

COARSE-GRAINED MODELS FOR PDES WITH RANDOM COEFFICIENTS

C. Grigo and P.-S. Koutsourelakis

Continuum Mechanics Group Department of Mechanical Engineering Technical University of Munich SIAM CSE Atlanta

1 Mar 2017

SPDE with random coefficients

Stochastic PDE:

$$\mathcal{K}\left(\boldsymbol{x}, \lambda(\boldsymbol{x}, \boldsymbol{\xi})\right) u(\boldsymbol{x}, \lambda(\boldsymbol{x}, \boldsymbol{\xi})) = f(\boldsymbol{x}), \qquad + \mathrm{B.C.}$$

Figure: Random process $\lambda(\boldsymbol{x}, \xi)$ leads to random solutions $u(\boldsymbol{x}, \xi)$.

- 2 A generative Bayesian surrogate model
- 3 Sample problem: 2D stationary heat equation

• Discretize

$$\mathcal{K}\left(\boldsymbol{x}, \lambda(\boldsymbol{x}, \boldsymbol{\xi})\right) u(\boldsymbol{x}, \lambda(\boldsymbol{x}, \boldsymbol{\xi})) = f(\boldsymbol{x}), \qquad + \mathrm{B.C.}$$

to a set of algebraic equations

$$\boldsymbol{r}_f(\boldsymbol{U}_f,\boldsymbol{\lambda}_f(\xi)) = \boldsymbol{0}$$

- Usually large ($N_{\text{equations}} \sim \text{millions}$)
- Expensive, repeated evaluations for UQ (and various deterministic tasks, e.g. optimization/control, inverse problems...)

Idea: Replace FOM $U_f = U_f(\lambda_f)$ by cheaper, but less accurate input-output map $U_f = f(\lambda_f; \theta)$ based on training data $\mathcal{D} = \left\{ U_f^{(i)}, \lambda_f^{(i)} \right\}_{i=1}^N$

- Idea: Replace FOM $U_f = U_f(\lambda_f)$ by cheaper, but less accurate input-output map $U_f = f(\lambda_f; \theta)$ based on training data $\mathcal{D} = \left\{ U_f^{(i)}, \lambda_f^{(i)} \right\}_{i=1}^N$
- **Problem:** High dimensional uncertainties λ_f learning direct functional mapping (e.g. PCE [Ghanem, Spanos 1991], GP [Rasmussen 2006], neural nets [Bishop 1995]) will fail

Idea: Replace FOM $U_f = U_f(\lambda_f)$ by cheaper, but less accurate input-output map $U_f = f(\lambda_f; \theta)$ based on training data $\mathcal{D} = \left\{ U_f^{(i)}, \lambda_f^{(i)} \right\}_{i=1}^N$

Problem: High dimensional uncertainties λ_f - learning direct functional mapping (e.g. PCE [Ghanem, Spanos 1991], GP [Rasmussen 2006], neural nets [Bishop 1995]) will fail

Solution: Coarse-grained model: Use models based on coarser discretization of PDE, $U_c = U_c(\lambda_c)$

Idea: Replace FOM $U_f = U_f(\lambda_f)$ by cheaper, but less accurate input-output map $U_f = f(\lambda_f; \theta)$ based on training data $\mathcal{D} = \left\{ U_f^{(i)}, \lambda_f^{(i)} \right\}_{i=1}^N$

- **Problem:** High dimensional uncertainties λ_f learning direct functional mapping (e.g. PCE [Ghanem, Spanos 1991], GP [Rasmussen 2006], neural nets [Bishop 1995]) will fail
- Solution: Coarse-grained model: Use models based on coarser discretization of PDE, $U_c = U_c(\lambda_c)$
- Question: Relation between U_f and coarse output U_c , but also relation between fine/coarse inputs λ_f, λ_c

Coarse-graining of SPDE's

• Retain as much as possible information on \boldsymbol{U}_f during coarse-graining, i.e.

Information bottleneck [Tishby, Pereira, Bialek, 1999]

 $\max_{\boldsymbol{\theta}} I(\boldsymbol{\lambda}_c, \boldsymbol{U}_f; \boldsymbol{\theta}) \quad \text{s.t.} \quad I(\boldsymbol{\lambda}_f, \boldsymbol{\lambda}_c; \boldsymbol{\theta}) \leq I_0$

Concept: Coarse grain random field λ, \ldots

• Probabilistic mapping $\lambda_f \rightarrow \lambda_c$: $p_c(\lambda_c | \lambda_f, \theta_c)$

• Goal: Prediction of U_f , not reconstruction of λ_f !

\dots solve ROM and reconstruct \boldsymbol{U}_f from \boldsymbol{U}_c

• $\lambda_c \rightarrow U_c$: solve

$$\boldsymbol{r}_c(\boldsymbol{U}_c, \boldsymbol{\lambda}_c) = \boldsymbol{0}$$

• Decode via coarse-to-fine map $U_c \rightarrow U_f$: $p_{cf}(U_f | U_c, \theta_{cf})$

Graphical Bayesian model

Figure: Bayesian network defining $\bar{p}(\boldsymbol{U}_f|\boldsymbol{\lambda}_f, \boldsymbol{\theta}_c, \boldsymbol{\theta}_{cf})$.

$$\begin{split} \bar{p}(\boldsymbol{U}_{f}|\boldsymbol{\lambda}_{f},\boldsymbol{\theta}_{c},\boldsymbol{\theta}_{cf}) &= \int p_{cf}(\boldsymbol{U}_{f}|\boldsymbol{U}_{c},\boldsymbol{\theta}_{cf})p(\boldsymbol{U}_{c}|\boldsymbol{\lambda}_{c})p_{c}(\boldsymbol{\lambda}_{c}|\boldsymbol{\lambda}_{f},\boldsymbol{\theta}_{c})d\boldsymbol{U}_{c}d\boldsymbol{\lambda}_{c} \\ &= \int p_{cf}(\boldsymbol{U}_{f}|\boldsymbol{U}_{c}(\boldsymbol{\lambda}_{c}),\boldsymbol{\theta}_{cf})p_{c}(\boldsymbol{\lambda}_{c}|\boldsymbol{\lambda}_{f},\boldsymbol{\theta}_{c})d\boldsymbol{\lambda}_{c}. \end{split}$$

Model training

• Maximum likelihood:

$$\begin{pmatrix} \boldsymbol{\theta}_c^* \\ \boldsymbol{\theta}_{cf}^* \end{pmatrix} = \arg \max_{\boldsymbol{\theta}_c, \boldsymbol{\theta}_{cf}} \sum_{i=1}^N \log \bar{p}(\boldsymbol{U}_f^{(i)} | \boldsymbol{\lambda}_f^{(i)}, \boldsymbol{\theta}_c, \boldsymbol{\theta}_{cf})$$

• Maximum posterior:

$$\begin{pmatrix} \boldsymbol{\theta}_c^* \\ \boldsymbol{\theta}_{cf}^* \end{pmatrix} = \arg \max_{\boldsymbol{\theta}_c, \boldsymbol{\theta}_{cf}} \sum_{i=1}^N \log \bar{p}(\boldsymbol{U}_f^{(i)} | \boldsymbol{\lambda}_f^{(i)}, \boldsymbol{\theta}_c, \boldsymbol{\theta}_{cf}) + \log p(\boldsymbol{\theta}_c, \boldsymbol{\theta}_{cf})$$

• Data:

$$\boldsymbol{\lambda}_{f}^{(i)} \sim p(\boldsymbol{\lambda}_{f}^{(i)}), \qquad \boldsymbol{U}_{f}^{(i)} = \boldsymbol{U}_{f}(\boldsymbol{\lambda}_{f}^{(i)}).$$

$$\bar{p}(\boldsymbol{U}_{f}^{(i)}|\boldsymbol{\lambda}_{f}^{(i)},\boldsymbol{\theta}_{c},\boldsymbol{\theta}_{cf}) = \int p_{cf}(\boldsymbol{U}_{f}^{(i)}|\boldsymbol{U}_{c}(\boldsymbol{\lambda}_{c}^{(i)}),\boldsymbol{\theta}_{cf})p_{c}(\boldsymbol{\lambda}_{c}^{(i)}|\boldsymbol{\lambda}_{f}^{(i)},\boldsymbol{\theta}_{c})d\boldsymbol{\lambda}_{c}^{(i)}$$

- \rightarrow Likelihood contains N integrals over N latent variables $\lambda_c^{(i)}$
- $\rightarrow\,$ Use Expectation-Maximization algorithm [Dempster, Laird, Rubin 1977] : find lower bound

$$\begin{split} &\log(\bar{p}(\boldsymbol{U}_{f}^{(i)}|\boldsymbol{\lambda}_{f}^{(i)},\boldsymbol{\theta}_{c},\boldsymbol{\theta}_{cf})) \\ &\geq \int q^{(i)}(\boldsymbol{\lambda}_{c}^{(i)})\log\left(\frac{p_{cf}(\boldsymbol{U}_{f}^{(i)}|\boldsymbol{U}_{c}(\boldsymbol{\lambda}_{c}^{(i)}),\boldsymbol{\theta}_{cf})p_{c}(\boldsymbol{\lambda}_{c}^{(i)}|\boldsymbol{\lambda}_{f}^{(i)},\boldsymbol{\theta}_{c})}{q^{(i)}(\boldsymbol{\lambda}_{c}^{(i)})}\right)d\boldsymbol{\lambda}_{c}^{(i)} \\ &= \mathcal{F}^{(i)}(\boldsymbol{\theta};q_{t}^{(i)}(\boldsymbol{\lambda}_{c}^{(i)})), \quad \text{ where } \quad \boldsymbol{\theta} = [\boldsymbol{\theta}_{c},\boldsymbol{\theta}_{cf}]. \end{split}$$

- Maximize iteratively:
- **E-step:** Find optimal $q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)}) \propto p_{cf}(\boldsymbol{U}_f^{(i)}|\boldsymbol{U}_c(\boldsymbol{\lambda}_c^{(i)}), \boldsymbol{\theta}_{cf})p_c(\boldsymbol{\lambda}_c^{(i)}|\boldsymbol{\lambda}_f^{(i)}, \boldsymbol{\theta}_c)$ given current estimate $\boldsymbol{\theta}_t$ of optimal $\boldsymbol{\theta}$ and compute expectation values (MCMC, VI, EP)
- M-step: Maximize lower bound $\mathcal{F}_t(\boldsymbol{\theta}) = \sum_i \mathcal{F}_t^{(i)}(\boldsymbol{\theta}; q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)}))$ w.r.t. $\boldsymbol{\theta}$ to find $\boldsymbol{\theta}_{t+1}$

- Maximize iteratively:
- **E-step:** Find optimal $q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)}) \propto p_{cf}(\boldsymbol{U}_f^{(i)}|\boldsymbol{U}_c(\boldsymbol{\lambda}_c^{(i)}), \boldsymbol{\theta}_{cf})p_c(\boldsymbol{\lambda}_c^{(i)}|\boldsymbol{\lambda}_f^{(i)}, \boldsymbol{\theta}_c)$ given current estimate $\boldsymbol{\theta}_t$ of optimal $\boldsymbol{\theta}$ and compute expectation values (MCMC, VI, EP)
- M-step: Maximize lower bound $\mathcal{F}_t(\boldsymbol{\theta}) = \sum_i \mathcal{F}_t^{(i)}(\boldsymbol{\theta}; q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)}))$ w.r.t. $\boldsymbol{\theta}$ to find $\boldsymbol{\theta}_{t+1}$

Figure: Expectation-Maximization algorithm illustration

- Maximize iteratively:
- **E-step:** Find optimal $q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)}) \propto p_{cf}(\boldsymbol{U}_f^{(i)}|\boldsymbol{U}_c(\boldsymbol{\lambda}_c^{(i)}), \boldsymbol{\theta}_{cf})p_c(\boldsymbol{\lambda}_c^{(i)}|\boldsymbol{\lambda}_f^{(i)}, \boldsymbol{\theta}_c)$ given current estimate $\boldsymbol{\theta}_t$ of optimal $\boldsymbol{\theta}$ and compute expectation values (MCMC, VI, EP)
- M-step: Maximize lower bound $\mathcal{F}_t(\boldsymbol{\theta}) = \sum_i \mathcal{F}_t^{(i)}(\boldsymbol{\theta}; q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)}))$ w.r.t. $\boldsymbol{\theta}$ to find $\boldsymbol{\theta}_{t+1}$

- Maximize iteratively:
- **E-step:** Find optimal $q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)}) \propto p_{cf}(\boldsymbol{U}_f^{(i)}|\boldsymbol{U}_c(\boldsymbol{\lambda}_c^{(i)}), \boldsymbol{\theta}_{cf})p_c(\boldsymbol{\lambda}_c^{(i)}|\boldsymbol{\lambda}_f^{(i)}, \boldsymbol{\theta}_c)$ given current estimate $\boldsymbol{\theta}_t$ of optimal $\boldsymbol{\theta}$ and compute expectation values (MCMC, VI, EP)
- M-step: Maximize lower bound $\mathcal{F}_t(\boldsymbol{\theta}) = \sum_i \mathcal{F}_t^{(i)}(\boldsymbol{\theta}; q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)}))$ w.r.t. $\boldsymbol{\theta}$ to find $\boldsymbol{\theta}_{t+1}$

- Maximize iteratively:
- **E-step:** Find optimal $q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)}) \propto p_{cf}(\boldsymbol{U}_f^{(i)}|\boldsymbol{U}_c(\boldsymbol{\lambda}_c^{(i)}), \boldsymbol{\theta}_{cf})p_c(\boldsymbol{\lambda}_c^{(i)}|\boldsymbol{\lambda}_f^{(i)}, \boldsymbol{\theta}_c)$ given current estimate $\boldsymbol{\theta}_t$ of optimal $\boldsymbol{\theta}$ and compute expectation values (MCMC, VI, EP)
- M-step: Maximize lower bound $\mathcal{F}_t(\boldsymbol{\theta}) = \sum_i \mathcal{F}_t^{(i)}(\boldsymbol{\theta}; q_t^{(i)}(\boldsymbol{\lambda}_c^{(i)}))$ w.r.t. $\boldsymbol{\theta}$ to find $\boldsymbol{\theta}_{t+1}$

Model predictions

Figure: Bayesian network defining $\bar{p}(\boldsymbol{U}_f|\boldsymbol{\lambda}_f, \boldsymbol{\theta}_c, \boldsymbol{\theta}_{cf})$.

$$ar{p}(oldsymbol{U}_f|oldsymbol{\lambda}_f,oldsymbol{ heta}_c^*,oldsymbol{ heta}_{cf}) = \int p_{cf}(oldsymbol{U}_f|oldsymbol{U}_c(oldsymbol{\lambda}_c),oldsymbol{ heta}_{cf}^*)p_c(oldsymbol{\lambda}_c|oldsymbol{\lambda}_f,oldsymbol{ heta}_c^*)doldsymbol{\lambda}_c$$

Given λ_f and $\theta_c^*, \theta_{cf}^*$,

- sample λ_c from $p_c(\lambda_c | \lambda_f, \theta_c^*)$,
- solve coarse model $U_c = U_c(\lambda_c)$,
- sample \boldsymbol{U}_f from $p(\boldsymbol{U}_f|\boldsymbol{U}_c,\boldsymbol{\theta}_{cf}^*)$

Sample problem: 2D heat equation

$$abla_{\boldsymbol{x}}(-\lambda(\boldsymbol{x},\xi(\boldsymbol{x}))
abla_{\boldsymbol{x}}T(\boldsymbol{x},\xi(\boldsymbol{x}))) = 0, + B.C.$$

where $\xi(\boldsymbol{x}) \sim GP(0, \operatorname{cov}(\boldsymbol{x}_i, \boldsymbol{x}_j))$ with

$$\operatorname{cov}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left\{-rac{|\boldsymbol{x}_i - \boldsymbol{x}_j|^2}{l^2}
ight\},$$

and

$$\lambda(oldsymbol{x},\xi(oldsymbol{x})) = egin{cases} \lambda_{ ext{hi}}, & ext{if} \quad \xi(oldsymbol{x}) > k, \ \lambda_{ ext{lo}}, & ext{otherwise} \end{cases}$$

Model specifications

• $\lambda_f
ightarrow \lambda_c$:

Element numbering with index k $\log \lambda_{c,k} = \sum_{j=1}^{N_{\text{features}}} \theta_{c,j} \varphi_j(\boldsymbol{\lambda}_{f,k}) + \sigma_k Z_k, \ Z_k \sim \mathcal{N}(0,1),$

•
$$\boldsymbol{U}_c
ightarrow \boldsymbol{U}_f:$$

$$p_{cf}(\boldsymbol{U}_f|\boldsymbol{U}_c(\boldsymbol{z}_c), \boldsymbol{\theta}_{cf}) = \mathcal{N}(\boldsymbol{U}_f|\boldsymbol{W}\boldsymbol{U}_c(\boldsymbol{z}_c), \boldsymbol{S})$$

with feature functions φ_i , coarse-to-fine projection W, diagonal covariance S = diag(s).

Feature functions $\varphi_i(\boldsymbol{\lambda}_{f,k})$

- Any function $\varphi_i : (\mathbb{R}^+)^{\dim(\lambda_{f,k})} \mapsto \mathbb{R}$ admissible
- Could/should be guided by physical insight:
 - Effective-medium approximations
 - Self-consistent approximation (SCA)[Bruggeman 1935],
 - Maxwell-Garnett approximation (MGA)[Maxwell 1873],
 - Differential effective medium approximation (DEM) [Bruggeman 1935]...

• Morphology-describing features:

- Lineal path function[Lu, Torquato 1992],
- (Convex) Blob area,
- Blob extent,
- Distance transformations...

Left: Convex area (blue), max. extent (red), pixel-cross (green). Right: distance transform

- Strategy: Include as many features φ_j as possible, employ sparsity prior for feature selection
- Laplace prior (LASSO):

$$p(\theta_{c,i}) \propto \exp\left\{-\sqrt{\gamma} |\theta_{c,i}|\right\},$$

• ARD prior:

$$p(\theta_{c,i}) \propto \int_0^\infty \frac{1}{\tau_i} \mathcal{N}(\theta_{c,i}|0,\tau_i) d\tau_i = \frac{1}{|\theta_{c,i}|}$$

Which features are activated?

Optimal θ_c for different contrasts

• The higher the contrast, the more geometry matters

Learned effective property λ_c

• Note that $p_c(\boldsymbol{\lambda}_c|\boldsymbol{\lambda}_f, \boldsymbol{\theta}_c) = \mathcal{N}(\log \boldsymbol{\lambda}_c|\boldsymbol{\Phi}\boldsymbol{\theta}_c, \boldsymbol{\Sigma} = \operatorname{diag}(\boldsymbol{\sigma}^2))$, and we plot $\langle \boldsymbol{\lambda}_c \rangle_{p_c} = \boldsymbol{\Phi}\boldsymbol{\theta}_c + \frac{1}{2}\boldsymbol{\sigma}^2$

How many training samples do we need?

- Few data is needed, errors converge quickly
- The finer the coarse mesh, the better the predictions
- The finer the coarse mesh, the less data is needed
- **But:** the finer the coarse mesh, the more expensive the training/predictions

Figure: Histogrammatic predictive distribution of temperature at lower right corner, $\bar{p}(U_{f,lr}|\boldsymbol{\lambda}_{f}, \boldsymbol{\theta})$

Figure: Predictions on different test data samples for $N_{\rm el,c} = 8 \times 8$, $\phi_{\rm hi} = 0.2$, l = 0.078 and $c = \frac{\lambda_{\rm hi}}{\lambda_{\rm lo}} = 10$. Colored: \boldsymbol{U}_f , blue: $\langle \boldsymbol{U}_f \rangle_{\bar{p}}$, grey: $\pm \sigma$.

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Figure: Test sample 3 from different angles

Predictive uncertainty

Figure: Optimal variances $\pmb{\sigma}^{*2}$ of p_c (l.) and optimal variances \pmb{s} of $p_{cf}.$

Training:		Prediction	Predictions:	
Quantity N	Scaling	Quantity N	Scaling	
#Data	$\mathcal{O}(N)$	#Data	$\mathcal{O}(1)$	
$\dim(\boldsymbol{\lambda}_f)$?	$\dim(oldsymbol{\lambda}_f)$?	
$\dim(\hat{\boldsymbol{U}}_f)$	$\mathcal{O}(N)$	$\dim({oldsymbol{U}}_f)$	$\mathcal{O}(N)$	
$\dim(\boldsymbol{\lambda}_c), \dim(\boldsymbol{U}c)$	$\mathcal{O}(N^3)$	$\dim(\boldsymbol{\lambda}_c), \dim(\boldsymbol{U}c)$	$\mathcal{O}(N^3)$	
$\dim(\boldsymbol{\theta}_c)$	$\mathcal{O}(N^3)$	$\dim(\boldsymbol{\theta}_c)$	$\mathcal{O}(N)$	

Is the model applicable for all kinds of microstructures?

Figure: Predictive error for different microstructural parameters and a 4×4 coarse grid.

• There are regimes where the model works optimally/ will fail

Summary & Outlook

Summary

- Replace FOM by cheaper, but less accurate ROM
- Learn probabilistic output-output, but also input/input mappings between fine and coarse solver
- Predict by sampling λ_c , solving coarse model, sampling U_f
- Potentially find interpretable features for effective material properties

Outlook

- Anisotropic λ_c
- Account for correlations among $\lambda_{c,k}$'s
- Adaptive coarse mesh refinement

