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Overview of the work
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Preconditioner:

P :=

αR∗R + ρT ∗T
B∗B + ρA∗A

I
ρ I


Condition number bound

cond
(

P−1/2KP−1/2
)
≤ 3

δ(1− β)



Inverse problem

y = Bu + ζ,    where    F(q,u) = 0 

observation process state equation

state variableparameternoiseobservations

Forward problem: Given q, compute y .
Inverse problem: Given y , estimate q.

q u ysolve state equation perform observations

forward problem

inverse problem
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Optimization problem

y = Bu + ζ,    where    F(q,u) = 0 

observation process state equation

state variableparameternoiseobservations

Regularized least-squares optimization problem:

min
q,u

try to match
observations︷ ︸︸ ︷

1

2
||Bu − y ||2 +

regularization:
stabilize reconstruction
of uninformed modes︷ ︸︸ ︷

α

2
||Rq||2

such that F (q, u) = 0.



Data misfit

I data misfit:

Jd(q) :=
1

2
||Bu(q)− y ||2

I data misfit Hessian:

Hd :=
d2Jd
dq2

I Eigenstructure of Hd

characterizes local
sensitivity of observations
to parameter
perturbations
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Spectrum of misfit Hessian
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Eigenvalues of data misfit and regularization Hessian

g
e
n
e
ra

liz
e
d
 e

ig
e
n

v
a
lu

e

more
 data

λ(H )d

informed uninformed

generalized eigenvectors of (H , R R)d
T

λ(αR R)T

   
   

   
 le

ss
 

re
gulariz

atio
n



Hessian spectrum and data scalability

I Spectral structure of the Hessian controls convergence of
optimization schemes.

I Increasing data worsens the spectral structure of the Hessian.

I Data scalable methods must make progress on all informed
modes every iteration.

Consequently, the following are not data scalable:

I Gradient methods (gradient descent, nonlinear CG, Nesterov,
L-BFGS)

I Newton-Krylov methods with regularization preconditioning



Gradient ascent path on a mountain

*Original image by Mountains to Sound Greenway Trust,

https://commons.wikimedia.org/w/index.php?curid=705297



Gradient ascent path on a mountain

*Original image by Mountains to Sound Greenway Trust,

https://commons.wikimedia.org/w/index.php?curid=705297



Gradient path in 2D
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Gradient path in 3D
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Gradient path in nD

gradient steps

ridge perpendicular 
to steepest direction

Rn

Rn-1

Rn-2
. . . ridge perpendicular

to steepest 2 directions

ridge perpendicular
to steepest 3 directions

abstract set containment diagram
(not level sets)



Newton/SQP

Accounts for scaling in all
directions at once?:

I Newton 3
I Gauss-Newton 3
I Sequential quadratic

programming (SQP) 3
I L-BFGS 7
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Newton/SQP: address ill-conditioning with linear algebra

    Level sets of 
objective function

Level sets of 
local quadratic
approximations

..
Newton steps .

Newton-Krylov/SQP-Krylov:

I Solve linear system at each iteration with Krylov method

I Linear systems become harder solve with increasing data

I Decouples nonlinearity from ill-conditioning

I Allows us to directly address ill-conditioning with linear
algebra/preconditioning



Sequential quadratic programming / Gauss-Newton

I Linearize constraint equation at current point:

F (q, u) =
∂F

∂q︸︷︷︸
T

(q − q(k))︸ ︷︷ ︸
δq

+
∂F

∂u︸︷︷︸
A

(u − u(k))︸ ︷︷ ︸
δu

+ higher order terms

I Linearized optimization problem:

min
δq,δu

1

2
||B δu − δy ||2 +

α

2
||R δq − rk ||2

such that T δq + A δu = f0

I SQP/Gauss-Newton:

Linearize
constraint→

Solve
linearized problem→

Update
optimization variables→ Repeat . . .



Linear systems in SQP / Gauss-Newton
I SQP:

min
δq,δu

1

2
||B δu − δy ||2 + α

2
||R δq − rk ||2

such that T δq + A δu = f0

Must solve system of the form Kx = b, where

K =

αR∗R T ∗

B∗B A∗

T A

 .
I Gauss-Newton: (eliminate δu by solving for it)

min
δq

1

2
||BA−1T︸ ︷︷ ︸

J

δq − δ̂y ||2 + α

2
||R δq − rk ||2

Must solve system of the form Hp = −g, where

H = J∗J + αR∗R.

I Coefficient matrices are equivalent:

K
←Define auxiliary variables
↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁

Schur complement→
H



Hessian preconditioning is hard

I Regularization and data misfit terms in Hessian “fight” each
other by construction

=⇒ Hard to find preconditioners that work for both terms
at once

I Hessian is dense: only accessible via matrix-vector products
=⇒ Cannot use preconditioners that require entries of the

matrix (e.g., algebraic multigrid, algebraic domain
decomposition, etc.)

I 15+ years of research by many groups, not much success

I Idea: precondition KKT matrix instead



Regularization preconditioning
Hessian:

H = J∗J︸︷︷︸
compact
operator

+α R∗R︸︷︷︸
differential
operator

Regularization preconditioned Hessian:

1

α
R−∗HR−1 =

1

α
R−∗HdR−1 + I︸ ︷︷ ︸

compact perturbation
of identity

I mesh independent convergence of regularization
preconditioned Newton-Krylov.

Problem:

1
αR−THdR−1 becomes “less compact” as:

I the data increases

I the regularization decreases



Regularization preconditioning addresses uninformed modes
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Adjoint Schur complement KKT preconditioning

I Generic saddle point optimization problem:

min
q,u

1

2
||Bu − y ||2 + α

2
||Rq||2

such that Tq + Au = f

→
min
x

1

2
x∗Mx + g∗x

such that Cx = h

I KKT matrix in generic saddle point form:αR∗R T ∗

B∗B A∗

T A

 →
[

M C∗

C

]

I Murphy, Golub, Wathen:

λ

([
M

C ∗M−1C

]−1 [
M C ∗

C

])
consists of 3 points.

⇒ Krylov methods converge in 3 iterations!

I Problem: M is not invertible due to limited observations.



Augmented Lagrangian

I Problem: M is not invertible due to limited observations.

I Solution: penalize constraint violations even more!

min
x

1

2
x∗Mx + g∗x

such that Cx = h
→

min
x

1

2
x∗Mx + g∗x +

ρ

2
||Cx − h||2

such that Cx = h

I Augmented KKT matrix:[
M C ∗

C

]
→
[

M + ρC ∗C C ∗

C

]

I M + ρC ∗C is invertible*.

(*provided optimization problem is well-posed)



Augmented adjoint Schur complement preconditioner

I Augmented preconditioner:[
M

C ∗M−1C

]
→
[

M + ρC ∗C
C ∗(M + ρC ∗C )−1C

]
I Golub, Greif, Varah:

λ

([
M + ρC∗C

C∗(M + ρC∗C)−1C

]−1 [
M C∗

C

])

⊂
[
−1, 1−

√
5

2

]
∪
[
1,

1 +
√
5

2

]
⇒ Krylov methods converge very fast.

Difficulty: Preconditioner requires solving M + ρC ∗C and
C ∗(M + ρC ∗C )−1C .

Workaround: Replace these with approximations that are easier to
solve.



Approximation of Schur complement

We must approximate the following operator:

S := C ∗(M + ρC ∗C )−1C .

S is the (negative) Schur complement for the adjoint variable.

I As ρ→∞, constraint is enforced in objective function,
=⇒ adjoint variable doesn’t have to “work as hard”
=⇒ better conditioning of the Schur complement

I Use approximation:

S ≈ 1

ρ
I

I Approximation exact as ρ→∞



Approximation of objective block

Next, we must approximate the following operator:

M + ρC ∗C =

[
αR∗R + ρT ∗T ρT ∗A

ρA∗T B∗B + ρA∗A

]
I Off-diagonals scaled by ρ

I ρ small: off-diagonals are less important

I Approximation: set off-diagonals to zero

M + ρC ∗C ∼
[
αR∗R + ρT ∗T

B∗B + ρA∗A

]



The combined preconditioner

After afforementioned approximations, preconditioner becomes:

P :=

αR∗R + ρT ∗T
B∗B + ρA∗A

1
ρ I


I Schur complement block: want ρ large

I Objective 2x2 block: want ρ small

Question: can ρ be chosen just right to make both of these
approximations good?

Answer: yes, set ρ =
√
α.



Squared subsystems

Preconditioner subsystems:

αR∗R + ρT ∗T

B∗B + ρA∗A

I Terms do not “fight” each other

I Symmetric positive definite

I Have access to matrix entries*

I Can use algebraic multigrid, algebraic domain decomposition,
..



Condition number bound

I Define the damped projectors:

QR :=T (
α

ρ
R∗R + T ∗T )−1T ∗

QJ :=T (
1

ρ
J∗J + T ∗T )−1T ∗.

I Let δ, β be AM and GM bounds on QR ,QJ :

0 < δ ≤ λmin(QR + QJ)

λmax(QRQJ)1/2 ≤ β < 1.

Theorem

cond
(

P−1/2KP−1/2
)
≤ 3

δ(1− β)
,

Proof.
Use Brezzi theory.



Bounds on δ, β

Theorem
Let R be a spectral filtering regularization operator with
eigenvalues of R∗R given by ri . Denote the eigenvalues of J∗J by
d2
i . Set ρ =

√
α. If the following appropriate regularization

assumptions hold:

1. 0 < cu ≤ d2
i + αr 2

i ,

2. di ri ≤ co <∞
then

δ ≥1

2

(
1 + c2

o

)−1

β ≤ (1 + cu)−1/2



Discussion of appropriate regularization assumptions

1. 0 < cu ≤ d2
i + αr 2

i ,

2. di ri ≤ co <∞

I Condition 1: Problem not under-regularized (Hessian
nonsingular)

I Condition 2: Problem not over-regularized

I Condition 2: Multiplicative nature of condition 2 makes it
easily satisfied

I Condition 2: Satisfied with constant co = 1.0 for Poisson
source inversion problem with observations of Fourier modes,
and Laplacian or weaker regularisation.



Numerical test problem

True source field qtrue Reconstructed source field q Observation locations xi

I Poisson source inversion problem

I ∆u = q

I Point measurements of u

I True q: picture of POB building at UT Austin



Iterate comparison
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I Top row: Our preconditioner on KKT system

I Bot row: Regularization preconditioning on Hessian



Convergence comparison
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Preconditioner convergence comparison

CG-HESS
BDAL, lumped mass, multigrid
BDAL, lumped mass, exact
BDAL, exact

I Our preconditioner converges fast

I Regularization preconditioning stalls

I Replacing subsystem solves with a few multigrid V-cycles
results in nearly the same convergence rate



Mesh scalability

h # triangles MINRES iterations

5.68e-02 1800 51
2.84e-02 7200 50
1.89e-02 16200 51
1.41e-02 29000 51
1.13e-02 45250 51
9.44e-03 65100 51
8.09e-03 88550 51
7.07e-03 116000 51
6.29e-03 146700 51
5.66e-03 181000 51



Data scalability
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I Steady convergence rate over wide range of regularization
parameter choices

I Can take regularization parameter very small if there is
sufficient data



Conclusion

I Increasing data worsens spectral properties of Hessian

I Existing numerical optimization schemes slow with big data

I We addressed the problem with a data scalable KKT
preconditioner

I Performs well when problem is neither over- nor under-
regularized

Paper: N. Alger, U. Villa, T. Bui-Thanh, O. Ghattas, A data
scalable augmented Lagrangian KKT preconditioner for large scale
inverse problems. Submitted to SISC (in review).
https://arxiv.org/pdf/1607.03556v1.pdf
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