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Overview



Ridge Regression
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Over-determined:
n>d




Ridge Regression

i {fow) == 1xw = yll2 +vlwil]
min fw—g w—yl[, tv]Iwl],

min

\_'_I

nXd

2

2
/I
2

» Efficient and approximate solution?
* Use only part of the data?




Ridge Regression
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Matrix Sketching:

* Random selection




Approximate Ridge Regression
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Approximate Ridge Regression
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Approximate Ridge Regression
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e Sketched solution: w?

» Sketch size 0 (g)

© f(W®) < (1+€) min f(w)

Optimization Perspective




Approximate Ridge Regression
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Statistical Perspective

* Bias

e Variance
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* Least squares regression: min||Xw —y||,
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Sketched Ridge Regression



Matrix Sketching

* Turn big matrix into smaller one.
*X € R = STX € R5*¢,

s *S e R"™ is called sketching matrix, e.g.,

e Uniform sampling
* Leverage score sampling

sketching

—_——

* Gaussian projection
e Subsampled randomized Hadamard transform (SRHT)

* Count sketch (sparse embedding)
* Etc.




sketching

Matrix Sketching

* Some matrix sketching methods are efficient.
* Time costis o(nds) — lower than multiplication.

* Examples:

* Leverage score sampling: O(nd logn) time
* SRHT: O(ndlogs) time



Ridge Regression

* Objective function:
f(w) ———1|| W — |\2+ HW||2
n y 2 14 2

e Optimal solution:

w”* = argmin f(w)
w

= (X"X +nyl))T(X"y)

* Time cost: 0(nd?) or O(ndt)



Sketched Ridge Regression

* Goal: efficiently and approximately solve

i {Fow) == [xw =yl + yiwil:]
arg&mn fW—E w=yl|, +y[Iwl],.



Sketched Ridge Regression

* Goal: efficiently and approximately solve
_ 1 2 2
argmin {£(w) =~ [Ixw = yI[2 +y[Iwl[3}.

* Approach: reduce the size of X and y by matrix sketching.
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Sketched Ridge Regression

e Sketched solution: .
w® = argmin {E |I1STXw — STy||§ + y||w||§}

w

= (XTSSTX + nyl))T(XTSSTy)

1 | ‘ 2
g (B R
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Sketched Ridge Regression

» Sketched solution: .
s _ - eTven T o2 2
w?® = argmin {n ||S w—S y||2 +y||w||2}

w

= (XTSSTX + nyl))T(XTSSTy)

* Time: 0(sd?) + T,
e T, is the cost of sketching ST
* Eg. T, = 0(ndlogs) for SRHT.
* E.g. T, = O(ndlogn) for leverage score sampling.



Theory: Optimization Perspective



Optimization Perspective

* Recall the objective function f(w) =%||Xw — y||§ + y||w||2.
* Bound f(w®) — f(w").

¢ 2| IXwS — Xw*||] < F(W®) — f(w").



Optimization Perspective

For the sketching methods . X € R™¢; the design matrix
. SRHT | ! ths = 0 Bd e y:the regglarization parameter
or leverage sampling withs = 0 (—), . LT o.1)
o . : _ u fdlog d) ny+[|XI[ '
uniform Samplmg withs = 0 ( € ! ° UE ll,g]: the row coherence of X

f(ws) — f(w*) < ef(w*) holds w.p. 0.9.



Optimization Perspective

For the sketching methods . X € R™¢; the design matrix
. SRHT | ! ths = 0 Bd e y:the regglarization parameter
or leverage sampling withs = 0 (—), . LT o.1)
o . : _ u fdlog d) ny+[|XI[ '
uniform Samplmg withs = 0 ( € ! ° UE ll,g]: the row coherence of X

f(ws) — f(w*) < ef(w*) holds w.p. 0.9.

— %HXWS—XW*IE < ef(w").



Theory: Statistical Perspective



Statistical Model

« X € R™*4: fixed design matrix
* w, € R%: the true and unknown model

* y = Xw, + 8: observed response vector
* §1,+,0, are random noise

* E[6§] =0 and E[88"] = &°1,



Bilas-Variance Decomposition

* Risk: R(w) = %[E“XW— XWo”z

e [Eistaken w.r.t. the random noise 8.



Bilas-Variance Decomposition

* Risk: R(w) = %[E“XW— XWo”z

* [E is taken w.r.t. the random noise 8.
e Risk measures prediction error.



Bilas-Variance Decomposition

* Risk: R(w) = %[E“XW— XWo”z

e R(W) = bias?(w) + var(w)



Bilas-Variance Decomposition

* Risk: R(w) = %[E“XW— XWo”z

e R(W) = bias?(w) + var(w)

Optimal _[ + bias(w*) = yvn||(Z2 + nyl) T1EV wo ||,

Solution N 2 N1 ]2
+ var(w*) = [|(Ig + yE) 7|,

Sketched _|: + bias(w®) =y || BUTSSTUE + nyI) PEV W |

Soluti ’ i
oflution ° Var(ws) = % “(UTSSTU —+ nyz—Z)'l'UTSSTl ‘2’

e Here X = UXVT is the SVD.



Statistical Perspective

For the sketching methods

* SRHT or leverage sampling with s = 0 (i), « X € R™*%: the design matrix

€2

° UE 1,2|: the row coherence of X
d

udlogd
€2 !

* uniform sampling with s = 0(

the followings hold w.p. 0.9:

. - bias(w?) <14
€= bias(w*) — € Good!

n var(w>
n_ var(w?)
S

(1—-¢)

< (1+ e)ﬁ. Bad! Becausen > s.
var(w*) S



Statistical Perspective

For the sketching methods

d
2

* SRHT or leverage sampling withs =0 (_

* uniform sampling with s =0 (“ d;’gd),
the followings hold w.p. 0.9:
. - bias(w?) <1
= bias(w*) — T
n  var(w®) n
(1—¢e)— < < (1+¢)-—.
S var(w*) S

=)

« X € R™4: the design matrix
° UE ll,gl: the row coherence of X

If y is noisy
—) variance dominates bias

= R(W°%) >» R(W").




Conclusions

e Use sketched solution to initialize numerical
optimization.
« Xw? is close to Xw™.

Optimization Perspective




Conclusions

e Use sketched solution to initialize numerical
optimization.
« Xw? is close to Xw™.

Optimization Perspective

«  w®: output of the t-th iteration of CG algorithm.

||Xw(t)—Xw*| z

< ( K(XTX)—1>
2= "\UreXTx)+1/ °
2

Initialization is important.

| |Xw () —xXw*|




Conclusions

e Use sketched solution to initialize numerical
optimization.
e Xw? is close to Xw™.

* Never use sketched solution to replace the
optimal solution.

* Much higher variance =2 bad generalization.

Optimization Perspective

Statistical Perspective




Model Averaging



Model Averaging

* Independently draw S, -, Sg.

* Compute the sketched solutions w}, -+, w

go
oS 1y S
* Model averaging: w> = 5 =1 W;.



Optimization Perspective

* For sufficiently large s,

SY_ £ (w* Without model averagin
f(w;)(w]:)(w )< ¢ holds w.h.p. oI




Optimization Perspective

* For sufficiently large s,

fwg)—f(w")

fw*)

* Using the same matrix sketching and same s,

fw®)—f(w")

fw*)

< € holds w.h.p.

< §+ €% holds w.h.p.

Without model averaging

With model averaging




Optimization Perspective

* For sufficiently

FWH-F W) _
fwy

* Using the same matrix sketching and same s,

FWS)—F W) _
fwy

arge s,

Without model averaging

holds w.h.p.

Z+ €% holds w.h.p.

With model averaging




Optimization Perspective

* For sufficiently large s,

FWH-F W) _
fwy

€| holds w.h.p.

* Using the same matrix sketching and same s,

fWS)—fwW" _le | 2
<|[— N.p.
S| + €| holds w.h.p

Without model averaging

With model averaging

Ifs > d == e?isverysmall —=> error bound ocg.




Statistical Perspective

* Risk: R(w) = ~E|[Xw — Xwol|, = bias?(w) + var(w)
* Model averaging :

* bias(w®) = y/n

38, (BUTSSTUE + nylg) 2V wy |
2

2
38, (UTsiSTU +nyz=2)"UTs;S]

52
o var(w®) = -

2

e Here X = UXVT is the SVD.



Statistical Perspective

 For sufficiently large s, the followings hold w.h.p.:

<1l+4+e¢€ and

bias(w*®) _ var(w®) _ = (1+0. Without model averaging
bias(w*) var(w*) S



Statistical Perspective

 For sufficiently large s, the followings hold w.h.p.:

bias(w®) _ v and var(w®) - g (140, Without model averaging

bias(w*) — var(w*)

e Using the same sketching methods and same s, the

followings hold w.h.p.: With model averaging

<1+ d S
bias(w*) ¢ var(w*) S

bias(w?®) var(w>) - n( 1 )2



 For sufficiently large s, the followings hold w.h.p.:

Statistical Perspective

bias(w®)

<1l+4e¢€

bias(w*) —

e Using the same sketching methods and same s, the

and

followings hold w.h.p.:

bias(w?)
bias(w*) —

<1l+4e€

and

var(w?)

var(w*)

var(w?)

var(w*)

S

<

n
S

e (1+e).
S

Without model averaging

(

1 2
T@“)

With model averaging




Statistical Perspective

 For sufficiently large s, the followings hold w.h.p.:

bias(w®) _ v and var(w®) - g (140, Without model averaging

bias(w*) — var(w*)

e Using the same sketching methods and same s, the

followings hold w.h.p.:

With model averaging

bias(w?) var(w?) n
. <1l+4e¢€ and S —
bias(w*) var(w*) S

1 2
S

. 1
If € is small, then var(w®) « o




Applications to Distributed Optimization

o (X4, V1), Xy, V) - OIIIITIT OO (T TTTT1] OO
among g machines. 1 1 1 1
: : [TT] [T 11 [T
Equivalent to uniform w3 W5—1 Wg

w;
: : n
sampling with s = —, -
g averaging\ /
wS



Optimization Perspective

* Application to distributed optimization:

e Ifs = g > d, w® is very close to w” (provably).

* w” is good initialization of distributed optimization algorithms.



Statistical Perspective

* Application to distributed machine learning:
o Ifs = g > d, then R(w?®) is comparable to R(w™).

* |f low-precision solution suffices, then w*® is a good substitute of w™.

* One-shot solution.



Thank You!

The paperis at arXiv:1702.04837



