
A Quasi-Static Projection Method for 3-Dimensional

Hypoelastoplasticity

Nicholas Boffi
February 27, 2017

SIAM CSE Conference.
Harvard University, Department of Applied Mathematics.
Rycroft Group.



Bulk Metallic Glasses

• Solid metal with atoms
“frozen” into liquid-like
disorder.

• Amorphous structure gives
unique properties.

• Catastrophic failure: shear
banding.

Crystalline

Structure

Lattice

Defect

Amorphous

Structure

1



Bulk Metallic Glasses

• Solid metal with atoms
“frozen” into liquid-like
disorder.

• Amorphous structure gives
unique properties.

• Catastrophic failure: shear
banding.

Crystalline

Structure

Lattice

Defect

Amorphous

Structure

1



Bulk Metallic Glasses

• Solid metal with atoms
“frozen” into liquid-like
disorder.

• Amorphous structure gives
unique properties.

• Catastrophic failure: shear
banding.

Crystalline

Structure

Lattice

Defect

Amorphous

Structure

1



Bulk Metallic Glasses

• Solid metal with atoms
“frozen” into liquid-like
disorder.

• Amorphous structure gives
unique properties.

• Catastrophic failure: shear
banding.

Crystalline

Structure

Lattice

Defect

Amorphous

Structure

1



Bulk Metallic Glasses

• Solid metal with atoms
“frozen” into liquid-like
disorder.

• Amorphous structure gives
unique properties.

• Catastrophic failure: shear
banding.

Crystalline

Structure

Lattice

Defect

Amorphous

Structure

1



Bulk Metallic Glasses

• Solid metal with atoms
“frozen” into liquid-like
disorder.

• Amorphous structure gives
unique properties.

• Catastrophic failure: shear
banding.

Crystalline

Structure

Lattice

Defect

Amorphous

Structure

1



Bulk Metallic Glasses

• Solid metal with atoms
“frozen” into liquid-like
disorder.

• Amorphous structure gives
unique properties.

• Catastrophic failure: shear
banding.

Crystalline

Structure

Lattice

Defect

Amorphous

Structure

1



Bulk Metallic Glasses

• Solid metal with atoms
“frozen” into liquid-like
disorder.

• Amorphous structure gives
unique properties.

• Catastrophic failure: shear
banding.

Crystalline

Structure

Lattice

Defect

Amorphous

Structure

1



Bulk Metallic Glasses

• Solid metal with atoms
“frozen” into liquid-like
disorder.

• Amorphous structure gives
unique properties.

• Catastrophic failure: shear
banding.

Crystalline

Structure

Lattice

Defect

Amorphous

Structure

1



Bulk Metallic Glasses

• Solid metal with atoms
“frozen” into liquid-like
disorder.

• Amorphous structure gives
unique properties.

• Catastrophic failure: shear
banding.

Crystalline

Structure

Lattice

Defect

Amorphous

Structure

1



Shear Bands

• Localization of stress due to localization of strain.

• Strain-softening instability provides positive feedback.

• Effective temperature 𝜒 quantifies localized “softness”.

Multiple bands
Vertical

connection

One

band

2



Shear Bands

• Localization of stress due to localization of strain.

• Strain-softening instability provides positive feedback.

• Effective temperature 𝜒 quantifies localized “softness”.

Multiple bands
Vertical

connection

One

band

2



Shear Bands

• Localization of stress due to localization of strain.

• Strain-softening instability provides positive feedback.

• Effective temperature 𝜒 quantifies localized “softness”.

Multiple bands
Vertical

connection

One

band

2



Shear Bands

• Localization of stress due to localization of strain.

• Strain-softening instability provides positive feedback.

• Effective temperature 𝜒 quantifies localized “softness”.

Multiple bands
Vertical

connection

One

band

2



Shear Bands

• Localization of stress due to localization of strain.

• Strain-softening instability provides positive feedback.

• Effective temperature 𝜒 quantifies localized “softness”.

Multiple bands

Vertical

connection

One

band

2



Shear Bands

• Localization of stress due to localization of strain.

• Strain-softening instability provides positive feedback.

• Effective temperature 𝜒 quantifies localized “softness”.

Multiple bands
Vertical

connection

One

band

2



Shear Bands

• Localization of stress due to localization of strain.

• Strain-softening instability provides positive feedback.

• Effective temperature 𝜒 quantifies localized “softness”.

Multiple bands
Vertical

connection

One

band
2



Shear Bands

• Localization of stress due to localization of strain.

• Strain-softening instability provides positive feedback.

• Effective temperature 𝜒 quantifies localized “softness”.

Multiple bands
Vertical

connection

One

band
2



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡

⏟
Jaumann derivative

=

Stiffness
⏞

C ∶ Del

⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=

Stiffness
⏞

C ∶ Del

⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del

⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D

⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)

⏟⏟⏟⏟⏟⏟⏟
Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙

⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡

⏟
𝑚×𝑎

= ∇ ⋅ 𝜎

⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎

⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡

⏟
Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)

⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)

⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2

⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗

⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗

⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0

⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I

⏟⏟⏟⏟⏟
Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I

⏟⏟⏟⏟⏟
Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙

⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠

⏟
∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠

⏟
∝ deviatoric

3



Continuum Theory

Linear Elasticity

𝒟𝜎
𝒟𝑡⏟

Jaumann derivative

=
Stiffness

⏞C ∶ Del⏟
Elastic Part

D⏟
Rate of deformation

= 1
2

(∇u + (∇u)𝑇)
⏟⏟⏟⏟⏟⏟⏟

Definition

= D𝑒𝑙 + D𝑝𝑙⏟⏟⏟⏟⏟
Hypoelastoplastic assumption

𝜌 𝑑u
𝑑𝑡⏟

𝑚×𝑎

= ∇ ⋅ 𝜎⏟
Net force

Shear Transformation Zone Theory

𝑑𝜒
𝑑𝑡⏟

Advective derivative

= 𝐷𝑝𝑙 ̄𝑠
𝑠𝑦𝑐0

(𝜒∞ − 𝜒)
⏟⏟⏟⏟⏟⏟⏟
Relaxation to 𝜒∞

̄𝑠2⏟
Total deviatoric stress

= 1
2

𝜎0,𝑖𝑗𝜎0,𝑖𝑗⏟⏟⏟⏟⏟
Frobenius norm

𝜎0⏟
Deviatoric stress

= 𝜎 − 1
3

Tr(𝜎)I
⏟⏟⏟⏟⏟

Subtract hydrostatic

D𝑝𝑙⏟
Plastic rate

= 𝐷𝑝𝑙 𝜎0
̄𝑠⏟

∝ deviatoric

3



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0

⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0

⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.

• This analogy is independent of the plasticity model.

4



A Thought-Provoking Analogy

Hypoelastoplastic Long-Time Limit

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl)
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hypoelastoplastic equation

∇ ⋅ 𝜎 ≈ 0⏟
Quasi-static constraint

Incompressible Navier-Stokes

𝜌 𝑑u
𝑑𝑡

= −∇𝑝 + ∇ ⋅ T
⏟⏟⏟⏟⏟⏟⏟⏟⏟
Navier-Stokes equation

∇ ⋅ u ≈ 0⏟
Incompressibility constraint

From Navier-Stokes to Hypoelastoplasticity

𝜎H.E.P. ⟺ uN.S.

uH.E.P. ⟺ 𝑝N.S.

• Any algorithm for Navier-Stokes should work for hypoelastoplasticity.
• This analogy is independent of the plasticity model.

4



A Quasi-Static Projection Method

• Hypoelastoplastic equation:

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:

𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡

⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛

⏟⏟⏟⏟⏟
advective derivative

− C ∶

superscript indicates timestep
⏞

[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡

⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛

⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛

⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛

⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1

⏟
complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗

⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.

• Apply the projection step to compute 𝜎𝑛+1.

5



A Quasi-Static Projection Method

• Hypoelastoplastic equation:
𝒟𝜎
𝒟𝑡

= C ∶ (D − Dpl) .

• Neglect D term (advection step):

𝜎∗ − 𝜎𝑛

Δ𝑡⏟
Forward-Euler intermediate step

= − 𝜎𝑛 ⋅ 𝜔𝑛 + 𝜔𝑛 ⋅ 𝜎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
Jaumann spin terms

− (u𝑛 ⋅ ∇)𝜎𝑛⏟⏟⏟⏟⏟
advective derivative

− C ∶
superscript indicates timestep

⏞[Dpl]𝑛

• Correction term (projection step):

𝜎𝑛+1 − 𝜎∗

Δ𝑡
= C ∶ D𝑛+1⏟

complete the Euler step

• Take divergence and enforce ∇ ⋅ 𝜎𝑛+1 = 0:

∇ ⋅ 𝜎∗⏟
source term based on 𝜎∗

= − Δ𝑡∇ ⋅ (C ∶ D𝑛+1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear system for u𝑛+1

• Solve the above equation using the multigrid method for the velocities u𝑛+1.
• Apply the projection step to compute 𝜎𝑛+1.

5



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)
u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)
u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)
u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)
u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)

u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)

u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)

u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)

u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)

u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)
u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)
u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)
u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)
u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)
u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



stzpp

• Same software for both quasi-static
and explicit method.

• Staggered grid: 𝜎, 𝜒 at cell centers. u
at cell corners.

• Parallelized using domain
decomposition and MPI.

• Ghost-regions pad processor
subdomains with two points.

(𝑖, 𝑗, 𝑘)
u

(𝑖 + 1, 𝑗, 𝑘)

(𝑖, 𝑗 + 1, 𝑘)

(𝑖, 𝑗, 𝑘 + 1)

(𝑖 + 1
2 , 𝑗 + 1

2 , 𝑘 + 1
2 )

𝜎, 𝜒

6



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:

superscript: iteration count
⏞𝑥𝑘+1

𝑖 = 1
𝑎𝑖𝑖⏟

subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:

superscript: iteration count
⏞𝑥𝑘+1

𝑖 = 1
𝑎𝑖𝑖⏟

subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:

superscript: iteration count
⏞𝑥𝑘+1

𝑖 = 1
𝑎𝑖𝑖⏟

subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:

superscript: iteration count
⏞𝑥𝑘+1

𝑖 = 1
𝑎𝑖𝑖⏟

subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖−1,𝑗,𝑘

𝑣𝑛+1
𝑖−1,𝑗,𝑘

𝑤𝑛+1
𝑖−1,𝑗,𝑘

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖,𝑗,𝑘

𝑣𝑛+1
𝑖,𝑗,𝑘

𝑤𝑛+1
𝑖,𝑗,𝑘

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖+1,𝑗,𝑘

𝑣𝑛+1
𝑖+1,𝑗,𝑘

𝑤𝑛+1
𝑖+1,𝑗,𝑘

⎞⎟⎟
⎠

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:

superscript: iteration count
⏞𝑥𝑘+1

𝑖 = 1
𝑎𝑖𝑖⏟

subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖−1,𝑗,𝑘

𝑣𝑛+1
𝑖−1,𝑗,𝑘

𝑤𝑛+1
𝑖−1,𝑗,𝑘

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖,𝑗,𝑘

𝑣𝑛+1
𝑖,𝑗,𝑘

𝑤𝑛+1
𝑖,𝑗,𝑘

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖+1,𝑗,𝑘

𝑣𝑛+1
𝑖+1,𝑗,𝑘

𝑤𝑛+1
𝑖+1,𝑗,𝑘

⎞⎟⎟
⎠

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:

superscript: iteration count
⏞

𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖

⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖−1,𝑗,𝑘

𝑣𝑛+1
𝑖−1,𝑗,𝑘

𝑤𝑛+1
𝑖−1,𝑗,𝑘

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖,𝑗,𝑘

𝑣𝑛+1
𝑖,𝑗,𝑘

𝑤𝑛+1
𝑖,𝑗,𝑘

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖+1,𝑗,𝑘

𝑣𝑛+1
𝑖+1,𝑗,𝑘

𝑤𝑛+1
𝑖+1,𝑗,𝑘

⎞⎟⎟
⎠

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖−1,𝑗,𝑘

𝑣𝑛+1
𝑖−1,𝑗,𝑘

𝑤𝑛+1
𝑖−1,𝑗,𝑘

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖,𝑗,𝑘

𝑣𝑛+1
𝑖,𝑗,𝑘

𝑤𝑛+1
𝑖,𝑗,𝑘

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖+1,𝑗,𝑘

𝑣𝑛+1
𝑖+1,𝑗,𝑘

𝑤𝑛+1
𝑖+1,𝑗,𝑘

⎞⎟⎟
⎠

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖−1,𝑗,𝑘

𝑣𝑛+1
𝑖−1,𝑗,𝑘

𝑤𝑛+1
𝑖−1,𝑗,𝑘

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖,𝑗,𝑘

𝑣𝑛+1
𝑖,𝑗,𝑘

𝑤𝑛+1
𝑖,𝑗,𝑘

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖+1,𝑗,𝑘

𝑣𝑛+1
𝑖+1,𝑗,𝑘

𝑤𝑛+1
𝑖+1,𝑗,𝑘

⎞⎟⎟
⎠

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋮

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖−1,𝑗,𝑘

𝑣𝑛+1
𝑖−1,𝑗,𝑘

𝑤𝑛+1
𝑖−1,𝑗,𝑘

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖,𝑗,𝑘

𝑣𝑛+1
𝑖,𝑗,𝑘

𝑤𝑛+1
𝑖,𝑗,𝑘

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝑢𝑛+1
𝑖+1,𝑗,𝑘

𝑣𝑛+1
𝑖+1,𝑗,𝑘

𝑤𝑛+1
𝑖+1,𝑗,𝑘

⎞⎟⎟
⎠

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1

T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



Projection Step

• Need to solve complex linear system
with mixed spatial derivatives for
velocity update.

• Linear system: Ax = b.

• Gauss-Seidel:
superscript: iteration count

⏞𝑥𝑘+1
𝑖 = 1

𝑎𝑖𝑖⏟
subscript: element index

(𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑎𝑖𝑗𝑥𝑘+1
𝑗 −

𝑛
∑

𝑗=𝑖+1
𝑎𝑖𝑗𝑥𝑘

𝑗 )

• mg3d: custom parallel geometric
multigrid solver written in C++ and
MPI.

• C++ templates to solve for arbitrary
datatypes (𝑛-dimensional vectors,
complex numbers, etc.) at each point.

R0

R1T2

T1

Grid 0

Grid 1

Grid 2

high
frequency

medium
frequency

low
frequency

7



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid

Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid

Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid

Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid

Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication

Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication

Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication

Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication

Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication

Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



mg3d

• Restriction and
interpolation
operators: R𝑖, T𝑖.

• R𝑖 x𝑖⏟
grid 𝑖

= x𝑖+1⏟
grid 𝑖 + 1

.

• T𝑖 x𝑖−1⏟
grid 𝑖 − 1

= x𝑖⏟
grid 𝑖

.

• Specify interpolation
T, define restriction
R = T𝑇.

• RAT Equation:
A𝑛+1 = R𝑛A𝑛T𝑛+1

• Communication
needed for RAT
computation.

• Optimal domain
decomposition
changes in the
hierarchy.

1D Example

T3

T2

T1

Grid
Processor boundary

Grid point

No communication
Communication
Stencil

8



Shear Simulations

• 512 × 512 × 256 grid.

• ≈ 67, 000, 000 grid
points in the bulk.

• ≈ 309, 000, 000
nonzero matrix
entries in the linear
system.

• Normally distributed
initial 𝜒 field at each
grid point
𝜒0(𝑖, 𝑗, 𝑘) ∼ 𝑁(𝜇, 𝜎).

• ≈ 4 day simulation
time with 32 threads.

9



Shear Simulations

• 512 × 512 × 256 grid.

• ≈ 67, 000, 000 grid
points in the bulk.

• ≈ 309, 000, 000
nonzero matrix
entries in the linear
system.

• Normally distributed
initial 𝜒 field at each
grid point
𝜒0(𝑖, 𝑗, 𝑘) ∼ 𝑁(𝜇, 𝜎).

• ≈ 4 day simulation
time with 32 threads.

9



Shear Simulations

• 512 × 512 × 256 grid.

• ≈ 67, 000, 000 grid
points in the bulk.

• ≈ 309, 000, 000
nonzero matrix
entries in the linear
system.

• Normally distributed
initial 𝜒 field at each
grid point
𝜒0(𝑖, 𝑗, 𝑘) ∼ 𝑁(𝜇, 𝜎).

• ≈ 4 day simulation
time with 32 threads.

9



Shear Simulations

• 512 × 512 × 256 grid.

• ≈ 67, 000, 000 grid
points in the bulk.

• ≈ 309, 000, 000
nonzero matrix
entries in the linear
system.

• Normally distributed
initial 𝜒 field at each
grid point
𝜒0(𝑖, 𝑗, 𝑘) ∼ 𝑁(𝜇, 𝜎).

• ≈ 4 day simulation
time with 32 threads.

9



Shear Simulations

• 512 × 512 × 256 grid.

• ≈ 67, 000, 000 grid
points in the bulk.

• ≈ 309, 000, 000
nonzero matrix
entries in the linear
system.

• Normally distributed
initial 𝜒 field at each
grid point
𝜒0(𝑖, 𝑗, 𝑘) ∼ 𝑁(𝜇, 𝜎).

• ≈ 4 day simulation
time with 32 threads.

9



Shear Simulations

• 512 × 512 × 256 grid.

• ≈ 67, 000, 000 grid
points in the bulk.

• ≈ 309, 000, 000
nonzero matrix
entries in the linear
system.

• Normally distributed
initial 𝜒 field at each
grid point
𝜒0(𝑖, 𝑗, 𝑘) ∼ 𝑁(𝜇, 𝜎).

• ≈ 4 day simulation
time with 32 threads.

9



Shear Simulations

• 512 × 512 × 256 grid.

• ≈ 67, 000, 000 grid
points in the bulk.

• ≈ 309, 000, 000
nonzero matrix
entries in the linear
system.

• Normally distributed
initial 𝜒 field at each
grid point
𝜒0(𝑖, 𝑗, 𝑘) ∼ 𝑁(𝜇, 𝜎).

• ≈ 4 day simulation
time with 32 threads.

9



Shear Simulations

• 512 × 512 × 256 grid.

• ≈ 67, 000, 000 grid
points in the bulk.

• ≈ 309, 000, 000
nonzero matrix
entries in the linear
system.

• Normally distributed
initial 𝜒 field at each
grid point
𝜒0(𝑖, 𝑗, 𝑘) ∼ 𝑁(𝜇, 𝜎).

• ≈ 4 day simulation
time with 32 threads.

9



Quasi-Static Results



Conclusions, Future Directions, and Acknowledgments

• Metallic glasses: a promising new class of materials with diverse technological and
structural applications and interesting physics.

• Shear banding, a poorly understood failure mechanism, limits their applications.

• Quasi-static projection algorithm enables simulation of large systems at long
timescales by exploiting an analogy to the incompresible Navier-Stokes equations.

• Numerical extensions to the QS algorithm can be made by considering work in
computational fluid dynamics (e.g. gauge methods).

• Thanks to Chris Rycroft, collaborators Eran Bouchbinder, Michael Falk, Michael
Shields, and the Department of Energy Computational Science Graduate
Fellowship for funding.

10



Conclusions, Future Directions, and Acknowledgments

• Metallic glasses: a promising new class of materials with diverse technological and
structural applications and interesting physics.

• Shear banding, a poorly understood failure mechanism, limits their applications.

• Quasi-static projection algorithm enables simulation of large systems at long
timescales by exploiting an analogy to the incompresible Navier-Stokes equations.

• Numerical extensions to the QS algorithm can be made by considering work in
computational fluid dynamics (e.g. gauge methods).

• Thanks to Chris Rycroft, collaborators Eran Bouchbinder, Michael Falk, Michael
Shields, and the Department of Energy Computational Science Graduate
Fellowship for funding.

10



Conclusions, Future Directions, and Acknowledgments

• Metallic glasses: a promising new class of materials with diverse technological and
structural applications and interesting physics.

• Shear banding, a poorly understood failure mechanism, limits their applications.

• Quasi-static projection algorithm enables simulation of large systems at long
timescales by exploiting an analogy to the incompresible Navier-Stokes equations.

• Numerical extensions to the QS algorithm can be made by considering work in
computational fluid dynamics (e.g. gauge methods).

• Thanks to Chris Rycroft, collaborators Eran Bouchbinder, Michael Falk, Michael
Shields, and the Department of Energy Computational Science Graduate
Fellowship for funding.

10



Conclusions, Future Directions, and Acknowledgments

• Metallic glasses: a promising new class of materials with diverse technological and
structural applications and interesting physics.

• Shear banding, a poorly understood failure mechanism, limits their applications.

• Quasi-static projection algorithm enables simulation of large systems at long
timescales by exploiting an analogy to the incompresible Navier-Stokes equations.

• Numerical extensions to the QS algorithm can be made by considering work in
computational fluid dynamics (e.g. gauge methods).

• Thanks to Chris Rycroft, collaborators Eran Bouchbinder, Michael Falk, Michael
Shields, and the Department of Energy Computational Science Graduate
Fellowship for funding.

10



Conclusions, Future Directions, and Acknowledgments

• Metallic glasses: a promising new class of materials with diverse technological and
structural applications and interesting physics.

• Shear banding, a poorly understood failure mechanism, limits their applications.

• Quasi-static projection algorithm enables simulation of large systems at long
timescales by exploiting an analogy to the incompresible Navier-Stokes equations.

• Numerical extensions to the QS algorithm can be made by considering work in
computational fluid dynamics (e.g. gauge methods).

• Thanks to Chris Rycroft, collaborators Eran Bouchbinder, Michael Falk, Michael
Shields, and the Department of Energy Computational Science Graduate
Fellowship for funding.

10



Conclusions, Future Directions, and Acknowledgments

• Metallic glasses: a promising new class of materials with diverse technological and
structural applications and interesting physics.

• Shear banding, a poorly understood failure mechanism, limits their applications.

• Quasi-static projection algorithm enables simulation of large systems at long
timescales by exploiting an analogy to the incompresible Navier-Stokes equations.

• Numerical extensions to the QS algorithm can be made by considering work in
computational fluid dynamics (e.g. gauge methods).

• Thanks to Chris Rycroft, collaborators Eran Bouchbinder, Michael Falk, Michael
Shields, and the Department of Energy Computational Science Graduate
Fellowship for funding.

10


	Quasi-Static Results

