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Shear Bands

- Localization of stress due to localization of strain.
- Strain-softening instability provides positive feedback.

- Effective temperature y quantifies localized “softness”.
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Hypoelastoplastic Long-Time Limit Incompressible Navier-Stokes
Do du
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Dt ( ) P P
Hypoelastoplastic equation Navier-Stokes equation
V.-ox0 V.ur0
=
Quasi-static constraint Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

OHep < Uns.

Uhep < Dns.

- Any algorithm for Navier-Stokes should work for hypoelastoplasticity.

- This analogy is of the plasticity model.
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- Hypoelastoplastic equation:
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- Solve the above equation using the multigrid method for the velocities u™*1.
- Apply the projection step to compute o™+
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- Same software for both quasi-static
and explicit method.

- Staggered grid: o, x at cell centers. u
at cell corners.

- Parallelized using domain
decomposition and MPI.

- Ghost-regions pad processor
subdomains with two points.
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with mixed spatial derivatives for high
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- Linear system: Ax = b.
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Gii =1 j=it1
subscript: element index medium
Grid 1
- mg3d: custom parallel geometric frequency
multigrid solver written in C** and
MPI. T, Ri
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complex numbers, etc.) at each point. _
frequency Grid 2
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