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Motivation

Gaussian process regression Active learning & Bayesian optimization
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Next
point

Optimization under uncertainty 

• Assess the performance of the system 

• Estimate the statistics of the response 

• Data acquisition under limited budgets

Model &  parametric uncertainty 

Surrogate uncertainty 

Learning uncertainty

x, ⇠ Y (x, ⇠)

L(t) = {x : R (Y (x, ⇠))  t}

x

⇤ = arg min
x2Rd

R (Y (x, ⇠))

1

2



Gaussian processesInfinite model... but we always work with finite sets!

Let’s start with a multivariate Gaussian:

p(f1, f2, · · · , fs| {z }
fA
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Marginalisation property:

p(fA, fB) ⇠ N (µ,K). Then:

p(fA) =

Z

fB

p(fA, fB)dfB = N (µA,KAA)

Infinite model... but we always work with finite sets!

Let’s start with a multivariate Gaussian:
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Marginalisation property:

p(fA, fB) ⇠ N (µ,K). Then:

p(fA) =
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p(fA, fB)dfB = N (µA,KAA)

Starting point: The multivariate Gaussian distribution

Infinite model... but we always work with finite sets!

Let’s start with a multivariate Gaussian:

p(f1, f2, · · · , fs| {z }
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fB

) ⇠ N (µ,K).

with:

µ =
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and K =
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Marginalisation property:

p(fA, fB) ⇠ N (µ,K). Then:

p(fA) =

Z

fB

p(fA, fB)dfB = N (µA,KAA)

Infinite dimensional model, but finitely many observations: The marginalization property

Samples from a GP prior Priors over functions:

468th APS-DFD Meeting — Calibration of Blood Flow Simulations

Construction of response surfaces

Workflow: 
• Assign a Gaussian process (GP) prior over functions 
• Given a training set of observations (x,y) calibrate the  
GP hyper-parameters 
• Use the conditional posterior [f|y] to infer predictions  
for unobserved x’s with quantified uncertainty
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Table 4.1: Summary of several commonly-used covariance functions. The covariances
are written either as a function of x and x

0, or as a function of r = |x � x

0|. Two
columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see
section 4.3 for more discussion of this issue.

stationary, isotropic covariance function that is valid in every Euclidean space
RD for D = 1, 2, . . .. Let ⌃(x) be a D ⇥ D matrix-valued function which
is positive definite for all x, and let ⌃i , ⌃(xi). (The set of Gibbs’ `i(x)
functions define a diagonal ⌃(x).) Then define the quadratic form

Qij = (xi � xj)>((⌃i + ⌃j)/2)�1(xi � xj). (4.33)

Paciorek and Schervish [2004] show that

kNS(xi,xj) = 2D/2|⌃i|1/4|⌃j |1/4|⌃i + ⌃j |�1/2kS(
p

Qij), (4.34)

is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.

4.2 Examples of Covariance Functions 85
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Supervised learning with GPs 
….i.e. y = f(x) + ε,  f~GP(μ,Σ)


fully non-parametric!Probability measure over functions: Gaussian Processes
Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ⇠ GP(µ(x), k(x , x 0)) is determined by the mean
function m(x) and covariance function k(x , x 0; ✓).

I Posterior mean µ(x ; ✓,D) and variance �(x ; ✓,D) can be
computed explicitly given a dataset D.

Probability measure over functions —> Gaussian proceses
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In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
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In the previous sections we have developed many covariance functions some of
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Workflow:

— Assign a Gaussian prior over functions

— Given a training set of data calibrate model parameters

— Use the posterior to make predictions 

with quantified uncertainty

f(x)

x x

f(x)

y = f(x) + ✏, f ⇠ GP(µ(x),K(x,x0; ✓))

History: 
• Wiener–Kolmogorov filtering (1940) 
• Kriging (spatial statistics, 1970) 
• GP regression (machine learning, 1996) 

Rasmussen, C. E. Gaussian processes for machine learning 2006. 

Generalization: The Gaussian process

Infinite model... but we always work with finite sets!

In the GP context f = f(x):
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For all available inputs:

K = Kff = k(X,X)
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mean function covariance function

Rasmussen, C. E. Gaussian processes for machine learning (2006) 

Posterior is also Gaussian!

p(fA, fB) ⇠ N (µ,K). Then:

p(fA|fB) = N (µA +KABK
�1
BB(fB � µB),KAA �KABK

�1
BBKBA)

In the GP context this can be used for inter/extrapolation:

p(f⇤|f1, · · · , fN ) = p(f(x⇤)|f(x1), · · · , f(xN )) ⇠ N
p(f⇤|f1, · · · , fN) = p(f(x⇤)|f(x1), · · · , f(xN ))
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p(f(x⇤)|f(x1), · · · , f(xN )) is a posterior process!

Posterior is also Gaussian: 

Neural 
networks

Gaussian 
processes

Kernel 
machines

infinite 
limits

Bayesian 
inference

Dual 
functions



Nonlinear regression with Gaussian processes

Workflow: 
• Assign a Gaussian process (GP) prior over functions 
• Given a training set of observations (x,y) calibrate the  
GP hyper-parameters 
• Use the conditional posterior [f|y] to infer predictions  
for unobserved x’s with quantified uncertainty
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is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.
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In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Supervised learning with GPs 
….i.e. y = f(x) + ε,  f~GP(μ,Σ)


fully non-parametric!Probability measure over functions: Gaussian Processes
Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ⇠ GP(µ(x), k(x , x 0)) is determined by the mean
function m(x) and covariance function k(x , x 0; ✓).

I Posterior mean µ(x ; ✓,D) and variance �(x ; ✓,D) can be
computed explicitly given a dataset D.

Probability measure over functions —> Gaussian proceses
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is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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(4.17)

since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Workflow:

— Assign a Gaussian prior over functions

— Given a training set of data calibrate model parameters

— Use the posterior to make predictions 

with quantified uncertainty

f(x)

x x

f(x)

y = f(x) + ✏, f ⇠ GP(µ(x),K(x,x0; ✓))

History: 
• Wiener–Kolmogorov filtering (1940) 
• Kriging (spatial statistics, 1970) 
• GP regression (machine learning, 1996)

Rasmussen, C. E. Gaussian processes for machine learning (2006) 
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Prediction:

the second kind, respectively. In what follows, we formulate the inference problem for the
case of homoscedastic noise, while we refer the reader to [] for a detailed outline of the
heteroscedastic case. To this end, we introduce ✓ = [�2

, ⌫,,�
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✏

]T as a vector of hyper-
parameters which characterize the GP model, which are typically computed from the data
through maximum likelihood estimation.

If we consider a Gaussian likelihood p(y|f) = N (y|f ,�2
✏

I) then the posterior distri-
bution p(f |y,X) is tractable and can be used to perform predictive inference for a new
output f⇤, given a new input x⇤ as

p(f⇤|y,X,x⇤) = N (f⇤|µ⇤,�
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where k⇤N = [k(x⇤,x1), . . . , k(x⇤,x
N

)], k
N⇤ = k

T

⇤N , and k⇤⇤ = k(x⇤,x⇤). Predictions are
computed using the posterior mean µ⇤, while prediction uncertainty is quantified through
the posterior variance �

2
⇤.

The vector of hyper-parameters ✓ is determined by maximizing the marginal log-
likelihood of the observed data (the so called model evidence), i.e.,

log p(y|X,✓) = �1
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2.3 Introducing risk-averseness

If a point forecast of f is needed, then performing predictions using the posterior mean µ⇤
(see Eq. 6) would be the traditional choice. Carrying this into the an optimization context,
one might be led to consider the following substitute of Eq. 1:

min
x2X

µ⇤(x). (9)

If x⇤ and v

⇤ are the optimal solution and the optimal value of this problem, then what
can be said about f(x⇤)? In this Bayesian setting, we believe that the expected value of
f(x⇤) is equal to µ⇤(x⇤)  µ⇤(x) for all x 2 X , with the right-hand side being equal to
the expected value of f(x). Consequently, based on the information incorporated in the
posterior p(f |y,X), we have that

on “average” f(x⇤) = R
↵

((Y (x⇤; ⇠)) = v

⇤  R
↵

((Y (x; ⇠)) for all x 2 X .

In other words, we have obtained an x

⇤ that is “good” on average relative to all other x.
However, we are unable to provide any guarantee about how “bad” x

⇤ can be. Keep in
mind that we don’t know f(x⇤) and that we are concerned about this quantity being high.
For example, think about the simplified situation with only to candidate designs, say x and
x

0. Suppose we have that µ⇤(x) < µ⇤(x0). Then, the above optimization will select x as
“best.” However, we have no control of how high f(x) can be. From a decision theoretical
point of view, we are risk-neutral with regard to the choice of x.

But, this is an inconsistency as we are making a risk-averse assessment with respect to
the randomness due to ⇠ through the use of the risk measure R

↵

. It seems then inappro-
priate to be insistent on risk-neutrality regarding our “modeling uncertainty” about f , but
insist on risk-averseness when it comes to “inherent uncertainty” in the physical system.
We stress that there is no reason to believe that the risk-averseness should be the same for
both sources of uncertainty. We just state that it is too inflexible to insist that one should
be risk-neutral and the other risk-averse. Of course, this relates to the distinction between
aleatory and epistemic uncertainty.

This discussion motivates us to generalize Eq. 9 into

3
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Assign priors over the hyper parameters and marginalize them out using MCMC.
Bayesian approach

fequentist approach

Rasmussen, C. E. Gaussian processes for machine learning (2006) 



Active learning of level sets

Goal: Identify the sets  

Approximate the true objective with a GP surrogate:

R↵(f(x)) = min

c2R

⇢
c+

1

1� ↵
E[max{0, f(x)� c}]

�
average of the worst 
(1−α)% outcomes of f(x) 

g(x) := R (Y (x, ⇠))L(t) = {x : g(x)  t},

g(x) ⇡ f(x) ⇠ GP(f |0, k(x,x0; ✓))

f(x) is random so it becomes natural to quantify “surrogate” uncertainty using for e.g.   
α-superquintile risk measure:

R↵(f(x)) = µ(x) +
�(��1(↵))

1� ↵
�(x)For f(x) being a GP this can be simplified to:

↵ 2 [0, 1)



Active learning of level sets

e.g. sample at the locations that 
maximize the posterior variance in L(t)
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Fig. 4. Comparison of surrogate regression models. Four different surrogate model posteriors are shown in blue (shaded area delimits 95% credible intervals),
given noisy evaluations (red crosses) of a synthetic function (dashed line). The 10 pseudo-inputs for the SPGP method are shown as black crosses. The SSGP
model used a basis of 80 Fourier features.

overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off

Utilize the posterior to guide a sequential 
sampling policy by optimizing a chosen 
expected utility function

Goal: Identify the sets L↵(t) = {x : R↵(f(x))  t}

Terminate iteration when the “volume” of the predicted level sets is below a given threshold:

xn+1 = arg max

x2L↵(t)
V (f(x))

Predicted level sets

True level sets

Vn(t) =

Z

L↵(t)
1[�1,t]dx|Vn+1(t)� Vn(t)| < ✏,

P. Perdikaris, M. Raissi and J.O. Royset, “Risk-assesment, learning, and optimization using surrogate models”, (in preparation), 2017.

Remarks: 
• The choice of risk-averseness level controls  the exploration vs exploitation trade-off.↵ 2 [0, 1)
• Upon convergence the predicted levels sets are guaranteed to be a subset of the true level sets.
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model used a basis of 80 Fourier features.

overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from
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in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
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kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.
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non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.
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represent our belief about the unknown function f at itera-
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select these arbitrarily but this would be wasteful. Instead,
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3) Random forests: Finally, as an alternative to Gaussian
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sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
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very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
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Averaging the predictions of the individual trees produces an
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forest does not provide an estimate of the variance of its
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these are not principled uncertainty estimates, this heuristic has
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that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
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Fig. 4. Comparison of surrogate regression models. Four different surrogate model posteriors are shown in blue (shaded area delimits 95% credible intervals),
given noisy evaluations (red crosses) of a synthetic function (dashed line). The 10 pseudo-inputs for the SPGP method are shown as black crosses. The SSGP
model used a basis of 80 Fourier features.

overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off

Utilize the posterior to guide a sequential 
sampling policy by optimizing a chosen 
expected utility function

Goal: Identify the sets L↵(t) = {x : R↵(f(x))  t}

Terminate iteration when the “volume” of the predicted level sets is below a given threshold:

xn+1 = arg max

x2L↵(t)
V (f(x))

Predicted level sets

True level sets

Vn(t) =

Z

L↵(t)
1[�1,t]dx|Vn+1(t)� Vn(t)| < ✏,

Remarks: 
• The choice of risk-averseness level controls  the exploration vs exploitation trade-off.↵ 2 [0, 1)
• Upon convergence the predicted levels sets are guaranteed to be a subset of the true level sets.
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aaaaaaCase
↵ 0.0 0.5 0.9

Hartmann (d = 3) 6.7 7.3 8.1
Hartmann (d = 6) 6.2 6.2 6.5
Griewank (d = 4) 6.5 6.5 6.6

Styblinski-Tang (d = 4) 9.3 10.6 12.3

Table 1: Average # of iterations to convergence for 100 independent trials.
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Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
x2Rd

g(x)

Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

e.g. sample at the locations that minimize the lower superquintile risk confidence bound

xn+1 = arg min
x2Rd
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The optimization problem is transformed to:
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation.
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
x2Rd

g(x)

Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation. e.g. sample at the locations that minimize the lower superquintile risk confidence bound

xn+1 = arg min
x2Rd
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
x2Rd

g(x)

Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation. e.g. sample at the locations that minimize the lower superquintile risk confidence bound

xn+1 = arg min
x2Rd

µ(x)� �(��1(↵))

1� ↵
�(x)
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
x2Rd

g(x)

Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation. e.g. sample at the locations that minimize the lower superquintile risk confidence bound
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
x2Rd

g(x)

Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation. e.g. sample at the locations that minimize the lower superquintile risk confidence bound

xn+1 = arg min
x2Rd

µ(x)� �(��1(↵))

1� ↵
�(x)

P. Perdikaris, M. Raissi and J.O. Royset, “Risk-assesment, learning, and optimization using surrogate models”, (in preparation), 2017.



Bayesian optimization

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

The optimization problem is transformed to:

10

Fig. 4. Comparison of surrogate regression models. Four different surrogate model posteriors are shown in blue (shaded area delimits 95% credible intervals),
given noisy evaluations (red crosses) of a synthetic function (dashed line). The 10 pseudo-inputs for the SPGP method are shown as black crosses. The SSGP
model used a basis of 80 Fourier features.

overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
x2Rd

g(x)

Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation. e.g. sample at the locations that minimize the lower superquintile risk confidence bound

xn+1 = arg min
x2Rd

µ(x)� �(��1(↵))

1� ↵
�(x)

P. Perdikaris, M. Raissi and J.O. Royset, “Risk-assesment, learning, and optimization using surrogate models”, (in preparation), 2017.
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given noisy evaluations (red crosses) of a synthetic function (dashed line). The 10 pseudo-inputs for the SPGP method are shown as black crosses. The SSGP
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overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd ⇥ R⇥⇥ 7! R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters ✓
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters ✓ to
obtain the expected utility of a query point x:

↵(x;Dn) = E✓Ev |x,✓[U(x, v, ✓)] (41)

For simplicity, in this section we will mostly ignore the ✓
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function ↵ is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y 2 R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions ↵n : X 7! R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing ↵n, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function ↵

xn+1 = argmax

x

↵(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization
Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.

Utilize the posterior to guide a sequential 
or parallel sampling policy by optimizing 
a chosen expected utility function

Goal: Estimate the global minimum of a function:  (potentially intractable)x

⇤ = arg min
x2Rd

g(x)

Idea: Approximate g(x) using a GP surrogate: y = f(x) + ✏, f ⇠ GP (f |0, k(x,x0; ✓))

Remark: 
Acquisition functions aim to balance the  
trade-off between exploration and 
exploitation. e.g. sample at the locations that minimize the lower superquintile risk confidence bound

xn+1 = arg min
x2Rd
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Challenges and limitations
Discontinuities and non-stationarity: GPs struggle with discontinuous data

Use warping functions to transform into a jointly stationary input space X H Y
f1 f2

• Log, sigmoid, betaCDF  —> “Warped GPs” 
• Neural networks              —> “Manifold GPs” 
• Gaussian processes        —> “Deep GPs”

Snelson, E., C.E. Rasmussen, and Z.Ghahramani. "Warped gaussian processes."

Calandra, R., et al. "Manifold Gaussian processes for regression."

Damianou, A. C., and N.D. Lawrence. "Deep Gaussian processes."

High-dimensions: Tensor product kernels suffer from the curse of dimensionality, i.e. the require an 
exponentially increasing amount of training data

Data-driven additive kernels

Unsupervised dimensionality-reduction (GPLVM, variational auto-encoders)
Lawrence, N.D. "Gaussian process latent variable models for visualisation of high dimensional data."

Perdikaris P., D. Venturi, G.E. Karniadakis “Multi-fidelity information fusion algorithms for high dimensional systems and massive data-sets”, SIAM J. Sci. Comput., 2016

Scalability: GPs suffer from a cubic scaling with the data
Low-rank approximations to the covariance 

Frequency-domain learning algorithms

Stochastic variational inference

Snelson, E., and Z. Ghahramani. "Sparse Gaussian processes using pseudo-inputs."

Hensman, J., N. Fusi, and N.D. Lawrence. "Gaussian processes for big data."

Perdikaris P., D. Venturi, G.E. Karniadakis “Multi-fidelity information fusion algorithms for high dimensional systems and massive data-sets”, SIAM J. Sci. Comput., 2016

Accuracy, convergence rates, posterior consistency, contraction rates, etc.Theoretical guarantees:

Approximation theory in Reproducing Kernel Hilbert Spaces
Stuart, A.M., and A.L. Teckentrup. "Posterior consistency for Gaussian process approximations of Bayesian posterior distributions." arXiv preprint, 2016
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Figure 2: Multi-fidelity in models and in probability space: m models of variable fidelity in physical
space are driven by random input, producing a random response surface Y

m

(x; ⇠). For example,
the expectation of a derived quantify of interest E[f(Y

m

(x; ⇠))] can be estimated by employing p

methods of variable fidelity in probability space.

To underline the potential benefits of this approach, we note that the matrix ⌃
t

in the
Kennedy and O’Hagan model (see Eq. 2.7) has size

P
s

t=1 nt

⇥P
s

t=1 nt

, where n
t

is the number
of observations at the tth fidelity level. On the other hand, the recursive co-kriging approach
involves the inversion of s covariance matrices (⌃

t

)

s

t=1 (see Eq. 2.8) of size n
t

⇥ n
t

, where n
t

is
the number of observations y

t

(x) at level t [11]. Moreover, we note that at each recursive level,
the number of unknown parameters to be learned from the data reduces to {µ

t

, ⇢
t�1, ✓t,�t},

compared to the large parametric set of {µ
t

, ⇢
t�1, ..., ⇢1, ✓t, ..., ✓1,�t, ...,�1} of the coupled

Kennedy and O’Hagan scheme.

(b) Multi-fidelity in models and in probability space
We can build further upon the presented co-kriging framework to formulate a general
methodology that can simultaneously address multi-fidelity in physical models as well as multi-
fidelity in probability space. As it is often the case in realistic design scenarios, the output of a
system may well be sensitive to a set of inputs ⇠ that exhibit random variability. Consequently,
decision making towards identifying an optimal design is typically informed by exploring the
measures of uncertainty that describe the response of the underlying stochastic dynamical system.
This response is often characterized by non-Gaussian statistics that can be estimated numerically
by utilizing appropriate sampling and integration techniques. The potential non-Gaussianity
in the system response should not be confused with the Gaussian nature of the kriging/co-
kriging predictors. The former is an inherent property of the dynamical system that generates
the observed data, while the later introduces a modeling framework for information fusion.

Similarly to having multi-fidelity in models, methods of different fidelity can also be
incorporated in probability space to provide an accurate quantification of uncertainty introduced
by random input. This structure is schematically illustrated in Fig. 2, where m models of variable
fidelity in physical space are driven by random input, hence producing a random response surface
Y

m

(x; ⇠). In return, any uncertainty quantification measure of Y

m

(x; ⇠), such as for e.g. the
expectation E[Y

m

(x; ⇠)] or the risk R[Y

m

(x; ⇠)], can be estimated using a set of p variable-fidelity
methods, such as Monte Carlo integration [16] or probabilistic multi-element collocation on tensor
product grids [17] (see Fig. 2).

This construction results in a family of response surfaces that can be organized hierarchically
in a p⇥m matrix, where physical model fidelity is increased along the columns and
probability space model fidelity increases along the rows (see Fig. 3). Then, it is meaningful
to allow information fusion along the {!}, {#}, {"!}, {#!} directions by employing the
autoregressive co-kriging framework presented in Sec. 2(a).ii. For example, moving along the
purely vertical direction {#} results to the following autoregressive expression for the expectation
E[f(Y

m

(x; ⇠))]:
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We propose a new framework for design under
uncertainty based on stochastic computer simulations
and multi-level recursive co-kriging. The proposed
methodology simultaneously takes into account
multi-fidelity in models, such as direct numerical
simulations versus empirical formulas, as well as
multi-fidelity in the probability space (e.g., sparse
grids vs. tensor product multi-element probabilistic
collocation). We are able to construct response
surfaces of complex dynamical systems by blending
multiple information sources via auto-regressive
stochastic modeling. A computationally efficient
machine learning framework is developed based on
multi-level recursive co-kriging with sparse precision
matrices of Gaussian Markov random fields. The
effectiveness of the new algorithms is demonstrated in
numerical examples involving a prototype problem in
risk-averse design, regression of random functions, as
well as uncertainty quantification in fluid mechanics
involving the evolution of a Burgers equation from
a random initial state, and random laminar wakes
behind circular cylinders.

1. Introduction
Progress in perceptibly diverse areas of science such
as numerical analysis and scientific computing, design
optimization, uncertainty quantification, and statistical
learning, have started to carve an emerging trend in
engineering design, in which decision making becomes
increasingly more data-driven rather than merely relying
on empirical formulae and expert opinion. A set of
versatile tools, ranging from experiments to stochastic

c� The Author(s) Published by the Royal Society. All rights reserved.
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Figure 3: Family of response surfaces resulting from simultaneously addressing multi-fidelity
in models and in probability space. Physical model fidelity is increased along the columns (red
arrow) and probability space model fidelity increases along the rows (blue arrow). The yellow
arrow represents a possible optimal information fusion path in the combined fidelity space.

E
k+1[f(Yl

(x; ⇠))] = ⇢
k+1Ek

[f(Y
l

(x; ⇠))] + �
k+1(x), k p, lm, (2.9)

where the k-index increases with the fidelity of the estimator of E[f(Y(x; ⇠))] in probability space,
while the l-index increases with model fidelity in physical space.

This structure gives rise to the very interesting task of identifying an optimal path traversal
between different models for building an accurate representation of the target response surface.
This is an open question that we plan to address in a future study. A possible way of attacking
this problem is through stochastic dynamic programming techniques for guiding an optimal
allocation of available computational resources [18]. Alternatively, one could employ random
graph theory to identify optimal information/entropy diffusion paths, where each graph node
is weighted by the fidelity and corresponding cost of each model, while edge weights represent
the degree of correlation between different models.

(c) Gaussian Markov random fields and the SPDE approach
Kriging and co-kriging methods provide predictive schemes that are constructed by exploring
spatial correlations between variables. A key part of this process is fitting a parametric covariance
model to the observed data using machine learning and optimization techniques. The main cost
of this procedure is the factorization of dense and often ill-conditioned covariance matrices for
estimating the likelihood functions that guide the machine learning algorithm. Here, we provide
a brief overview of a method that can effectively reduce the cost of inferring covariance models
from input data, leading to efficient kriging and co-kriging predictive schemes.

A popular choice of a kernel characterizing the covariance of a random field u(x) stems from
the Matérn family [2,4],

C(x,x0
) =

2

1�⌫�2

(4⇡)
d
2 � (⌫ +

d

2 )
2⌫

(||x� x

0||)⌫K
⌫

(||x� x

0||), x2Rd, (2.10)

where ⌫ determines the mean-square differentiability of u(x),  is a scaling parameter related to
the correlation length of u(x), denoted by ⇢, and defined as ⇢=

p
8⌫/. Also, �2 is the marginal

variance of the process, while � (·) and K
⌫

(·) are the Euler gamma and modified Bessel function
of the second kind, respectively. We note that for ⌫ = 0.5, the Matérn covariance simply reduces
to the exponential covariance kernel, while when ⌫ !1 we recover the Gaussian kernel [2,4].

A powerful result by Whittle [19] shows that a random field u(x) with a Matérn covariance is
a solution to the fractional stochastic partial differential equation (SPDE)

(2 �r2
)

↵
2 u(x) = ⌧2W(x), x2Rd, ↵= ⌫ + d/2, > 0, ⌫ > 0, (2.11)

where W(x) is Gaussian white noise, and ⌧ is a scaling parameter. Admissible solutions to Eq. 2.11
are referred to as Matérn fields and are proved to be the only stationary solutions to this SPDE [19].
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between different models for building an accurate representation of the target response surface.
This is an open question that we plan to address in a future study. A possible way of attacking
this problem is through stochastic dynamic programming techniques for guiding an optimal
allocation of available computational resources [18]. Alternatively, one could employ random
graph theory to identify optimal information/entropy diffusion paths, where each graph node
is weighted by the fidelity and corresponding cost of each model, while edge weights represent
the degree of correlation between different models.

(c) Gaussian Markov random fields and the SPDE approach
Kriging and co-kriging methods provide predictive schemes that are constructed by exploring
spatial correlations between variables. A key part of this process is fitting a parametric covariance
model to the observed data using machine learning and optimization techniques. The main cost
of this procedure is the factorization of dense and often ill-conditioned covariance matrices for
estimating the likelihood functions that guide the machine learning algorithm. Here, we provide
a brief overview of a method that can effectively reduce the cost of inferring covariance models
from input data, leading to efficient kriging and co-kriging predictive schemes.

A popular choice of a kernel characterizing the covariance of a random field u(x) stems from
the Matérn family [2,4],
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where ⌫ determines the mean-square differentiability of u(x),  is a scaling parameter related to
the correlation length of u(x), denoted by ⇢, and defined as ⇢=

p
8⌫/. Also, �2 is the marginal

variance of the process, while � (·) and K
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(·) are the Euler gamma and modified Bessel function
of the second kind, respectively. We note that for ⌫ = 0.5, the Matérn covariance simply reduces
to the exponential covariance kernel, while when ⌫ !1 we recover the Gaussian kernel [2,4].

A powerful result by Whittle [19] shows that a random field u(x) with a Matérn covariance is
a solution to the fractional stochastic partial differential equation (SPDE)

(2 �r2
)

↵
2 u(x) = ⌧2W(x), x2Rd, ↵= ⌫ + d/2, > 0, ⌫ > 0, (2.11)

where W(x) is Gaussian white noise, and ⌧ is a scaling parameter. Admissible solutions to Eq. 2.11
are referred to as Matérn fields and are proved to be the only stationary solutions to this SPDE [19].

Fidelity in physical models

Fidelity  
in probability  
space



The choice of the covariance kernel has a big impact on the model as it is tightly related to:

� The smoothness of the sample paths, hence the regularity of the predictor.

� The accuracy and uncertainty of the predictor.

� The conditioning of the correlation matrix, hence the e�ciency of the learning algorithms.

⌃(x,x0; ✓) = �2e�✓|x�x

0|2 ⌃(x,x0; ✓) = �2e�✓|x�x

0|

Introduction GP regression

This is because changing the kernel implies changing the prior
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Construction of response surfaces

Workflow: 
• Assign a Gaussian process (GP) prior over functions 
• Given a training set of observations (x,y) calibrate the  
GP hyper-parameters 
• Use the conditional posterior [f|y] to infer predictions  
for unobserved x’s with quantified uncertainty
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Table 4.1: Summary of several commonly-used covariance functions. The covariances
are written either as a function of x and x

0, or as a function of r = |x � x

0|. Two
columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see
section 4.3 for more discussion of this issue.

stationary, isotropic covariance function that is valid in every Euclidean space
RD for D = 1, 2, . . .. Let ⌃(x) be a D ⇥ D matrix-valued function which
is positive definite for all x, and let ⌃i , ⌃(xi). (The set of Gibbs’ `i(x)
functions define a diagonal ⌃(x).) Then define the quadratic form

Qij = (xi � xj)>((⌃i + ⌃j)/2)�1(xi � xj). (4.33)

Paciorek and Schervish [2004] show that

kNS(xi,xj) = 2D/2|⌃i|1/4|⌃j |1/4|⌃i + ⌃j |�1/2kS(
p

Qij), (4.34)

is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving

k⌫=p+1/2(r) = exp
⇣
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p

2⌫r
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. (4.16)

It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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(4.17)

since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Supervised learning with GPs 
….i.e. y = f(x) + ε,  f~GP(μ,Σ)


fully non-parametric!Probability measure over functions: Gaussian Processes
Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ⇠ GP(µ(x), k(x , x 0)) is determined by the mean
function m(x) and covariance function k(x , x 0; ✓).

I Posterior mean µ(x ; ✓,D) and variance �(x ; ✓,D) can be
computed explicitly given a dataset D.

Probability measure over functions —> Gaussian proceses
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in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Workflow:

— Assign a Gaussian prior over functions

— Given a training set of data calibrate model parameters

— Use the posterior to make predictions 

with quantified uncertainty

f(x)

x x

f(x)

y = f(x) + ✏, f ⇠ GP(µ(x),K(x,x0; ✓))

History: 
• Wiener–Kolmogorov filtering (1940) 
• Kriging (spatial statistics, 1970) 
• GP regression (machine learning, 1996) 

Rasmussen, C. E. Gaussian processes for machine learning 2006. 
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• Given a training set of observations (x,y) calibrate the  
GP hyper-parameters 
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section 4.3 for more discussion of this issue.

stationary, isotropic covariance function that is valid in every Euclidean space
RD for D = 1, 2, . . .. Let ⌃(x) be a D ⇥ D matrix-valued function which
is positive definite for all x, and let ⌃i , ⌃(xi). (The set of Gibbs’ `i(x)
functions define a diagonal ⌃(x).) Then define the quadratic form

Qij = (xi � xj)>((⌃i + ⌃j)/2)�1(xi � xj). (4.33)

Paciorek and Schervish [2004] show that

kNS(xi,xj) = 2D/2|⌃i|1/4|⌃j |1/4|⌃i + ⌃j |�1/2kS(
p

Qij), (4.34)

is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
�(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Supervised learning with GPs 
….i.e. y = f(x) + ε,  f~GP(μ,Σ)


fully non-parametric!Probability measure over functions: Gaussian Processes
Other choices: t-Student processes [Shah et al. 2013], Deep NN [Snoek et al., 2015].

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f (x) ⇠ GP(µ(x), k(x , x 0)) is determined by the mean
function m(x) and covariance function k(x , x 0; ✓).

I Posterior mean µ(x ; ✓,D) and variance �(x ; ✓,D) can be
computed explicitly given a dataset D.

Probability measure over functions —> Gaussian proceses
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columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see
section 4.3 for more discussion of this issue.
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di↵erent values of w to be appropriate in di↵erent regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x0)) = W0kw(x,x0) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x0) = �(x)>W0�(x0)kw(x,x0).

Finally we note that the Wiener process with covariance function k(x, x0) =
min(x, x0) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
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in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
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since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Workflow:

— Assign a Gaussian prior over functions

— Given a training set of data calibrate model parameters

— Use the posterior to make predictions 

with quantified uncertainty

f(x)

x x

f(x)

y = f(x) + ✏, f ⇠ GP(µ(x),K(x,x0; ✓))

History: 
• Wiener–Kolmogorov filtering (1940) 
• Kriging (spatial statistics, 1970) 
• GP regression (machine learning, 1996) 

Rasmussen, C. E. Gaussian processes for machine learning 2006. 

Samples from a GP posterior 

Posterior mean and variance 

http://www.automaticstatistician.com/index/

Duvenaud, D. K., Lloyd, J. R., Grosse, R. B., Tenenbaum, J. B., & Ghahramani, Z.. “Structure Discovery in Nonparametric Regression through Compositional Kernel Search”, 2013



Model inversion in high-dimensions

Goal: Developed scalable algorithms for solving high- dimensional inverse problems  

Technical approach:  

• Non-linear dimensionality reduction using supervised deep auto-encoders and/or unsupervised GPLVMs 

• Bayesian optimization in the low-dimensional latent space

3 Task 2: Scalable Algorithms – (MIT/Brown)
• We have developed scalable algorithms of linear complexity and a new algorithm for solving

inverse problems as we highlight here in 200 dimensions and beyond for the Helmholtz
equation.

Motivation: Our goal here is to scale the developed deep network algorithms to solving high-
dimensional inverse problems. Such problems can be generally divided in two categories. For
problems in the first category, we assume that we have observations of the output of a given model
and we are trying to identify the inputs that gave rise to these realizations. For example, this
is the case when estimating the parameters of the Kunz cavitation model so that the numerical
simulations can reproduce given experimental data (see Sec. 2.3.2). In the second category, we
typically have access to computing pairs of inputs and outputs and our goal is to identify the input
configuration that maximizes/minimizes the target output. This is exactly the case when optimizing
the shape of super-cavitating hydrofoils towards maximizing their performance (see Sec. ??). Note
that this discrimination also extends to the stochastic case, for which the input/output pairs can
be random, and measures of risk-averseness can be introduced. In what follows we present an
overview of the proposed methodology for addressing such problems using deep networks, and
provide an illustrative example of parameter estimation in d = 200 dimensions. Details of our
implementation can be accessed in an upcoming publication.

Technical Approach: The key idea here is to combine supervised and unsupervised methods
for non-linear dimensionality reduction with Gaussian processes [10] and Bayesian optimization
[19]. For clarity we limit the discussion here to deterministic problems where, in general, we
model the response of a system as a function y = g(x) of d input parameters x 2 Rd. The goal of
model inversion is to identify the parametric configuration in x that matches a target response y?.
This translates into solving the following optimization problem

min
x2Rd
||g(x) � y?||, (18)

in some suitable norm. In practice, x is often a high-dimensional vector and g is a complex, non-
linear, and expensive to compute map that represents the system’s evolving dynamics. Due to the
high-dimensionality of x, the application of Gaussian process surrogates and Bayesian optimiza-
tion becomes infeasible as the number of required samples to train the GP increases exponentially
wth the dimension. Although this problem was addressed in our Q1 report for regression prob-
lems by employing clique-wise additive kernel decompositions and frequency domain learning
algorithms on big-data, here the setting is inherently di↵erent. The reason for this is that we seek
the optimal x⇤ in Eq. 18 using the minimum number of evaluations of g, hence the available data
for training our surrogates are very scarce. This setting mandates an entirely di↵erent treatment,
and here we propose to employ non-linear dimensionality reduction techniques and transform the
problem to a tractable form.

Gaussian process o↵er a flexible Bayesian non-parametric framework for dimensionality re-
duction. In the unsupervised setting (see Fig. 26(b)) this results to the so called Gaussian process
latent variable model (GPLVM) [10] which aims to learn the non-linear GP map f1 that transforms
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a latent space H of dimensionality q << d into the observed output X. First put forth by Lawrence
[10], the GPLVM with a linear covariance prior on f1 is known be exactly recover probabilistic
Principal Component Analysis (PCA), while general non-linear covariance priors can lead to very
flexible and expressive non-linear reduction schemes. Moreover, the fully Bayesian nature of the
GPLVM allows for automatically discovering the dimensionality q of the latent space during train-
ing, and also provides uncertainty estimates on the learned latent features. At first sight this seems
appealing and suggests a two-step solution to the optimization problem of Eq. 18. First, one uses
realizations of the inputs X (e.g. a collection of di↵erent hydrofoil shapes) to train the GPLVM f1

mapping and identify a low-dimensional H. Then, the optimization problem can be recast in latent
space as:

min
h2Hq
||g(h) � y?||, (19)

where g(h) = g( f1(x)). This is a low-dimensional optimization problem and can be e�ciently
solved with few realizations of g using Gaussian processes and Bayesian optimization (see Figs. 26(c),(d)).
Once the optimal solution h⇤ has been identified one can use the GPLVM map f1 to transform it
back to the physical coordinates X, i.e. x⇤ = f1(h⇤).

A limitation here is that the bounds of the optimization problem in Eq. 19 cannot be determined,
as the inverse mapping from X to H is unknown. This motivates us to replace the unsupervised
GPLVM model with a particular instance of a supervised deep Gaussian process [3] known as deep
auto-encoder (see Fig. 26(a)). Unlike the GPLVM case, here, the smoothness of the mappings f1

and f2 guarantees preservation of local distances in both the forward and inverse transformations,
i.e. H ! X and X ! H, and allows us to transform the bounds in X into bounds in H such that
the optimization problem in Eq. 19 is now well specified. In the following section we show how
this framework can be applied to e�ciently solve a 200-dimensional inverse problem.
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Multi-fidelity Bayesian optimization

Idea: We model the response of a system  using deep multi-fidelity surrogates

y = ft(ft�1(...(f1(x)))), fi � GP(µi(x), �t)
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 Example: 1D function maximization
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X H
f1 f2

X

(a)

(b)
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H

(c)

Y
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Figure 26: Key ingredients for model inversion in high-dimensions: (a) Supervised non-linear
dimensionality reduction using deep non-parametric auto-encoders and Gaussian process. Note
how the optimization inputs denoted by X appear both in the input and output layers, and the
non-linear GP mappings f1 and f2 are trained to discover a low-dimensional latent space H. (b)
Unsupervised non-linear dimensionality reduction using a Gaussian process latent variable model
(GPLVM). (c) Performing Bayesian optimization by training a GP prior f3 on the pairs of low-
dimensional latent space inputs and the observed objective function Y = ||g(x) � y⇤||. (d) Bayesian
optimization workflow for the maximization of a 1D function. Top:The blue solid line and shaded
regions illustrate the posterior mean and variance of a Gaussian process surrogate. Bottom: The
maximization a acquisition function guides of the next sampling point in pursuit of identifying the
global maximum.

Results: Consider a Helmholtz boundary value problem in x 2 [0, 1]

uxx � �2u =
KX

k=1

wk sin(k⇡x) (20)

u(0) = 0, u(1) = 0 (21)

with K = 200 forcing term weights wk 2 [0, 0.5]. Now, assume that we are given a reference so-
lution u⇤(x) that corresponds to weights generated by a spectrum s(k) = ↵ exp(�k�) with a random
draw of parameters ↵ = 0.11840101, � = 0.49369472, and � = 0.0236717 (see Fig. 27). Our
goal now is to identify the exact values of wk that generated the solution u⇤(x), without knowing
any of the spectrum parameters. This translates to solving the following constrained optimization
problem

min
wk2R200

||u(wk) � u⇤||2 (22)

wk = s(k) = ↵ exp(�k�), ↵, �, � 2 [0, 0, 5] (23)
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a latent space H of dimensionality q << d into the observed output X. First put forth by Lawrence
[10], the GPLVM with a linear covariance prior on f1 is known be exactly recover probabilistic
Principal Component Analysis (PCA), while general non-linear covariance priors can lead to very
flexible and expressive non-linear reduction schemes. Moreover, the fully Bayesian nature of the
GPLVM allows for automatically discovering the dimensionality q of the latent space during train-
ing, and also provides uncertainty estimates on the learned latent features. At first sight this seems
appealing and suggests a two-step solution to the optimization problem of Eq. 18. First, one uses
realizations of the inputs X (e.g. a collection of di↵erent hydrofoil shapes) to train the GPLVM f1

mapping and identify a low-dimensional H. Then, the optimization problem can be recast in latent
space as:

min
h2Hq
||g(h) � y?||, (19)

where g(h) = g( f1(x)). This is a low-dimensional optimization problem and can be e�ciently
solved with few realizations of g using Gaussian processes and Bayesian optimization (see Figs. 26(c),(d)).
Once the optimal solution h⇤ has been identified one can use the GPLVM map f1 to transform it
back to the physical coordinates X, i.e. x⇤ = f1(h⇤).

A limitation here is that the bounds of the optimization problem in Eq. 19 cannot be determined,
as the inverse mapping from X to H is unknown. This motivates us to replace the unsupervised
GPLVM model with a particular instance of a supervised deep Gaussian process [3] known as deep
auto-encoder (see Fig. 26(a)). Unlike the GPLVM case, here, the smoothness of the mappings f1

and f2 guarantees preservation of local distances in both the forward and inverse transformations,
i.e. H ! X and X ! H, and allows us to transform the bounds in X into bounds in H such that
the optimization problem in Eq. 19 is now well specified. In the following section we show how
this framework can be applied to e�ciently solve a 200-dimensional inverse problem.
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Deep auto-encoder 
(supervised)

GPLVM 
(unsupervised)

Bayesian optimization in latent space

Lawrence, N. D. "Gaussian process latent variable models for visualisation of high dimensional data." Advances in neural information processing systems 16.3 (2004): 329-336.
Shahriari, Bobak, et al. "Taking the human out of the loop: A review of bayesian optimization." Proceedings of the IEEE 104.1 (2016): 148-175.
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ft(x) = ⇢t�1(x)ft�1(x) + �t(x)

Auto-regressive model:

t = 1, . . . , s

N1 K11K12

K21K22N2

the second kind, respectively. In what follows, we formulate the inference problem for the
case of homoscedastic noise, while we refer the reader to [] for a detailed outline of the
heteroscedastic case. To this end, we introduce ✓ = [�2

, ⌫,,�

2
✏

]T as a vector of hyper-
parameters which characterize the GP model, which are typically computed from the data
through maximum likelihood estimation.

If we consider a Gaussian likelihood p(y|f) = N (y|f ,�2
✏

I) then the posterior distri-
bution p(f |y,X) is tractable and can be used to perform predictive inference for a new
output f⇤, given a new input x⇤ as

p(f⇤|y,X,x⇤) = N (f⇤|µ⇤,�
2
⇤), (5)

µ⇤(x⇤) = k⇤N (K + �

2
✏

I)�1
y, (6)

�

2
⇤(x⇤) = k⇤⇤ � k⇤N (K + �

2
✏

I)�1
k

N⇤, (7)

where k⇤N = [k(x⇤,x1), . . . , k(x⇤,x
N

)], k
N⇤ = k

T

⇤N , and k⇤⇤ = k(x⇤,x⇤). Predictions are
computed using the posterior mean µ⇤, while prediction uncertainty is quantified through
the posterior variance �

2
⇤.

The vector of hyper-parameters ✓ is determined by maximizing the marginal log-
likelihood of the observed data (the so called model evidence), i.e.,

log p(y|X,✓) = �1

2
log |K + �

2
✏

I|� 1

2
y

T (K + �

2
✏

I)�1
y � N

2
log 2⇡ (8)

2.3 Introducing risk-averseness

If a point forecast of f is needed, then performing predictions using the posterior mean µ⇤
(see Eq. 6) would be the traditional choice. Carrying this into the an optimization context,
one might be led to consider the following substitute of Eq. 1:

min
x2X

µ⇤(x). (9)

If x⇤ and v

⇤ are the optimal solution and the optimal value of this problem, then what
can be said about f(x⇤)? In this Bayesian setting, we believe that the expected value of
f(x⇤) is equal to µ⇤(x⇤)  µ⇤(x) for all x 2 X , with the right-hand side being equal to
the expected value of f(x). Consequently, based on the information incorporated in the
posterior p(f |y,X), we have that

on “average” f(x⇤) = R
↵

((Y (x⇤; ⇠)) = v

⇤  R
↵

((Y (x; ⇠)) for all x 2 X .

In other words, we have obtained an x

⇤ that is “good” on average relative to all other x.
However, we are unable to provide any guarantee about how “bad” x

⇤ can be. Keep in
mind that we don’t know f(x⇤) and that we are concerned about this quantity being high.
For example, think about the simplified situation with only to candidate designs, say x and
x

0. Suppose we have that µ⇤(x) < µ⇤(x0). Then, the above optimization will select x as
“best.” However, we have no control of how high f(x) can be. From a decision theoretical
point of view, we are risk-neutral with regard to the choice of x.

But, this is an inconsistency as we are making a risk-averse assessment with respect to
the randomness due to ⇠ through the use of the risk measure R

↵

. It seems then inappro-
priate to be insistent on risk-neutrality regarding our “modeling uncertainty” about f , but
insist on risk-averseness when it comes to “inherent uncertainty” in the physical system.
We stress that there is no reason to believe that the risk-averseness should be the same for
both sources of uncertainty. We just state that it is too inflexible to insist that one should
be risk-neutral and the other risk-averse. Of course, this relates to the distinction between
aleatory and epistemic uncertainty.

This discussion motivates us to generalize Eq. 9 into

3

Predictive posterior

Block covariance matrix

Multi-fidelity modeling with GPs

ft(x) = ⇢t�1(x)ft�1(x) + �t(x) f̃t�1 ⇠ ft�1|D1,D2, . . . ,Dt�1

Key idea: Replace ft�1 with the GP posterior of the previous level f̃t�1

Theorem (LeGratiet, 2014): 
The predictive posterior of 
the recursive scheme has exactly the 
same distribution with the the fully 
coupled model given a nested 
experimental design. (under the 
assumption of nested training sets!)

L. Le Gratiet, and J. Garnier, "Recursive co-kriging model for design of computer experiments with multiple levels of fidelity." International Journal for Uncertainty Quantification, 2014

M.C Kennedy, and A. O'Hagan. Predicting the output from a complex computer code when fast approximations are available, 2000.
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