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Summary	

•  A	brief	history	of	Earth’s	climate	
•  What	is	climate?	
•  Some	physics	background	
•  0D	Energy	Balance	Model	(EBM)	
•  Tipping	points/	BifurcaRons/	Hysteresis	
•  1D	EBM	(infinite	dimensional)	
	



A	brief	history	of	climate	

Image	source:	Wikipedia	

Major	features:	glacial	cycles	with	a	change	in	amplitude	and	
frequency,	some	warm	climate	in	the	past,	hockey	sRck	at	PETM.		

	
	
		



What	is	climate?	

•  Climate	=	30	year	average	of	weather	

Weather:	Will	I	need	an	umbrella	tomorrow?	
	
Climate:		Should	I	own	an	umbrella?	

Slide	credit:	S.	Oestreicher,		
JMM	Minitutorial	2013	



How	do	we	observe	climate?	

http://www.dartmouth.edu/~mpayres/People/Sharon.7506.web.jpg
http://www.whoi.edu/ooi_cgsn/auvs-gliders?tid=1621&cid=137956&article=95673

How do we observe climate?How do we observe climate?

http://spaceplace.nasa.gov/earth-card-game/terra-lrg.en.png

How do we observe climate?How do we observe climate?

hYp://cdiac.ornl.gov/d13_flask_mauna_loa.html	
hYp://www.dartmouth.edu/~mpayres/People/Sharon.7506.web.jpg	hYp://
www.whoi.edu/ooi_cgsn/auvs-gliders?Rd=1621&cid=137956&arRcle=95673	

Observing		
current	climate	



How	do	we	observe	past	climate?	

Image	source:	usgs.gov	

Benthic	foraminifera	
Hold	the	long	term	memory	of	Earth’s	climate	



How	do	we	observe	past	climate?	

Image	source:		
hYp://earthobservatory.nasa.gov/Features/CarbonCycle/page4.php	

Antar>c	ice	core	



How	does	CO2	affect	climate?	

Image	source:	
hYp://climate.nasa.gov/climate_resources/24/	
hYps://medium.com/@350/temperature-check-1f076624c55b#.mvvf6oqf8	
	hYps://www.ipcc.ch/publicaRons_and_data/ar4/wg1/en/spmsspm-projecRons-of.html	



How	to	model	climate?	

•  No	detail	is	too	small:		
Global	CirculaRon	Models	
GCM	
	

	
•  The	rest	is	details:	
Conceptual	Climate	Models	
CCM	

	
	

How do we model climate?How do we model climate?

http://www.prism.washington.edu/story/Earth+System+Models

How do we model climate?How do we model climate?

There are two main view on how to model climate:

1. “No detail is too small!”
Leads to all-inclusive 

Global Climate Models

2. “The rest is details”
Leads to simple

Conceptual 

Climate Models

www.pmel.noaa.gov/foci/ice06/FOCI_Ice2006_phytoplankton.html

www.nasa.gov/vision/earth/lookingatearth/ice_clouds.html

hYp://www.prism.washington.edu/story/Earth+System+Models		

Slide	source:	S.	Oestreicher		
JMM	Minitutorial	2013.	



Global	CirculaRon	Models	

Global Climate ModelsGlobal Climate Models
Complicated 

choices starting 
from how to grid 

the globe.

Complicated	choices	
starRng	from	the	grids.	

Slide	source:	S.	Oestreicher		
JMM	Minitutorial	2013.	

Global Climate ModelsGlobal Climate Models

Must	decide	the	the	
processes	of	each	
part	and	interacRons	
among	them.		

Global Climate ModelsGlobal Climate Models
Complicated 

choices starting 
from how to grid 

the globe.



Global	Climate	Models	
•  Processes:	physics,	biology,	

chemistry	

•  Computer	Science	
Data	mining,	coupling	non-
similar	grids,	error	analysis,	
parallel	processing,	Rme	
opRmizaRon		

•  StaRsRcs	
Extreme	events,	trends,	and	
averaging		

•  MathemaRcs	
Data	assimilaRon,	numerical	
analysis,	PDE		

Global Climate Models require:

Physical sciences
• Physical, chemical, biological 
processes

Computer science
• Data mining, coupling non-similar 
grids, error analysis, parallel 
processing, time optimization

Statistics
• Extreme events, trends, and 
averaging

Mathematics
• Data assimilation, numerical 
znalysis, PDEs

Global Climate ModelsGlobal Climate Models

Slide	source:	S.	Oestreicher		
(now	S.	Schumacher),		
JMM	2013	



A	Simpler	Life:	
Conceptual	Climate	Modeling	
Can	one	develop	a	mathemaRcal	model		
that	captures	Earth’s	climate,	ie	through	
temperature,	ice	cover,	and	CO2	level?		

Image	source:		
Wikipedia	



The	Modeling	Cycle	

Informal Description. This module introduces the student to the mathematical
modeling process by showing how to build a zero-dimensional energy balance model
for the Earth’s climate system. The process is an iterative one and generates various
versions of the model. Successive versions include more physics to better match
the observations. The emphasis in the module is on the process, rather than the
models derived in the process, because the process is universal and independent of
the complexity of the model. The process is illustrated in Figure 1.
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1

Figure 1: The modeling cycle.

The mathematical modeling process starts in the “real world” with a physical system
and some observations or an experiment. We assume that the behavior of the system
is governed by the laws of nature—Newton’s law of motion, Fourier’s law of heat
conduction, etc. When these laws are formulated in mathematical terms, we obtain
what we call a “mathematical model”—a set of mathematical equations that describe
the state of the physical system as it evolves in time. In the next step of the modeling
process, we “analyze” the model—that is, we apply our mathematical knowledge to
extract information from the model, to see whether we understand and can explain
what we see in the real world. In the third step we use the model to make predictions
about what we will see in additional experiments and observations. We then return to
the real world to test these predictions by running the experiments or collecting more
observations, and either accept the model if we find that the outcome matches our

2

Source:	hYp://dimacs.rutgers.edu/MPE/Energy/DIMACS-EBM.pdf	



Some	well	known	laws	

1.  ConservaRon	of	energy:	Energy	in	=	Energy	out	
2.  Earth	gets	its	energy	from	the	sun	
3.  The	Stefan	Boltzmann	black	body	radiaRon:	
(Incoming	solar	energy	is	used	to	heat	up	the	planet)	

	
“A	black	body	will	emit	a	certain	amount	of	energy	E	

depending	on	it’s	temperature	T.”		
	

E	=	σT4	



	
What	does	Earth	do		
with	all	that	energy?	

	

Image	source:		Trenberth,	Kiehl,	Fazulo	
hYp://scied.ucar.edu/radiaRon-budget-diagram-earth-atmosphere	



		

The	climate	of	Earth	is	represented	by	one	point,		
the	global	annual	average	temperature.	

Modeling	Earth’s	temperature	
Zero	spaRal	dimension	

Global	Energy	Balance	Model	

ENERGY	BALANCE	EQUATION	
Energy	in	=	Energy	out		

Any	lep	over	energy	is	used	to	heat	up	the	planet	

Temperature	change	=	Energy	in	–	Energy	out	



		Modeling	Earth’s	temperature		
Zero	spaRal	dimension	

Global	Energy	Balance	Model	

Q	=	Solar	energy	received	(343	WaY	m-2	)	
R	=	heat	capacity	(unit	W	s	m	-2	K-1	)	
σ =	Stefan	Boltzman	constant	(	5.67x10-8	W	m	-2	K	-4)	
T	=	Temperature	(in	Kelvin)	
Exercise:		
1.	Verify	the	units	
2.	Assuming	Earth’s	climate	is	in	equilibrium,		
what	is	Earth’s	global	annual	average	temperature?		

R dT
dt

=Q−σT 4

=Q−σT 4



		Modeling	Earth’s	temperature	
Zero	spaRal	dimension	

Global	Energy	Balance	Model	

Tequilibrium	~	279K	=	6oC	
Observed	Earth’s	global	
temperature	is	about	
287K	=	14oC	

R dT
dt

=Q−σT 4

=Q−σT 4
Informal Description. This module introduces the student to the mathematical
modeling process by showing how to build a zero-dimensional energy balance model
for the Earth’s climate system. The process is an iterative one and generates various
versions of the model. Successive versions include more physics to better match
the observations. The emphasis in the module is on the process, rather than the
models derived in the process, because the process is universal and independent of
the complexity of the model. The process is illustrated in Figure 1.
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Figure 1: The modeling cycle.

The mathematical modeling process starts in the “real world” with a physical system
and some observations or an experiment. We assume that the behavior of the system
is governed by the laws of nature—Newton’s law of motion, Fourier’s law of heat
conduction, etc. When these laws are formulated in mathematical terms, we obtain
what we call a “mathematical model”—a set of mathematical equations that describe
the state of the physical system as it evolves in time. In the next step of the modeling
process, we “analyze” the model—that is, we apply our mathematical knowledge to
extract information from the model, to see whether we understand and can explain
what we see in the real world. In the third step we use the model to make predictions
about what we will see in additional experiments and observations. We then return to
the real world to test these predictions by running the experiments or collecting more
observations, and either accept the model if we find that the outcome matches our

2



		Modeling	Earth’s	temperature	
Zero	spaRal	dimension	

Global	Energy	Balance	Model	

Tequilibrium	~	279K	=	6oC	
Observed	Earth’s	global	
temperature	is	about	
287K	=	14oC	
	
Add	more	process	in	
the	model?	

R dT
dt

=Q−σT 4

=Q−σT 4
Informal Description. This module introduces the student to the mathematical
modeling process by showing how to build a zero-dimensional energy balance model
for the Earth’s climate system. The process is an iterative one and generates various
versions of the model. Successive versions include more physics to better match
the observations. The emphasis in the module is on the process, rather than the
models derived in the process, because the process is universal and independent of
the complexity of the model. The process is illustrated in Figure 1.
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Figure 1: The modeling cycle.

The mathematical modeling process starts in the “real world” with a physical system
and some observations or an experiment. We assume that the behavior of the system
is governed by the laws of nature—Newton’s law of motion, Fourier’s law of heat
conduction, etc. When these laws are formulated in mathematical terms, we obtain
what we call a “mathematical model”—a set of mathematical equations that describe
the state of the physical system as it evolves in time. In the next step of the modeling
process, we “analyze” the model—that is, we apply our mathematical knowledge to
extract information from the model, to see whether we understand and can explain
what we see in the real world. In the third step we use the model to make predictions
about what we will see in additional experiments and observations. We then return to
the real world to test these predictions by running the experiments or collecting more
observations, and either accept the model if we find that the outcome matches our

2



Overview	of	climate	
What does Earth do with all that energy from the Sun?

Two	types	of	Earth’s	reradiaRon:		
Short	wave	and	long	wave.	
Albedo/	reflec>vity	affects	short	wave	reradia>on.	



Some	not	so	well	known	laws	

4.	Ice	albedo	feedback:	
ice/	snow	–lighter	color,	reflects	energy		
land/	ocean	–darker	color,	absorbs	energy	

Some Not So Wellknown Physics of Climate

4. Ice albedo feedback: Ice/ snow reflects more energy, while land/
ocean reflects less.
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		Modeling	Earth’s	temperature	
Zero	spaRal	dimension	

Global	Energy	Balance	Model	

Q	=	343	WaY	m-2		
σ	=	Stefan	Boltzman	constant	(	5.67x10-8	W	m	-2	K	-4)	
α	=	planetary	albedo	~	0.3	(non	dimensional	constant)	
Exercise:		
1.	Verify	the	units	
2.	Assuming	that	Earth’s	climate	is	in	equilibrium,		
what	is	Earth’s	global	annual	average	temperature?		

R dT
dt

=Q−Qα −σT 4

=Q(1−α)−σT 4

Informal Description. This module introduces the student to the mathematical
modeling process by showing how to build a zero-dimensional energy balance model
for the Earth’s climate system. The process is an iterative one and generates various
versions of the model. Successive versions include more physics to better match
the observations. The emphasis in the module is on the process, rather than the
models derived in the process, because the process is universal and independent of
the complexity of the model. The process is illustrated in Figure 1.
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Figure 1: The modeling cycle.

The mathematical modeling process starts in the “real world” with a physical system
and some observations or an experiment. We assume that the behavior of the system
is governed by the laws of nature—Newton’s law of motion, Fourier’s law of heat
conduction, etc. When these laws are formulated in mathematical terms, we obtain
what we call a “mathematical model”—a set of mathematical equations that describe
the state of the physical system as it evolves in time. In the next step of the modeling
process, we “analyze” the model—that is, we apply our mathematical knowledge to
extract information from the model, to see whether we understand and can explain
what we see in the real world. In the third step we use the model to make predictions
about what we will see in additional experiments and observations. We then return to
the real world to test these predictions by running the experiments or collecting more
observations, and either accept the model if we find that the outcome matches our

2



		Modeling	Earth’s	temperature	
Zero	spaRal	dimension	

Global	Energy	Balance	Model	

Exercise	2.		
Assuming	Earth’s	climate	is	in	equilibrium,	what	is	Earth’s	
global	annual	average	temperature?		
	
Q	=	343	WaY	m-2		
σ	=	Stefan	Boltzman	constant	(	5.67x10-8	W	m	-2	K	-4)	
α	=	planetary	albedo	~	0.3	(non	dimensional	constant)	

R dT
dt

=Q−Qα −σT 4

=Q(1−α)−σT 4



		Modeling	Earth’s	temperature	
Zero	spaRal	dimension	

Global	Energy	Balance	Model	

2.	Assuming	Earth’s	climate	is	in	
equilibrium,	what	is	Earth’s	global	
annual	average	temperature?		
	
Q	=	343	WaY	m-2		
σ	=	Stefan	Boltzman	constant	
(	5.67x10-8	W	m	-2	K	-4)	
α	=	planetary	albedo	~	0.3	(non	
dimensional	constant)	

R dT
dt

=Q−Qα −σT 4

=Q(1−α)−σT 4

Teq	=	255	K	=	-18oC!!!	
Far	from	the	observed	14oC.		
The	model	gets	worse.		
	
What	do	we	do	next?	
	

Informal Description. This module introduces the student to the mathematical
modeling process by showing how to build a zero-dimensional energy balance model
for the Earth’s climate system. The process is an iterative one and generates various
versions of the model. Successive versions include more physics to better match
the observations. The emphasis in the module is on the process, rather than the
models derived in the process, because the process is universal and independent of
the complexity of the model. The process is illustrated in Figure 1.
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Figure 1: The modeling cycle.

The mathematical modeling process starts in the “real world” with a physical system
and some observations or an experiment. We assume that the behavior of the system
is governed by the laws of nature—Newton’s law of motion, Fourier’s law of heat
conduction, etc. When these laws are formulated in mathematical terms, we obtain
what we call a “mathematical model”—a set of mathematical equations that describe
the state of the physical system as it evolves in time. In the next step of the modeling
process, we “analyze” the model—that is, we apply our mathematical knowledge to
extract information from the model, to see whether we understand and can explain
what we see in the real world. In the third step we use the model to make predictions
about what we will see in additional experiments and observations. We then return to
the real world to test these predictions by running the experiments or collecting more
observations, and either accept the model if we find that the outcome matches our

2



Overview	of	climate	
What does Earth do with all that energy from the Sun?

Two	types	of	Earth’s	reradiaRon:		
Short	wave	and	long	wave.	
Long	wave	radia>on	is	due	to	eg.	green	house	effect.	



		Modeling	Earth’s	temperature	
Global	Energy	Balance	Model	

Stefan	Boltzmann	Law	is	radiaRon	law	for	black	body.	Since	Earth	
is	not	black	body,	must	use	different	approximaRon	of	the	long	
wave	re-radiaRon.	
	
Green	house	gas	effect	must	be	included:	introduce	the	factor	ε.		
	
Exercise	2b.	Find	the	value	of	ε	that	fits	the	observa>on.	

R dT
dt

=Q(1−α)−ε ⋅σT 4



		Modeling	Earth’s	temperature	
Global	Energy	Balance	Model	

Stefan	Boltzmann	Law	is	radiaRon	law	for	black	body.	Since	Earth	
is	not	black	body,	must	use	different	approximaRon	of	the	long	
wave	re-radiaRon.	
	
Green	house	gas	effect	must	be	included:	introduce	the	factor	ε.		
	
Exercise	2b.	Find	the	value	of	ε	that	fits	the	observa>on.	
Answer:	ε	=	0.6	will	do	it.	

R dT
dt

=Q(1−α)−ε ⋅σT 4



		Modeling	Earth’s	temperature	
Global	Energy	Balance	Model	

Stefan	Boltzmann	Law	is	radiaRon	law	for	black	body.	
Since	Earth	is	not	black	body,	must	use	different	
approximaRon	of	the	long	wave	re-radiaRon.	
	
Graves,	et	al	(1993):	σT4		instead	use	A	+	B	T	
A	=	202	Wm-2	and	B	=	1.9	Wm-2C-1		
are	constants	obtained	from	satellite	observa>on.	

R dT
dt

=Q(1−α)− (A+BT )



		
How does one model Earth’s temperature?

Some assumptions that make the work easier:
1. Symmetry about the equator, so we only look at eg. the
northern hemisphere.
2. Annual average along the same latitude, say ✓.

N

θ

0 1

 y = sin θ

y

!

0=Equator! 1=Pole!

A"Temperature"Profile"
"

T(y)"

Celcius"

y"

Some	assumpRons	that	make	the	work	easier:	
1.	Symmetry	about	the	equator,	so	we	only	look	at	eg.		
				the	northern	hemisphere.	
2.	Annual	average	temperature	along	the	same	laRtude,		
say	θ.		

Modeling	Earth’s	temperature	profile		
One	spaRal	dimension	

Zonal	Energy	Balance	Model	



	
Modeling	Earth’s	temperature	profile		

Zonal	Energy	Balance	Model	
	Background:The Budyko Equation
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An	example	of	the	albedo	funcRon.	
Another	is		the	smooth	approximaRon	of	this.	



Equilibrium	temperature	profile	
Background:The Budyko Equation
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T = T (y) = T (y, t)
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T =

Z
1

0

T (⇤)d⇤

A = the ”Greenhouse Gas Parameter”

B, C are nonnegative parameters

Assume symmetry 
of the planet, 

 y= sin(latitude).

Exercise:		
Compute	the	equilibrium	temperature	profile	for	a	fix		η	T*η	(y).	



Equilibrium	temperature	profile	
Background:The Budyko Equation
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A = the ”Greenhouse Gas Parameter”

B, C are nonnegative parameters

Assume symmetry 
of the planet, 

 y= sin(latitude).

T*η	(y).	
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ICE	LINE	EVOLUTION	

Some Not So Wellknown Physics of Climate

4. Ice albedo feedback: Ice/ snow reflects more energy, while land/
ocean reflects less.
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dη
dt

= ε(T (η, t)−TC )

Compare	the	temperature	at	the	ice	line		
with	a	criRcal	temperature	Tc.		
	
If	too	warm,	ice	melts,	ice	line	moves	to	pole.	
If	too	cold,	ice	forms,	ice	line	moves	to	equator.	



ICE	LINE	EVOLUTION	
Some Not So Wellknown Physics of Climate

4. Ice albedo feedback: Ice/ snow reflects more energy, while land/
ocean reflects less.
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Low	la>tude	ini>al	ice	line	

dη
dt

= ε(T (η, t)−TC )



More	simulaRons	

Mid	la>tude	ini>al	ice	line	 High	la>tude	ini>al	ice	line	



Ice	line	stability?	

T*η	(η)	

unstable	 stable	

dη
dt

= ε(T (η, t)−TC )

Small	ice	cap	
Today’s	climate.	



NEXT?	

•  ReducRon	of	the	infinite	dimensional	system	
to	finite	dimensional	system.		

•  BifurcaRon	analysis	



Resources:	
Modeling	module		
hYp://dimacs.rutgers.edu/MPE/Energy/DIMACS-EBM.pdf	

Conceptual	Climate	Module	
hYps://mcrn.hubzero.org/resources/523/supporRngdocs.	Material	developed	for	
the	MAA-NCS	Summer	Seminar	Conceptual	Climate	Models,	held	in	Minneapolis,	
July	2013.	Contributors:	A.	Barry,	R.	McGehee,	S.	Oestreicher,	J.A.	Walsh,	
E.	Widiasih.	



What	liYle	bugs	in		
the	ocean	don’t	tell	us:	Snowball	Earth	

Image	source:	Wikipedia	

Snowball	Earth	
hYp://www.wwnorton.com/college/geo/animaRons/
snowball_earth.htm	

	
	
		



What	the	model	says	about	
	Snowball	Earth	

Image	source:	Wikipedia	

	
	
		



Did	the	snowball	earth	ever	happen?	

Some	evidence:		
Dropstone	deposited	by	glacier	into		
a	marine	sediment	(Namibia)		
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Fig. 2 Neoproterozoic glacial features. Striated pavement (a) overlain by the Smalfjord diamictite (Table 1) at Bigganjargga,
Varangerfjord, north Norway, the first recognized Neoproterozoic glacial deposit (Reusch, 1891) (G. P. Halverson photo). Faceted
and multistriated stone (b) from the Jbéliat diamictite (Table 1) in Adrar, Mauritania. Rapitan diamictite (Table 1) sharply
bounded (c) by carbonate strata, without transitional facies or intercalation at Stone Knife River, Mackenzie Mountains, north-
west Canada. Dolomite dropstone in banded iron formation (d) within the Rapitan diamictite at Snake River, Mackenzie
Mountains (G. A. Gross photo). Ice-rafted dropstone (e) of shelf-edge oolitic limestone in allodapic slope-facies carbonates of the
Ghaub diamictite (Table 1) at east Fransfontein, north-west Namibia. Impact of dropstone on sea-bed caused the folded bicouple
seen at 10 o’clock from coin. Typical abrupt conformable contact (f) between the upper dropstone unit of the Ghaub diamictite
and its cap dolostone in slope facies at west Fransfontein, north-west Namibia. The coin, pen and hammer are 2, 15 and 33 cm in
maximum dimension, respectively (same in Figs 4 and 5).
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