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Force Coupling Method (FCM) for Stokes Flow:
Bidispersed results

Developing Poiseuille flow in a channel.

Flux migration, counter to r� but in direction of decreasing shear

⌃P

22 creates a “body force” driving the flux

Interested in the role of forces driving the migration (contact force versus
lubrication) and instantaneous dynamics

How does this change when the particles are di↵erent sizes?
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Force Coupling Method (FCM) for Stokes Flow:
Bidispersed results
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FCM for Stokes Flow

Uses low-order force multipole expansions to represent the particles.
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Translational and angular velocities obtained from weighted volume integrals.
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FCM for Stokes Flow: Near-Field Interactions

Short range contact forces

Lubrication viscous forces: Pairwise addition of two-body resistance matrices1

Use preconditioned conjugate gradient method for solving R

�1 terms. Two steps:
outer iteration for FCM dipole terms, inner iteration for local lubrication forces and
torques–important for closely clustered particles.2

Condition number of R scales like 103/✏.
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Figure: Sample resistance functions3. ⇠ = ✏/hai
1Brady & Bossis, Ann. Rev. Fluid Mech. 20 (1998)
2Yeo & Maxey, J. Fluid Mech. 682 (2011)
3Je↵rey & Onishi, J. Fluid Mech. 139 (1984)
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Moving Least Squares (MLS) basic idea

We want to approximate a function u near a point x
i

. Define

u

h

(x ; x
i

) = q

⇤(x
i

)

where q

⇤ is the solution to a weighted l2 optimization problem:

q

⇤ = arg min
q2⇡

m

NX

i=1

[u(x
j

)� q(x
j

)]2W
ij

Operator D↵ is found by applying D

↵ to the reconstruction:

D

↵
u

i

⇡ D

↵
h

u

i

:= D

↵
q

⇤(x
i

)

Howard, Maxey, Trask February 28, 2017 6 / 15



MLS for Stokes Flow4

Recently developed Staggered MLS scheme for
numerical solutions of Stokes flow

Polynomial interpolants are used to represent
the flow using least squares minimization

High order accurate (4th or 6th order easily
obtained by changing the order of the
polynomial interpolants.)

Force-free and torque-free colloids with position
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Figure: Point adaptivity for colloids interacting
under shear flow. Particle adaptivity visualized by
rendering spheres at each point with diameter
proportional to ✏
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4N. Trask, Ph.D. thesis (2015)
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MLS for Stokes Flow

Choose u in the space of divergence free vector fields.
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Figure: Exact and MLS results for trajectory of
particles in shear flow for varying initial colloid
configuration.

Figure: Square particles of unit size in shear flow.
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MLS Discretization

Identify a virtual dual face with each edge and a virtual cell with
each node.
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MLS Discretization

Viscous operator:
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Standard discretization over this basis:
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Because of the form of minimizing a polynomial, we can write each quantity as a
linear combination:
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Dirichlet boundary conditions are reinforced on the global matrix.

Lack of symmetry makes it di�cult to provide divergence free. Only divergence free
in the local polynomial reconstruction.
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Sphere in Couette flow

Sphere with radius r in a box ⌦ = [�1, 1]3.

Boundary conditions: u = (0, 0, y) on @⌦.
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Sphere in Couette flow
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Sphere settling

Sphere with radius a in a box ⌦ = [�1, 1]3.

Boundary conditions: u = (0, 0, 0) on @⌦.

Body force F = (0,�6⇡µaU0, 0) imposed on the
sphere.

Howard, Maxey, Trask February 28, 2017 13 / 15



Sphere settling

N = 483
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Conclusions

Have fast and stable methods using only the graph of neighbor connectivity.

Applications include irregular domains and non-spherical particle shapes with higher
order accuracy

Future work: coupling FCM and MLS

This work is supported by the NSF Graduate Research Fellowship under Grant No. DGE
1058262 and the U.S. Department of Energy O�ce of Science under Award Number
DE-SC0009247.
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