$
y=\frac{T}{\mathcal{T}^{*}}, \quad x=\frac{S}{\mathcal{S}^{*}}
$$

salinity dominates capillary flow: warm to cold
FROM THE DIRECTGR QF INDEPENDENCE DAY
THE DAY AFTER
TaMareqw

$$
\begin{aligned}
& \frac{d x}{d \tau}=\delta(1-x)-|f| x \\
& \frac{d y}{d \tau}=1-y-|f| y
\end{aligned}
$$

$$
y=\frac{T}{\mathcal{T}^{*}}, x=\frac{S}{\mathcal{S}^{*}}
$$

Increase $k \Rightarrow \underline{\text { increase } \lambda} \boldsymbol{\lambda}$: Increase the resistance in the capillary

$$
\lambda f=\phi(f ; R, \delta)=-\frac{1}{1+|f|}+\frac{R \delta}{\delta+|f|}=-y^{*}+R x^{*}
$$

$$
\begin{aligned}
& \begin{array}{l}
\delta=1 / 6 \\
R=2 \\
\lambda=0.3
\end{array} \\
& \text { increased res } \\
& \text { from } 0.2 \text { t } \\
& \text { MCRN }
\end{aligned}
$$

Stommel's model: Bifurcations

$$
\lambda f=\phi(f ; R, \delta)=-\frac{1}{1+|f|}+\frac{R \delta}{\delta+|f|}=-y^{*}+R x^{*}
$$

increased resistance
from 0.3 to 0.33

Stommel's model: Bifurcations

The stable node a and the saddle b begin to merge

$$
\begin{aligned}
& \begin{array}{l}
\delta=1 / 6 \\
R=2 \\
\lambda=0.33
\end{array}
\end{aligned}
$$

$$
\lambda f=\phi(f ; R, \delta)=-\frac{1}{1+|f|}+\frac{R \delta}{\delta+|f|}=-y^{*}+R x^{*}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\delta=1 / 6 \\
R=2 \\
\lambda=0.4 \\
\hline
\end{array}\right\}
\end{aligned}
$$

Increase the flow resistance sufficiently and the stable node and saddle disappear. The Gulf Stream will eventually reverse.

Now decrease $\boldsymbol{\lambda} \Rightarrow$ decrease the resistance in the capillary

Stommel's model: Hysteresis

The stable node \boldsymbol{a} and the saddle \boldsymbol{b} have remerged, but it is difficult to get to \boldsymbol{a}. The Gulf Stream is still reversed.

We are back to our original parameters, but the Gulf Stream is still reversed.

$$
\lambda=0.33
$$

Stommel's model: Hysteresis

The flow resistance is below the original value. Point \boldsymbol{a} is the dominant attractor.
Perhaps the Gulf Stream will find a way to return to normal.

Stommel's model: Hysteresis

Red: Stable

Blue: Unstable

Atlantic Meridional Overturning Circulation

L. G. Henry, J. F. McManus, W. B. Curry, N. L. Roberts, A. M. Piotrowski, L. D. Keigwin, North Atlantic ocean circulation and abrupt climate change during the last glaciation, Science, June 30, 2016.
"The last ice age wasn't one long big chill. Dozens of times temperatures abruptly rose or fell, causing all manner of ecological change.

Now, scientists have implicated the culprit behind those seesaws-changes to a conveyor belt of ocean currents known as the Atlantic Meridional Overturning Circulation (AMOC).

These currents, which today drive the Gulf Stream, bring warm surface waters north and send cold, deeper waters south. But they weakened suddenly and drastically, nearly to the point of stopping, just before several periods of abrupt climate change, researchers report today in Science."

Eric Hand, http://www.sciencemag.org/news/2016/06/crippled-atlantic-conveyor-triggered-ice-age-climate-change

Thank you for your attention!

$$
\begin{aligned}
& \text { Saturday, October } 1 \\
& \text { MS13 } \\
& \text { Mathematics and Conceptual Climate Modeling } \\
& \text { 9:30 AM - 11:30 AM } \quad \text { Room: Concerto B - 3rd Floor } \\
& \hline
\end{aligned}
$$

9:30-9:55 Conceptual Models: Understanding Past Climate Through Mathematics Esther Widiasih

10:00-10:25 Peatlands, Agriculture, and the Carbon Budget: A Conceptual Model for 15kyr Bp to the Present, Alice Nadeau

10:30-10:55 Palaeoclimate Dynamics Modelled with Delay Equations, Courtney Quinn
11:00-11:25 Improved Validation of Conceptual Climate Models Using Data Analysis
Techniques, Charles D. Camp

