### Food Systems and Food Security

Hans G. Kaper and Mary Lou Zeeman

kaper@mathclimate.org mlzeeman@bowdoin.edu

> MPE16 Minitutorial October 1, 2016

## Our Plans for Today

- The context
  - Some facts
  - Risk factors
  - Food systems and MPE
- Food systems
  - Complex systems
- Some questions
  - Audience participation
- Three real-world problems
  - Patrick Canning Economic Research Service, US Dept. of Agriculture
- Approaches and concepts
  - Computable General Equilibrium
  - Planetary boundaries
  - "Doughnut" economics
- Some ideas for mathematics

### Some Facts

- Out of a world population of approximately 7 billion ...
  - ▶ about 2 billion suffer from micronutrient malnutrition ( $\approx 30\%$ )
  - nearly 800 million suffer from calorie deficiency ( $\approx 12\%$ )
- Out of approximately 5 billion adults worldwide ....
  - nearly 2 billion are overweight or obese ( $\approx 40\%$ )
  - 1 in 12 has type 2 diabetes ( $\approx 8\%$ )
- Out of 667 million children under age 5 worldwide ....
  - ▶ 159 million are stunted ( $\approx 25\%$ )
  - ▶ 50 million are wasted ( $\approx$  7%)
  - 41 million are overweight ( $\approx 6\%$ )
- Out of 129 countries with data ...
  - ► 57 have serious levels of both undernutrition and adult overweight (obesity) (≈ 45%)

Source: 2016 Global Nutrition Report, IFPRI

(4回) (1日) (日)

- An estimated 60% of global terrestrial biodiversity loss is related to food production
- Food systems account for an estimated 24% of the global greenhouse gas emissions
- An estimated 33% of soils are moderately to highly degraded due to erosion
- ► At least 20% of the world's aquifers are overexploited
- Over 80% of the input of minerals (e.g., phosphate) do not reach consumers' plates
- ► 29% of commercial fish populations are overfished

Source: UNEP Food Systems and Global Resources, 2016

### Known Risk Factors for the Early 21st Century



#### Urbanization:

Approximately 55% of population live in urban environment by 2025



#### Population growth: An extra billion people by 2025



#### Climate change:

Today's atmospheric GHGs will drive changes up to 2030

#### Impact on the planet

- Fundamental dependence on natural resources
- Land use, soil, water, minerals, biomass, fossil fuels
- Ecology, environment, biodiversity
- Impact on society
  - Economic development, public health, sustainability, globalization, trade
- Risk and uncertainty
  - Climate change, natural disasters, extreme events

# Food Systems – A Multilayered Network



### A Mathematician's Perspective

- Food systems are complex systems
  - Multicomponent: producers, food chain actors, consumers
  - Multiscale: local, regional, global activities
  - Feedback mechanisms: affordability, preferences, cultural norms
- Multilevel approach leads to a hierarchy of models
  - Passing information up and down the hierarchy
  - Agent-based modeling
  - Aggregate (continuum) models
  - Conceptual models
- Modeling challenges at each level
  - Combining agent-based and continuum models
  - Few basic principles (conservation of mass, energy)
  - Phenomenological models (input-output)
  - Lots of data, but what do we need (data by design)

< 🗇 > < E

Data assimilation, Bayesian approach

### Food Systems and Food Security – Questions

Audience participation

< ≣ >

#### Patrick Canning

Economic Research Service, US Dept. of Agriculture

(4回) (4回) (日)

# Computable General Equilibrium (CGE) Models

- Class of economic models
  - a set of equations describing model variables, assuming optimizing behavior at all levels
  - a detailed database consistent with the model equations, estimated from actual economic data
- Estimate the economic effects of external factors
  - Effects of GHG emissions standards on a national economy
  - Effects of extreme weather events on food systems
  - ▶ ...
- Generalization of input-output models (Leontief et al., 1930s)
- ▶ First CGE model developed by Leif Johansen, Norway (1960)

▲ 同 ▶ | ▲ 臣 ▶

- Software packages
  - GEMPACK
  - CGE

## CGE – General Idea

- Variables
  - Endogenous (economic) variables,  $x \in \mathbf{R}^n$
  - Exogenous (external) variables,  $y \in \mathbf{R}^m$
- Map  $f:(x,y)\mapsto f(x,y)\in \mathbf{R}^n$
- Initial state  $(x_0, y_0)$ , satisfies  $f(x_0, y_0) = 0$
- External perturbation,  $y = y_0 + \Delta y$ 
  - New state  $x = x_0 + \Delta x$
  - Impose the condition f(x, y) = 0
  - Linear approximation,  $f(x, y) \approx (D_x f)_0 \Delta x + (D_y f)_0 \Delta y$
- Impact on endogenous variables,

$$\Delta x = A_0 \Delta y$$
, where  $A_0 = -((D_x f)_0)^{-1} (D_y f)_0$ 

Various approximations to A<sub>0</sub>

# CGEs – Opportunities

- Nonlinear models
  - Multiple equilibrium states
- Transients vs. equilibrium solutions
- Dynamical systems approach
  - Bifurcations
  - Limit cycles
  - Homoclinic orbits, heteroclinic orbits
- Dimension reduction techniques
- Data
  - What data are needed?
  - Data assimilation

< ≣ >

# A Safe Operating Space for Humanity



- Planetary boundaries
  - Tipping points
  - Sustainability
  - Resilience
- Conceptual framework
  - Used by UN and EU
  - Ecosystem management
  - Environmental governance indicators

- Johan Rockström (Stockholm Resilience Centre, 1990, 2009)
- Will Steffen (Australian National University, 1990, 2015)

### Planetary Boundaries and Their Control Variables

- 1. Climate change
  - Atmospheric CO<sub>2</sub> [ppm], radiative forcing [W/m<sup>2</sup>]
- 2. Biosphere integrity
  - Extinction rate [species/Myr], genetic diversity
- 3. Biogeochemical flows
  - Nitrogen, phosphorous [Mt/yr]
- 4. Ocean acidification
  - Aragonite in sea surface water [ $\omega$  units]
- 5. Land system change
  - ► Land surface converted to crop use [%]
- 6. Freshwater use
  - Global human consumption [km<sup>3</sup>/yr]
- 7. Ozone depletion
  - Stratospheric ozone concentration [Dobson units]
- 8. Atmospheric aerosol loading
  - Particulate concentration on regional basis
- 9. Novel entities, chemical pollution
  - Toxic substances, plastics, radioactive contamination

# A Safe and Just Space for Humanity



- Environmental ceiling
  - Tipping points
  - Sustainability
  - Resilience
- Social foundation
  - Wellness
  - Productivity
  - Empowerment

- "Doughnut" economics
  - Ensure that every person has the resources they need to meet their human rights, while collectively we live within the ecological means of this one planet
- ► Kate Raworth, OXFAM Discussion Paper, 2012

### Social Priorities – Rio+20





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Social Foundation and Its Control Variables

- 1. Food security
  - Population undernourished
- 2. Income
  - Population living on less than \$1.25 per day
- 3. Water and sanitation
  - Population without access to improved water and sanitation
- 4. Health care
  - Population without access to essential medication
- 5. Education
  - ▶ Children not enrolled in primary school, illiteracy 15-24 yr olds
- 6. Energy
  - Population lacking access to electricity or cooking facilities
- 7. Gender equality
  - Employment gap, representation gap in national parliaments

(4回) (1日) (日)

- 8. Social equity
  - Population living on less than the median income
- 9. Participation
- 10. Jobs
- 11. Resilience

#### Audience participation

Image: A = A = A

< ≣ >

#### THE END

Food Systems – MPE16 Food Systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで