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STOCHASTIC	MUTLISCALE	ELLIPTIC	PDE

D
∀x∈D⊂!d

2

−∇(a(x)∇u(x))= f (x)

g(x)=0, ∀x∈∂D

PDE

BC

a(x)- Uncertainty	in	diffusion	field											,BCs											,forcing	
function									.			

a(x)
f (x)

g(x)

- We	consider	uncertainty	only	in	diffusion	field										.					

- Consider	a	to	be	multiscale.	



MULTISCALE	FEM	(MsFEM)[1]
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Ki

Solve:

−∇(a(x)∇u(x))=0∀x∈Ki
u(x)=uj∀x∈∂Ki

KEY	STEP		!

Couple	adaptive	basis	
functions	with	full	FEM	solver.

Reference:
[1]-Efendiev and	Hou,	Multiscale	finite	element	methods:	theory	and	applications.	(2009)	
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Ki
−∇(a(x)∇u(x))=0∀x∈Ki

u(x)=uj∀x∈∂Ki

Key	Idea	of	Stochastic	MsFEM[1]

Exploit	local		low	dimensional	structure

Reference:
[1]-Hou et.	al,	Exploring	The	Locally	Low	Dimensional	Structure	In	Solving	Random	Elliptic	Pdes.	(2016)	



Curse	of	dimensionality
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*	Original	presentation:	https://speakerdeck.com/paulcon/active-subspaces-emerging-ideas-for-dimension-reduction-in-parameter-studies-2



TECHNIQUES	FOR	DIMENSIONALITY	REDUCTION
• Truncated	Karhunen-Loeve	Expansion	(also	known	as	Linear	Principal	Component	
analysis)[1].

• Active	Subspaces	(with	gradient	information[2] or	without	gradient	
information[3]).

• Kernel	PCA[4].	(Non-linear	model	reduction).
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References:
[1]- Ghanem and	Spanos. Stochastic	finite	elements:	a	spectral	approach (2003).
[2]- Constantine	et.	al.	Active	subspace	methods	in	theory	and	practice:	applications	to	kriging	surfaces. (2014).
[3]-Tripathy	et.	al. Gaussian	processes	with	built-in	dimensionality	reduction:	Applications	to	high-dimensional	uncertainty	propagation.	(2016).
[4]-Ma	and	Zabaras.	Kernel	principal	component	analysis	for	stochastic	input	model	generation.	(2011).



This	work	proposes	…
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Ki
−∇(a(x)∇u(x))=0∀x∈Ki

u(x)=uj∀x∈∂Ki
Replace	the	solver	for	this	homogeneous	
PDE	with	a	DNN	surrogate.

WHY:
- Capture	arbitrarily	complex	relationships.
- No	imposition	on	the	probabilistic	structure	of	the	input.
- Work	directly	with	a	discrete	snapshot	of	the	input.



• Specifically,	we	consider:

• where,	

g~GP(g(x)|0,k(x , ′x ))
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−∇(a(x)∇u(x))=0∀x∈Ki
Ki

a = exp(g)

u =uj∀x∈∂Ki

SE	covariance

Lengthscales	in	the	transformed	space:
- 0.1	in	the	x-direction.
- 1.0	in	the	y-direction.



9

SOLVER



Deep	Neural	Network	(DNN)	surrogate
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-Independent	surrogate	for	each	’pixel’	in	the	
output.	

F(a;θ (i )):!1089→!

θ = {Wl ,bl : l∈{1,2,!,L,L+1}}



NETWORK	ARCHITECTURE
INPUT

OUTPUT

l1
l2

Fig.:	Example	network	with	
3	hidden	layers	and	h=3
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ni = Dexp(βi)
i∈{1,2,!,L}

l3

D=50
h=3
Number	of	parameters	=1057

Why	this	way:
- Full	network	parameterized	by	just	2	numbers.
- Dimensionality	reduction	interpretation.	



OPTIMIZATION
Likelihood	model:

Full	Loss	function:

NEGATIVE	LOG	LIKELIHOOD

REGULARIZER
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Lj(θ ,λ ,σ ;a j )= log(σ )+
1
2σ 2 ( y j −F(a j ;θ ))2

y |a ,θ ,σ ~N (|F(a ,θ ),σ 2)

θ * ,σ * ,λ * = argminL

L = 1
N j=1

N

∑Lj +λ
l=1

L+1

∑‖Wl‖
2



oBackpropagation[2] to	compute	gradients.
oUse	mini-batch	size	of	32.
o Initial	stepsize set	to	3x10-4 .
oDrop	stepsize by	factor	of	1/10	every	15k	iterations.
o Train	for	45k	iterations.	
oMoment	decay	rate:																																						.	β1 =0.9,β2 =0.999

θt =θt−1 −α
mt

vt +ε
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ADAptive	Moments	(ADAM[1])	optimizer

References:
[1]- Kingma and	Ba.	Adam:	A	method	for	stochastic	optimization. (2014).
[2]- Rummelhart and	Yves,	Backpropagation:	theory,	architectures,	and	applications.	(1995).



SELECTING	OTHER	HYPERPARAMETERS

L h
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S(a;F )= 1
Nval i=1

Nval

∑( yitrue − yipred )2

• Select	number	of	layers			,	width	of	final	hidden	layer,				and	regularization	
parameter					with	cross	validation.	

• Perform	cross-validation	on	one	output	point;	reuse	selected	network	
configuration	on	all	the	remaining	outputs.

λ



Fig.:	Score	vs	number	of	layers
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Fig.:	Score	vs	width	of	last	hidden	layer
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Fig.:	Score	vs	log	of	weight	decay
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Fig.:	Iteration	vs	Score Fig.:	Observed	outputs	vs	predicted	
outputs	on	the	test	dataset.
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Prediction	of	full	solution
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MSE (x10-6):

Predicted	solution True	solution



What	if	we	predict	solution	on	inputs	
from	random	fields	that	have	

different	lengthscales	?
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TESTING	THE	SURROGATE	WITH	DIFFERENT	RANDOM	FIELDS
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What	about	fields	with	
discontinuities?
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PREDICTED	SOLUTION TRUE	SOLUTION



FUTURE	DIRECTIONS
• Reduce	data	with	unsupervised	pretraining.

• Correlations	between	outputs	(Multi-task	learning).

• Fields	with	arbitrary	spatial	discretization	(Fully	convolutional	networks).

• Bayesian	training	(stochastic	variational	inference).
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