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[at	the	Interna*onal	
Mathema*cal	Congress	in	
Bologna,	1928,	a:er	the	1920	
and	1924	Congresses	had	
excluded	mathema*cians	
represen*ng	the	countries	
defeated	in	WW1:]	
	

“Mathematics 
knows no races or 
geographic 
boundaries; for 
mathematics, the 
whole cultural 
world is one 
country.” 

	

David	Hilbert	
(1862-1943)	



“It makes me very happy that after a 
long, hard time all the mathematicians 
of the world are represented here. 
That is as it should be and as it must 
be for the prosperity of our beloved 
science. […] Mathematics knows no 
races; for mathematics the whole 
cultural world is a single country.” 

	



Ahmad	 Ali	 Amani	 Chengbin	 Dalal	

Huda	 Lulu	 Mohammed	 Mustafa	

Noha	 Tareq	 Wajih	Rabab	

Gustavo	



Activities in the USA 
Internships at: 

• Argonne 
•  IBM 
• NVIDIA 
•  Sandia 
•  Texas A&M 

Employment at: 

•  Intel 
•  ICL (U Tennessee) 
• NERSC (Berkeley) 
• XPACC (UIUC) 

Presentations at:  

   SIAM, Supercomputing, GTC, ICS  



“A good player plays where the puck is, while a great 
player skates to where the puck is going to be.” –  

– Wayne Gretzsky 



Aspiration for this talk 
To paraphrase Gretzsky: 
 

  “Algorithms for where  
architectures are going to be” 

Such algorithms may or may not be the best today; 
however, hardware trends can be extrapolated to 

the new potential “sweet spots.”  



Outline 
n  Four architectural trends 

◆  limits to the extension our current bulk 
synchronous software infrastructure 

n  Four algorithmic imperatives 
◆  for extreme scale, tomorrow and today 

n  Four sets of “bad news, good news” 
n  Four widely applicable strategies 
n  Four “points of light” (work in progress) 

◆  others described in detail in minisymposia 



Four architectural trends 
●  Clock rates cease to increase while arithmetic 

capability continues to increase exponentially 
through concurrency  

●  Memory storage capacity diverges 
exponentially below arithmetic capability 

●  Transmission capability (memory BW and 
network BW) diverges exponentially below 
arithmetic capability 

●  Mean time between hardware interrupts 
shortens 



è Billions of  
 

$ € £ ¥  
 
 

of scientific software worldwide hangs in the 
balance until our algorithmic infrastructure 
evolves to span the architecture-applications 
gap 
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 Architectural background  
www.exascale.org/iesp 

The International Exascale 
Software Roadmap 
J. Dongarra, P. Beckman, et 
al., International Journal of 
High Performance Computer 
Applications 25:3-60, 2011. 



Uptake from IESP meetings 
n  While obtaining the next order of magnitude of performance, we 

need another order of performance efficiency 
◆  target: 50 Gigaflop/s/W, today typically ~ 5 Gigaflop/s/W 

n  Power may be cycled off and on, or clocks slowed and speeded  
◆  may be scheduled, based on phases with different power requirements, 

or may be dynamic from thermal monitoring 
◆  makes per-node performance rate unreliable 
◆  overprovisioned, specialized inhomogeneous nodes, sometimes dark 

n  Required reduction in power per flop and per byte may make 
computing and moving data less reliable 
◆  circuit elements will be smaller and subject to greater physical noise 

per signal, with less space redundancy and/or time redundancy for 
resilience in the hardware 

◆  more errors may need to be caught and corrected in software 



QEERI, 14 Apr 2015 

Today’s power costs per operation 

   c/o J. Shalf (LBNL) 

A pico (10-12) of something done exa (1018) times per second 
is a mega (106)-somethings per second 
u  100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!) 
u  1 MW-year costs about $1M ($0.12/KW-hr × 8760 hr/yr) 

§  We “use” 1.4 KW continuously, so 100MW is 71,000 people 

Operation approximate energy cost 
DP floating point multiply-add 100 pJ 
DP DRAM read-to-register 4800 pJ 
DP word transmit-to-neighbor 7500 pJ 
DP word transmit-across-system 9000 pJ 



QEERI, 14 Apr 2015 

Why exa- is different 
Moore’s Law (1965) does not end but 
Dennard’s MOSFET scaling (1972) does 

Eventually processing is 
limited by transmission, 
as known for 4.5 decades 

Robert Dennard, IBM 
(inventor of DRAM, 1966) 



Architectural resources to enlist 
n  Processing cores  

◆  heterogeneous (CPUs, MICs, GPUs, FPGAs,…) 

n  Memory  
◆  hierarchical (registers, caches, DRAM, flash, …) 
◆  somewhat reconfigurable 

n  Intra-node network 
◆  nonuniform bandwidth and latency 

n  Inter-node network 
◆  nonuniform bandwidth and latency 



Well established resource trade-offs 

n  Communication-avoiding algorithms 
◆  exploit extra memory to achieve theoretical 

lower bound on communication volume 
n  Synchronization-avoiding algorithms  

◆  perform extra flops between global reductions 
or exchanges to require fewer global operations 

n  High-order discretizations 
◆  perform more flops per degree of freedom 

(DOF) to store and manipulate fewer DOFs 



Node-based “weak scaling” is routine; 
thread-based “strong scaling” is the game 

n  An exascale configuration: 1 million 1000-way 1GHz nodes 
n  Expanding the number of nodes (processor-memory units)  

beyond 106 would not be a serious threat to algorithms that 
lend themselves to well-amortized precise load balancing  
◆  provided that the nodes are performance reliable 

n  Real challenge is usefully expanding the number of cores 
sharing memory on a node to 103 

◆  must be done while memory and memory bandwidth per node expand 
by (at best) ten-fold less (basically “strong” scaling) 

◆  don’t need to wait for full exascale systems to experiment in this 
regime – the contest is being waged on individual shared-memory 
nodes today 



The familiar 

Blue	Waters	

Sequoia	 K	

Shaheen	



Intel	
Broadwell	

Intel	
	Knights	Landing	

NVIDIA		
P100	

IBM	
Power8	

The challenge 



Two decades of evolution 

ASCI Red at Sandia by Intel 
1.3 TF/s, 850 KW 

Intel Xeon Phi MIC KNL 
3.5 TF/s, 0.26 KW 

2016 1997 



 c/o M. Al Farhan (KAUST) 



Supercomputer in a node 

System Peak DP  
 

TFlop/s 

Peak Power 
 

KW 

Power 
Efficiency 

GFlop/s/Watt 
ASCI Red 
(1997-2006) 

1.3 850 0.0015 

Knights Landing 
MIC Intel (2016) 

3.5 0.26 14 

P100 Pascal 
NVIDIA (2016) 

5.3 0.30 18 

Taihu Light 
(2016) 

125,000 15,000 8.3 

Exascale System 
(~2021) 

1,000,000 20,000 50 



How are most scientific simulations 
implemented at the petascale today? 

n  Iterative methods based on data decomposition and 
message-passing 
◆  data structures are distributed 
◆  each individual processor works on a subdomain of the original 
◆  exchanges information with other processors that own data with 

which it interacts causally, to evolve in time or to establish 
equilibrium 

◆  computation and neighbor communication are both fully 
parallelized and their ratio remains constant in weak scaling 

n  The programming model is BSP/SPMD/CSP 
◆  Bulk Synchronous Programming  
◆  Single Program, Multiple Data 
◆  Communicating Sequential Processes 

Three decades of 
stability in 

programming model 



Bulk Synchronous 
Parallelism 

Leslie Valiant, Harvard  
2010 Turing Award Winner Comm. of the ACM, 1990 



BSP parallelism w/ domain decomposition 

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian) 

Ω1 

Ω2 

Ω3 

A23 A21 A22 
rows assigned 

to proc “2” 



BSP has an impressive legacy 

	
	

Year	

Cost	per	
delivered	
Gigaflop/s	

1989	 $2,500,000								
1999	 $6,900	
2009	 $8	

	
	

Year	

Gigaflop/s	
delivered	to	
applicaSons	

1988	 1	
1998	 1,020	
2008	 1,350,000	

By the Gordon Bell Prize, performance on real applications (e.g., 
mechanics, materials, petroleum reservoirs, etc.) has improved 
more than a million times in two decades.  Simulation cost per 
performance has improved by nearly a million times.  

Gordon Bell 
Prize: Peak 
Performance 

Gordon Bell 
Prize: Price 
Performance 



Riding exponentials 
n  Proceeded steadily for decades from giga- (1988) 

to tera- (1998) to peta- (2008) with  
◆  same BSP programming model 
◆  same assumptions about who (hardware, systems 

software, applications software, etc.) is responsible for 
what (resilience, performance, processor mapping, 
etc.) 

◆  same classes of algorithms (cf. 25 yrs. of Gordon Bell 
Prizes) 

n  Scientific computing now at a crossroads with 
respect to extreme scale 



Extrapolating exponentials eventually fails 
n  Exa- is qualitatively different and looks more 

difficult 
◆  but we once said that about message passing 

n  Core numerical analysis and scientific 
computing will confront exascale to maintain 
relevance 
◆  potentially big gains in colonizing exascale for science 

and engineering 
◆  not a “distraction,” but an intellectual stimulus 
◆  the journey will be as fun as the destination J 



Main challenge going forward for BSP 
n  Almost all “good” algorithms in linear algebra, 

differential equations, integral equations, signal 
analysis, etc., like to globally synchronize – and 
frequently! 
◆  inner products, norms, pivots, fresh residuals are “addictive” 

idioms 
◆  tends to hurt efficiency beyond 100,000 processors 
◆  can be fragile for smaller concurrency, as well, due to 

algorithmic load imbalance, hardware performance variation, 
etc. 

n  Concurrency is heading into the billions of cores 
◆  already 10 million on the most powerful system today 



BSP 
generation 

Energy-aware 
generation 



Four algorithmic imperatives 
n  Reduce synchrony (in frequency and/or span) 
n  Increase arithmetic intensity  
n  Increase SIMT/SIMD-style shared-memory 

concurrency 
n  Build in resilience (“algorithm-based fault 

tolerance” or ABFT) to arithmetic/memory 
faults or lost/delayed messages 



Bad news/good news (1) 
●  Must explicitly control more of the data 

motion 
u  carries the highest energy and time cost in the exascale 

computational environment 

●  More opportunities to control the vertical 
data motion 
u  horizontal data motion under control of users already  
u  but vertical replication into caches and registers was 

(until recently) mainly scheduled and laid out by 
hardware and runtime systems, mostly invisibly to users 



●  Use of uniform high precision in nodal bases on dense grids 
may decrease, to save storage and bandwidth 

u  representation of a smooth function in a hierarchical basis or on 
sparse grids requires fewer bits than storing its nodal values, for 
equivalent accuracy 

●  We may compute and communicate “deltas” between states 
rather than the full state quantities 
u  as when double precision was once expensive (e.g., iterative correction 

in linear algebra) 
u  a generalized “combining network” node or a smart memory 

controller may remember the last address and the last value, and 
forward just the delta 

●  Equidistributing errors properly to minimize resource use 
will lead to innovative error analyses in numerical analysis 

Bad news/good news (2) 



●  Fully deterministic algorithms may be regarded as too 
synchronization-vulnerable 
u  rather than wait for missing data, we may predict it using various 

means and continue 
u  we do this with increasing success in problems without models 

(“big data”) 
u  should be fruitful in problems coming from continuous models 
u  “apply machine learning to the simulation machine”  

●  A rich numerical analysis of algorithms that make use of 
statistically inferred “missing” quantities may emerge 
u  future sensitivity to poor predictions can often be estimated 
u  numerical analysts will use statistics, signal processing, ML, etc. 

 

Bad news/good news (3) 



●  Fully hardware-reliable executions may be regarded as too 
costly 

●  Algorithmic-based fault tolerance (ABFT) will be cheaper 
than hardware and OS-mediated reliability 
u  developers will partition their data and their program units into 

two sets 
§  a small set that must be done reliably (with today’s standards 

for memory checking and IEEE ECC) 
§  a large set that can be done fast and unreliably, knowing the 

errors can be either detected, or their effects rigorously bounded 

●  Many examples in direct and iterative linear algebra  
●  Anticipated by Von Neumann, 1956 (“Synthesis of reliable 

organisms from unreliable components”) 

Bad news/good news (4) 



Algorithmic philosophy 
n  Algorithms must span the widening gulf 

A full employment program for 
computational scientists and engineers J 

ambitious 
applications 

austere 
architectures 

adaptive 
algorithms 



What will exascale algorithms look like? 
n  For weak scaling, must start with algorithms with 

optimal asymptotic order, O(N logp N) 
n  Some optimal hierarchical algorithms 

◆  Fast Fourier Transform (1960’s) 
◆  Multigrid (1970’s) 
◆  Fast Multipole (1980’s) 
◆  Sparse Grids (1990’s) 
◆  H matrices (2000’s) 
◆  Randomized algorithms (2010’s) 

 “With great computational power comes great 
algorithmic responsibility.” – Longfei Gao 



Required software (see DOE’s new ECP) 
      Model-related 

◆  Geometric modelers 
◆  Meshers 
◆  Discretizers 
◆  Partitioners 
◆  Solvers / integrators 
◆  Adaptivity systems 
◆  Random no. generators 
◆  Subgridscale physics  
◆  Uncertainty 

quantification 
◆  Dynamic load balancing 
◆  Graphs and 

combinatorial algs. 
◆  Compression  
 

        Development-related        
u  Configuration systems 
u  Source-to-source 

translators 
u  Compilers 
u  Simulators 
u  Messaging systems 
u  Debuggers 
u  Profilers 
 

        Production-related 
u  Dynamic resource 

management 
u  Dynamic performance 

optimization 
u  Authenticators 
u  I/O systems 
u  Visualization systems 
u  Workflow controllers 
u  Frameworks 
u  Data miners 
u  Fault monitoring, 

reporting, and recovery 

High-end computers come 
with little of this stuff. 

Most has to be contributed 
by the user  community. 



Midpoint: recap of algorithmic agenda 
n  New formulations with  

◆  reduced synchronization and communication 
■  less frequent and/or less global 

◆  greater arithmetic intensity (flops per byte moved into and 
out of registers and upper cache) 

■  including assured accuracy with (adaptively) less floating-point precision 
◆  greater SIMT/SIMD-style thread concurrency for 

accelerators 
◆  algorithmic resilience to various types of faults 

n  Quantification of trades between limited resources 
n  Plus all of the exciting analytical agendas that exascale is 

meant to exploit  
◆  “post-forward” problems: optimization, data assimilation, 

parameter inversion, uncertainty quantification, etc. 
 



Four widely applicable strategies 
n  Employ dynamic runtime systems based on 

directed acyclic task graphs (DAGs) 
◆  e.g., Charm++, Quark, StarPU, OmpSs, HPX, ADLB, 

Argo 
n  Exploit data sparsity of hierarchical low-

rank type 
◆  “Meet the curse of dimensionality with the blessing of 

low rank”   

n  Employ high-order discretizations 
n  Code to the architecture, but present an 

abstract API 



Taskification based on DAGs 
n  Advantages 

◆  remove artifactual synchronizations in the form 
of subroutine boundaries 

◆  remove artifactual orderings in the form of pre-
scheduled loops 

◆  expose more concurrency 

n  Disadvantages 
◆  pay overhead of managing task graph 
◆  potentially lose some memory locality 



Reducing over-ordering and synchronization 
through dataflow, ex.: generalized eigensolver 



Loop nests and subroutine calls, with their 
over-orderings, can be replaced with DAGs 

●  Diagram shows a 
dataflow ordering of the 
steps of a 4×4 symmetric 
generalized eigensolver 

●  Nodes are tasks, color-
coded by type, and edges 
are data dependencies 

●  Time is vertically 
downward 

●  Wide is good; short is 
good 
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Zooming-in… 

Loops can be 
overlapped  
in time 
Green, blue and magenta 
symbols represent tasks in 
separate loop bodies with 
dependences from an 
adaptive optics 
computation 

c/o H. Ltaief (KAUST) & D. Gratadour (OdP) 



Tasks from the 3 loops 
are scheduled together 

DAG-based safe out-of-order execution 

c/o H. Ltaief (KAUST) & D. Gratadour (OdP) 



Hierarchically low-rank operators 
n  Advantages 

◆  shrink memory footprints to live higher on the 
memory hierarchy 
■  higher means quick access 

◆  reduce operation counts 
◆  tune work to accuracy requirements 

■  e.g., preconditioner versus solver 

n  Disadvantages 
◆  pay cost of compression 
◆  not all operators compress well 



Key tool: hierarchical matrices 
•   [Hackbusch, 1999] : off-diagonal blocks of typical 

differential and integral operators have low effective rank 
•  By exploiting low rank, k , memory requirements and 

operation counts approach optimal in matrix dimension n: 
– polynomial in k 
–  lin-log in n  
–  constants carry the day 

•  Such hierarchical representations navigate a compromise 
–  fewer blocks of larger rank (“weak admissibility”) or  
– more blocks of smaller rank (“strong admissibility”) 



Example: 1D Laplacian 



Recursive construction of an H-matrix 

c/o W. Boukaram (KAUST) 



“Standard (strong)” vs. “weak” admissibility 

weak admissibility strong admissibility 

After Hackbusch, et al., 2003  



Employ high-order discretizations 
n  Advantages 

◆  (also) shrink memory footprints to live higher on 
the memory hierarchy 
■  higher means shorter latency 

◆  increase arithmetic intensity  
◆  reduce operation counts 

n  Disadvantages 
◆  high-order operators less suited to some solvers 

■  e.g., algebraic multigrid, H-matrices (?) 



Code to the architecture 
n  Advantages 

◆  tiling and recursive subdivision create large 
numbers of small problems suitable for batched 
operations on GPUs and MICs 
■  reduce call overheads 
■  polyalgorithmic approach based on block size 

◆  non-temporal stores, coalesced memory accesses, 
double-buffering, etc. reduce sensitivity to memory 

n  Disadvantages 
◆  code is more complex 
◆  code is architecture-specific at the bottom 



Amdahl asks: where do the cycles go? 
n Dominant consumers in applications that occupy 

major supercomputer centers are: 
◆  Linear algebra on dense symmetric/Hermitian matrices 

■  Hamiltonians (Schroedinger) in chemistry/materials 
■  Hessians in optimization 
■  Schur complements in linear elasticity, Stokes & saddle points  
■  covariance matrices in statistics 

◆  Poisson solves 
■  highest order operator in many PDEs in fluid and solid 

mechanics, E&M, DFT, MD, etc. 
■  diffusion, gravitation, electrostatics, incompressibility, 

equilibrium, Helmholtz, image processing – even analysis of 
graphs  



Examples being developed at KAUST’s 
Extreme Computing Research Center 

n  QDWH-SVD, a 4-year-old SVD algorithm that performs more flops but 
beats state-of-the-art on MICs and GPUs and distributed memory systems 

n  KBLAS, a library that improves upon or fills holes in L2/L3 BLAS for 
GPUs and MICs, including batched and hierarchically low-rank routines 

n  BDDC, a linear preconditioner that performs extra local flops on interfaces 
for low condition number guarantee in high-contrast elliptic problems  

n  FMM(ε), a 31-year-old O(N) solver for potential problems, used in low 
accuracy as a FEM preconditioner and scaled out on MICs and GPUs 

n  ACR(ε), a new spin on 52-year-old cyclic reduction that recursively uses H 
matrices on Schur complements to reduce O(N2)  complexity to O(N log2N) 

n  M/ASPIN, nonlinear preconditioners that replace most of the globally 
synchronized steps of Newton iteration with asynchronous local problems 

n  NekBox, a MIC-optimized version of CFD code Nek5000 that uses 
extremely high-order schemes to minimize runtime to a given accuracy 



QDWH*-SVD 
 

²  DAG-based data flow tile algorithms for  
(eigen- and) singular value decomposition 

²  Reduce synchrony 
²  Increase SIMT-style concurrency 
²  Chameleon tile library and StarPU dynamic 

runtime system 

*QR-based	Dynamically	Weighted	Halley	itera*on	from	
Stable	and	Efficient	Spectral	Divide	and	Conquer	Algorithms	
for	the	Symmetric	Eigenvalue	Decomposi=on	and	the	SVD,	

Nakatsukasa	and	Higham,	SISC	(2013)	



QDWH-SVD 
n  Obtain SVD from a polar decomposition: 
 

A = Up H              H = V Σ V*   

 
è  A = UpV Σ V* = U Σ V* 

 
n  QDWH iteration is a recursive divide-and-conquer 

method, backward stable 
n  Based on vendor-optimized kernels, i.e., Cholesky/QR 

factorizations and GEMM 
n  Complexity: 

 (10+2/3) n3 for well-conditioned system, 43n3 for ill 

 

polar sym eigen 



QDWH-SVD 

c/o D. Sukkari & H. Ltaief (KAUST) 
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QDWH-SVD, taskified 

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA) 
Sukkari et al., submitted to IEEE TDPS’17 

1st QR iteration 
2nd QR iteration 
3rd QR iteration 

Three QR iterations 

1st Cholesky iteration 
2nd Cholesky iteration 
3rd Cholesky iteration 

Three Cholesky iterations 



QDWH-SVD, taskified 

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA) 
Sukkari et al., submitted to IEEE TDPS’17 
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QDWH-SVD, taskified 

c/o D. Sukkari, H. Ltaief (KAUST) & M. Faverge (INRIA) 
Sukkari et al., submitted to IEEE TDPS’17 

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10
24

 20
48

 30
72

 40
96

 51
20

 61
44

 71
68

 81
92

 92
16

 10
24

0

 11
26

4

 12
28

8

 13
31

2

 14
33

6

 15
36

0

 16
38

4

 17
40

8

 18
43

2

 19
45

6

 20
48

0

 21
50

4

 22
52

8

 23
55

2

 24
57

6

G
flo

p/
s

Matrix Size

NVIDIA 4xP100
NVIDIA 8xK80

Intel KNL
Intel Haswell

Intel Broadwell
IBM Power8



KBLAS 

²  Subset of L2 and L3 BLAS targeting GPU and 
Intel MIC 
²  GEMV, SYMV, TRSM, TRMM 

²  Batched BLAS for very small sizes on GPUs 
²  TRSM, TRMM, SYRK, POTRF, POTRS, POSV, 

TRTRI, LAUUM, POTRI, POTI 
²  Recursive formulation  



Sample recursively defined  
KBLAS operations 

c/o A. Charara & H. Ltaief (KAUST) 



KBLAS DTRMM 

Charara et al., Best papers, Europar’16 
available:	hAps://github.com/ecrc/kblas	c/o A. Charara & H. Ltaief (KAUST) 
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KBLAS DTRSM 
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Charara et al., Best papers, Europar’16 
available:	hAps://github.com/ecrc/kblas	c/o A. Charara & H. Ltaief (KAUST) 



KBLAS now in CUDA 8.0 

c/o A. Abdelfattah, A. Charara & H. Ltaief (KAUST) 



Extending KBLAS 
 to batched execution 

n  Batched BLAS workshop: 
◆  http://bit.ly/Batch-BLAS-2017 

n  Problem: 
◆  individually of low arithmetic intensity 
◆  memory latency overheads 

n  Redesign the legacy BLAS API 
◆  launch thousands of small BLAS kernels simultaneously 
◆  increase device occupancy 
◆  remove API/kernel launch overheads 
◆  extend the recursive formulation 

n  Driven by scientific data-sparse applications 
◆  computational statistics and astronomy 
◆  Schur complement in sparse direct solvers and BDDC 

preconditioning 



Batched operations 

c/o	Jacob	Kurzak	(ICL,	U	Tennessee)	



KBLAS  
Example: Batched POTRF 

Recursive	
Batch	POTRF	

n  Nested recursion 
n  Convert into batch of large GEMMs 
n  Minimize data transfer 
n  Enhance data locality 
n  Increase arithmetic intensity 

Recursive	
Batch	TRSM	

Recursive	
Batch	SYRK	

Recursive	
Batch	POTRF	

c/o A. Charara & H. Ltaief (KAUST) 



Batched KBLAS 
performance comparisons 
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performance 
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double	precision	on	a	K40	GPU	with	10240	
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c/o A. Charara & H. Ltaief (KAUST) 



Hierarchical Computations on 
Manycore Architectures: HiCMA* 

* “Hikmah” is the Arabic word for wisdom 

QDWH-
SVD	

TRSM,	
etc.	

H	
compress	

Batched	
RanSVD	

ACR	



Hourglass model for algorithms 

applica*ons	

	
architectures	

algorithmic	
infrastructure	



Clients: statisticians and astronomers 

Large co-variance matrices are everywhere, but many 
statisticians work in MATLAB or R and can’t scale their science 

log-likelihood 
function 



European Extremely Large Telescope 
“The world’s biggest eye on the sky” (40m diameter)  

To be deployed in the Chilean mountains by 2024 
				 

Credit:	ESO	(hkp://www.eso.org/public/teles-instr/e-elt/)		

n  Multi-objective Adaptive optics: a real time application being pursued 
with Observatoire de Paris 

n  De-convolve aberrations from atmospheric turbulence by dynamically 
controlling up to 100,000 small mirrors – a dense Cholesky inversion 



Balancing Domain Decomposition with 
Constraints (BDDC) 

²  Reduce synchrony in Krylov solution to PDE 
problems by building an optimal preconditioner 
²  convergence independent of mesh size, subdomain 

size, and alignment of subdomain with material 
interfaces 

²  For SPD problems, BDDC is built from 
Cholesky and symmetric eigensolvers 
²  harness HiCMA 
²  exploit well-known low-rank properties of Schur 

complements 



BDDC: a very robust preconditioner 
n  Applied inside CG on the SPE10 benchmark 
n  Darcy flow, using H(div) finite elements 
n  20M-45M DOFs, up to 8K subdomains 

u  no alignment of subdomain faces with material jumps 
n  Small, decomposition-independent number of iterations 

c/o S. Zampini (KAUST) 



BDDC: a very robust preconditioner 
n  Maxwell equations, using H(curl) finite elements 

c/o S. Zampini (KAUST) 



c/o S. Zampini (KAUST) 

BDDC on the road to exascale 

Note: BDDC is distributed in PETSc 



c/o S. Zampini (KAUST) 

Distributed data structures 



c/o S. Zampini (KAUST) 

Condition number results 
n  If subdomains are solved exactly, overall condition number of 

the preconditioned system depends only on the Schur 
preconditioning 



c/o S. Zampini (KAUST) 

Global Schur complement is subassembled 

n  Cholesky is everywhere, in high concurrency for batching 
during both formation and application of the preconditioner 

n  Also, generalized symmetric eigenproblem on each interface 
where the “A, B” matrices are from Schur complements 



c/o S. Zampini (KAUST) 

BDDC with low rank Schur approximations 

See Gatto & Hasthaven, 
Dec 2016, J Sci Comput 

on compressibility of 
Schur complements for 
hp finite elements 



BDDC with low rank Schur approximations 

c/o S. Zampini (KAUST) 

accuracy 

tile size average rank need to achieve 
accuracy 10-6 for tile of size 64 



Fast Multipole for Poisson solves 
²  Increase arithmetic intensity 
²  Reduce synchrony 
²  Increase concurrency 



Arithmetic intensity of numerical kernels 

c/o R. Yokota (TiTech, KAUST) 
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Hierarchical interactions of Fast Multipole  

c/o R. Yokota (TiTech, KAUST) 



Geometrical structure of Fast Multipole 

c/o R. Yokota (TiTech, KAUST) 

log(N) levels 



 Synchronization reduction – FMM 

n Within an FMM application, data pipelines of 
different types and different levels can be executed 
asynchronously 
◆  FMM simply adds up (hierarchically transformed) 

contributions  
◆  e.g., P2P and P2M -> M2M -> M2L -> L2L -> L2P 

n Geographically distinct targets can be updated 
asynchronously 
 



Features of FMM 
n High arithmetic intensity 
n No all-to-all communication 
n O(log P) messages 

◆  with high concurrency and asynchrony among themselves 

n Up to O(N) arithmetic concurrency  
n Tunable granularity in the sense of “h-p” 

◆  based on analytic “admissibility condition” 

n  Inside 8 Gordon Bell Prizes, 1997-2012 
n Many effective implementations on GPUs 
n But fragile (based on analytical forms of operators) 



ExaFMM on KNL in all-to-all cluster mode 

each endpoint 
represents 
256 threads 

per Proc MPI 

e.g., 16 ranks, 
2 threads ea. 

e.g., 16 ranks, 
1 threads ea. 

c/o R. Yokota (TiTech, KAUST) 



ExaFMM on KNL 

MPI only TBB only 

c/o R. Yokota (TiTech, KAUST) 



FMM as preconditioner 
n FMM is a solver for free-space problems for which 

one has a Green’s function 
n For finite boundaries, FMM combines with BEM  
n FMM and BEM have controllable truncation 

accuracies; can precondition other, different 
discretizations of the same PDE 

n Can be regarded as a preconditioner for “nearby” 
problems, e.g.,          for  ∇2 ∇⋅ (1+ε(x))∇



FMM’s role in solving PDEs 

The preconditioner is reduced to a matvec, like the forward operator itself – 
the same  philosophy of the sparse approximate inverse (SPAI), but cheaper. 

More concurrency, more intensity, less synchrony than ILU, MG, DD, etc. 

BEM FMM 

c/o H. Ibeid (UIUC, KAUST’16) 



FMM/BEM preconditioning of FEM 

c/o H. Ibeid (UIUC, KAUST’16) 

Poisson 
Wave 

Helmholtz 



Other galaxies? 



How will complex PDE codes adapt? 
n  Programming model will still be dominantly message-

passing (due to large legacy code base), adapted to 
multicore or hybrid processors beneath a relaxed 
synchronization MPI-like interface 

n  Load-balanced blocks, scheduled today with nested loop 
structures will be separated into critical and non-critical 
parts 

n  Critical parts will be scheduled with directed acyclic 
graphs (DAGs) through dynamic languages or runtimes 

n  Noncritical parts will be made available for NUMA-
aware work-stealing in economically sized chunks 



 
Asynchronous programming styles 

n  To take full advantage of such asynchronous 
algorithms, we need to develop greater 
expressiveness in scientific programming 
◆  create separate threads for logically separate tasks, 

whose priority is a function of algorithmic state, not 
unlike the way a time-sharing OS works 

◆  join priority threads in a directed acyclic graph 
(DAG), a task graph showing the flow of input 
dependencies; fill idleness with noncritical work or 
steal work 



n  Can write code in styles that do not require artifactual 
synchronization 

n  Critical path of a nonlinear implicit PDE solve is essentially 
                   … lin_solve, bound_step, update; … 

n  However, we often insert into this path things that could be done 
less synchronously, because we have limited language 
expressiveness 
◆  Jacobian and preconditioner refresh 
◆  convergence testing 
◆  algorithmic parameter adaptation 
◆  I/O, compression 
◆  visualization, data analytics 

 

Evolution of Newton-Krylov-Schwarz: 
breaking the synchrony stronghold 



Sources of nonuniformity 
n  System 

◆  Already important: manufacturing, OS jitter, TLB/cache 
performance variations, network contention,  

◆  Newly important: dynamic power management, more soft errors, 
more hard component failures, software-mediated resiliency, etc. 

n  Algorithmic 
◆  physics at gridcell/particle scale (e.g., table lookup, equation of 

state, external forcing), discretization adaptivity, solver adaptivity, 
precision adaptivity, etc. 

n  Effects of both types are similar when it comes to waiting 
at synchronization points 

n  Possible solutions for system nonuniformity will improve 
programmability for nonuniform problems, too J 



Conclusions 
n Plenty of ideas exist to adapt or substitute for 

favorite solvers with methods that have: 
◆  reduced synchrony (in frequency and/or span) 
◆  greater arithmetic intensity  
◆  greater SIMT/SIMD-style shared-memory concurrency 
◆  built-in resilience (“algorithm-based fault tolerance” or ABFT) 

to arithmetic/memory faults or lost/delayed messages 

n Programming models and runtimes may have to be 
stretched to accommodate 

n Everything should be on the table for trades, 
beyond disciplinary thresholds è “co-design” 



Thanks to: 

CENTER OF EXCELLENCE 



Thank you! 

 شكرا   

david.keyes@kaust.edu.sa 


