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Gaussian processes

Starting point: The multivariate Gaussian distribution
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Generalization: The Gaussian process
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mean function covariance function

Priors over functions: f~GP(u(z), K(x,x';0)) Samples from a GP prior

Infinite dimensional model, but finitely many observations: The marginalization property

p(fA, fB) ~ N(u, K) Then:
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Posterior is also Gaussian:

p(fa,fp) ~ N(u, K). Then:
p(falfp) = N(ps + KapKpp(fs — pp), Kaa — KapK5pKpa)
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Rasmussen, C. E. Gaussian processes for machine learning (2006) inference



Nonlinear regression with Gaussian processes

f~GP(u(x), K(x,x'; 9)9

History:
- Wiener-Kolmogorov filtering (1940)

- Kriging (spatial statistics, 1970)

- GP regression (machine learning, 1996)

Workflow:

- Assign a Gaussian process (GP) prior over functions
Given a training set of observations (x,y) calibrate the

(GP hyper-parameters )

Use the conditional posterior [fly] to infer predictions

for unobserved x’s with quantified uncertainty
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Rasmussen, C. E. Gaussian processes for machine learning (2006)
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Training & prediction

Hyper-parameter estimation:

The vector of hyper-parameters @ is determined by maximizing the marginal log-
likelihood of the observed data (the so called model evidence), i.e.,
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logp(y| X, 0) = — - log |K + o I| = Sy' (K + 0.1) "'y — - log 2 (8)

Assign priors over the hyper parameters and marginalize them out using MCMC.

Prediction:

If we consider a Gaussian likelihood p(y|f) = N (y|f,o*I) then the posterior distri-
bution p(f|y, X) is tractable and can be used to perform predictive inference for a new
output f., given a new input x, as
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where kiy = [k(Ts, 1), ..., k(Ts, ZN)], kne = kly, and k.. = (., z,). Predictions are
computed using the posterior mean pu,, while prediction uncertainty is quantified through

the posterior variance o2.

Rasmussen, C. E. Gaussian processes for machine learning (2006)



Active learning of level sets

Goal:|dentify thesets L(t) ={x: g(x) <t}, g(x) =R (Y(x,&))
Approximate the true objective with a GP surrogate: g(x) ~ f(x) ~ GP(f]0, k(x,x’;0))

f(x) is random so it becomes natural to quantify “surrogate” uncertainty using for e.qg.
a-superquintile risk measure:

average of the worst

. e
Ro(f(x)) = min {C "1 &]E[max{(), flz) - C}]} (1—a)% outcomes of f(x)

For f{x) being a GP this can be simplified to: R (f(x)) = p(x) - 1 o(x)
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Active learning of level sets

Goal: \dentify the sets L (t) = {x : Ro(f(x)) < t}

~
Utilize the posterior to guide a sequential

sampling policy by optimizing a chosen
expected utility function

a(x;Dy) = EgE, | x,9U(x,v,0)]

e.g. sample at the locations that
maximize the posterior variance in L(t)

T,11 =arg max V(f(x))

xcL,(t)

_

2

1.5

. Predicted level sets
. True level sets

Terminate iteration when the “volume” of the predicted level sets is below a given threshold:

|Vn+1(t) — Vn(t)‘ < €,

Remarks:

Vn (t) 1[_00,15] dw

L. (t)

. The choice of risk-averseness level o € |0, 1) controls the exploration vs exploitation trade-off.

- Upon convergence the predicted levels sets are guaranteed to be a subset of the true level sets.

P, Perdikaris, M. Raissi and J.0. Royset, “Risk-assesment, learning, and optimization using surrogate models’; (in preparation), 2017.
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P, Perdikaris, M. Raissi and J.0. Royset, “Risk-assesment, learning, and optimization using surrogate models’; (in preparation), 2017.
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Active learning of level sets

Goal: \dentify the sets L (t) = {x : Ro(f(x)) < t}
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Terminate iteration when the “volume” of the predicted level sets is below a given threshold:
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La(t)
Remarks:

. The choice of risk-averseness level o € |0, 1) controls the exploration vs exploitation trade-off.

- Upon convergence the predicted levels sets are guaranteed to be a subset of the true level sets.

P, Perdikaris, M. Raissi and J.0. Royset, “Risk-assesment, learning, and optimization using surrogate models’; (in preparation), 2017.
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Active learning of level sets
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Active learning of level sets

Goal: \dentify the sets L (t) = {x : Ro(f(x)) < t}

2- . Predicted level sets
N . . ) 15- . True level sets
Utilize the posterior to guide a sequential
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Terminate iteration when the “volume” of the predicted level sets is below a given threshold:

|Vn—|—1(t) — Vn(t)‘ <€, Vn(t) — 1[—®at]dw
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. The choice of risk-averseness level o € |0, 1) controls the exploration vs exploitation trade-off.

- Upon convergence the predicted levels sets are guaranteed to be a subset of the true level sets.

P, Perdikaris, M. Raissi and J.0. Royset, “Risk-assesment, learning, and optimization using surrogate models’; (in preparation), 2017.



Active learning of level sets

Goal: \dentify the sets Lo (t) = {x : Ro(f(x)) < t}
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expected utility function
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Active learning of level sets

Change in volume after between two consecutive iterations: 9V = ]VnJrl — Vn‘
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Active learning of level sets
Excess of predicted over the true level sets: E(P, T) — sup inf d(g;,y)
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Active learning of level sets

Excess of true over the predicted level sets: F/('T", P) = sup inf d(x,y)
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Active learning of level sets

N 00 05 0.9

Hartmann (d = 3) 6.7 7.3 8.1
Hartmann (d = 6) 6.2 6.2 6.5
Griewank (d = 4) 6.5 6.5 6.6

Styblinski-Tang

VR

d=4) 93 106 12.3

Table 1: Average # of iterations to convergence for 100 independent trials.

P, Perdikaris, M. Raissi and J.0. Royset, “Risk-assesment, learning, and optimization using surrogate models’; (in preparation), 2017.



Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m%@ g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration: 1
8 training points

( )
Utilize the posterior to guide a sequential

or parallel sampling policy by optimizing
a chosen expected utility function

a(X; Dn) — ]E’H]Ev | x,0 [U(Xv v, 9)]

The optimization problem is transformed to:

Xp11 = argmax a(x;Dy,)

_ * _J

Remark:

Acquisition functions aim to balance the 1, 12 14 16 18 2 22 24 26 28 3
trade-off between exploration and . T o

exploitation P e.g. sample at the locations that minimize the lower superquintile risk confidence bound

T,11 = arg min u(x) (O (a))
n+1 — T

xcRd 1l — «
P, Perdikaris, M. Raissi and J.0. Royset, “Risk-assesment, learning, and optimization using surrogate models’; (in preparation), 2017.
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Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m%@ g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration: 2
9 training points

~
Utilize the posterior to guide a sequential
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a chosen expected utility function
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xcRd 1l — «
P, Perdikaris, M. Raissi and J.0. Royset, “Risk-assesment, learning, and optimization using surrogate models’; (in preparation), 2017.
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Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m%@ g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration: 3
10 training points
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Utilize the posterior to guide a sequential
or parallel sampling policy by optimizing
a chosen expected utility function

a(X; Dn) — ]EH]EU | x,0 [U(X7 v, 9)]

The optimization problem is transformed to:

Xp11 = argmax a(x;Dy,)

_ * _J

Remark:

Acquisition functions aim to balance the ™ 12 14 16 18 > 22 24 26 28 3
trade-off between exploration and . T o

exploitation P e.g. sample at the locations that minimize the lower superquintile risk confidence bound

o(x)

(I)_l
Ln+1 = arg a{%@ () — d 1 _ EXO{))

P, Perdikaris, M. Raissi and J.0. Royset, “Risk-assesment, learning, and optimization using surrogate models’; (in preparation), 2017.



Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m%@ g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration: 4
11 training points

Utilize the posterior to guide a sequential Ny Ly A U
. . . e . =0T~/ N\ [l /\\.\\ ANV N It
or parallel sampling policy by optimizing | =
a chosen expected utility function B 2R AR AN " /
Oz(X; Dn) = EylE, | x,6 [U(X, v, 9)] 1 1.2 1.4 16 18 2 2.2 2.4 2.6 2.8 3
X
The optimization problem is transformed to:
Xp11 = argmax a(x;Dy,)
\_ * &
&
s
Remark:
Acquisition functions aim to balance the Y 12 14 16 18 > 22 24 26 28 3
trade-off between exploration and y

e.g. sample at the locations that minimize the lower superquintile risk confidence bound

(I)_l
Lp+1 = arg a{g@ () — d 1 Ej))g(w)

P, Perdikaris, M. Raissi and J.0. Royset, “Risk-assesment, learning, and optimization using surrogate models’; (in preparation), 2017.
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Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m%@ g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration: o
12 training points

. . . )
Utilize the posterior to guide a sequential

or parallel sampling policy by optimizing | =
a chosen expected utility function

a(X; Dn) — ]EH]EU | x,0 [U(X7 v, 9)]

The optimization problem is transformed to:

Xp11 = argmax a(x;Dy,)

_ = v

a(z, D)

Remark:
Acquisition functions aim to balance the '11 12 14 16 18 > 22 24 26 28 3
trade-off between exploration and

. e.g. sample at the locations that minimize the lower superquintile risk confidence bound
exploitation.

(I)_l
Lp+1 = arg a{g@ () — d 1 Ej))g(w)

P, Perdikaris, M. Raissi and J.0. Royset, “Risk-assesment, learning, and optimization using surrogate models’; (in preparation), 2017.




Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m%@ g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration: 6
13 training points

~
Utilize the posterior to guide a sequential

or parallel sampling policy by optimizing
a chosen expected utility function

a(X; Dn) — ]EH]EU | x,0 [U(X7 v, 9)]

The optimization problem is transformed to:

Xp11 = argmax a(x;Dy,)

_ * _J

Remark:

Acquisition functions aim to balance the 1, 12 14 16 18 2 22 24 26 28 3
trade-off between exploration and . T o

exploitation P e.g. sample at the locations that minimize the lower superquintile risk confidence bound

T,11 = arg min u(x) (O (a))
n+1 — T
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Bayesian optimization

Goal: Estimate the global minimum of a function: x™ = arg m%@ g(x) (potentially intractable)
xXE

Setup: g(x) is a black-box and expensive to evaluate objective function, noisy observations, no gradients.

Idea: Approximate g(x) using a GP surrogate: v = f(x) +¢, f ~ GP (f|0,k(x,x";6))

Iteration:
14 training points

~
Utilize the posterior to guide a sequential

or parallel sampling policy by optimizing
a chosen expected utility function

a(X; Dn) — ]EH]EU | x,0 [U(X7 v, 9)]

The optimization problem is transformed to:

Xp11 = argmax a(x;Dy,)
\_ * &
&
3
Remark:
Acquisition functions aim to balance the Y 12 14 16 18 > 22 24 26 28 3
trade-off between exploration and y

e.g. sample at the locations that minimize the lower superquintile risk confidence bound

. (P (a))
T,11 = arg min u(x) — o(x)
xcRd 1l — «
P, Perdikaris, M. Raissi and J.0. Royset, “Risk-assesment, learning, and optimization using surrogate models’; (in preparation), 2017.
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Summary
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Challenges and limitations

Discontinuities and non-stationarity: GPs struggle with discontinuous data f1 s
Use warping functions to transform into a jointly stationary input space @4’@_’®
Log, sigmoid, betaCDF —> “Warped GPs”  Snelson, £, C.E. Rasmussen, and Z.Ghahramani. "Warped gaussian processes.”
Neural networks —> “Manifold GPs”  Calandra, R., et al. "Manifold Gaussian processes for regression."
Gaussian processes ~ —> “Deep GPs” Damianou, A. C., and N.D. Lawrence. "Deep Gaussian processes."

Theoretical guarantees: Accuracy, convergence rates, posterior consistency, contraction rates, etc.

Approximation theory in Reproducing Kernel Hilbert Spaces
Stuart, A.M., and A.L. Teckentrup. "Posterior consistency for Gaussian process approximations of Bayesian posterior distributions.” arXiv preprint, 2016

Scalability: GPs suffer from a cubic scaling with the data

Low-rank approximations to the covariance
Snelson, E., and Z. Ghahramani. "Sparse Gaussian processes using pseudo-inputs.”

Frequency-domain learning algorithms
Perdikaris P, D. Venturi, G.E. Karniadakis “Multi-fidelity information fusion algorithms for high dimensional systems and massive data-sets’, SIAM J. Sci. Comput., 2016

Stochastic variational inference
Hensman, J., N. Fusi, and N.D. Lawrence. “Gaussian processes for big data."

High-dimensions: Tensor product kernels suffer from the curse of dimensionality, i.e. the require an
exponentially increasing amount of training data

Data-driven additive kernels
Perdikaris P, D. Venturi, G.E. Karniadakis “Multi-fidelity information fusion algorithms for high dimensional systems and massive data-sets’, SIAM J. Sci. Comput., 2016

Unsupervised dimensionality-reduction (GPLVM, variational auto-encoders)
Lawrence, N.D. "Gaussian process latent variable models for visualisation of high dimensional data."



Multi-fidelity in physical models and in probability space

Multi-fidelity in models
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Importance of the prior

The choice of the covariance kernel has a big impact on the model as it is tightly related to:
o The smoothness of the sample paths, hence the regularity of the predictor.
o The accuracy and uncertainty of the predictor.

o The conditioning of the correlation matrix, hence the efficiency of the learning algorithms.
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Posterior mean and variance

http://www.automaticstatistician.com/index/

Duvenaud, D. K., Lloyd, J. R., Grosse, R. B., Tenenbaum, J. B., & Ghahramani, Z.. “Structure Discovery in Nonparametric Regression through Compositional Kernel Search’; 2013



Model inversion in high-dimensions

Goal: Developed scalable algorithms for solving high- dimensional inverse problems

Optimizationin ~ min ||g(x) — y*|| non-li near di mn hmIIII‘} lg(h) — y*||  Optimization in
physical space xeR¢ reduction © latent space
g <<d
t=3 t=4

New
observation

Deep auto-encoder S f2
(supervised) @M
(a)
GPLVM f1
(unsupervised) @_@

(b)

Posterior
Posterior

Acquisition function
Acquisition function

Next

f
or @@ Lk

Bayesian optimization in latent space

Technical approach:

Non-linear dimensionality reduction using supervised deep auto-encoders and/or unsupervised GPLVMs

Bayesian optimization in the low-dimensional latent space

Lawrence, N. D. "Gaussian process latent variable models for visualisation of high dimensional data." Advances in neural information processing systems 16.3 (2004): 329-336.

Shahriari, Bobak, et al. "Taking the human out of the loop: A review of bayesian optimization.” Proceedings of the IEEE 104.1 (2016): 148-175.
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increasing fidelity

Multi-fidelity modeling
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Multi-fidelity modeling
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increasing fidelity
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Multi-fidelity modeling
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Multi-fidelity modeling with GPs

Auto-regressive model:
Predicting the Output from a Complex Computer Code When Fast
ft (X) = Pi_1 (X) f 1 (X) + &y (X) Approximations Are Available

M. C. Kennedy; A. O’Hagan

t=1,...,s
20 Biometrika, Vol. 87, No. 1. (Mar., 2000), pp. 1-13.
Predictive posterior
p(f*’ya X7 ZL‘*) — N(f*‘:u*a 0->|2<)7
M*(w*) = k*N 031)_1.% No
2 2 \—1 - -
05 (%) = Fus — k*N ocI)” ks, v Block covariance matrix
02 04 06 08 * Theorem (LeGratiet, 2014):

. : : : ~ The predictive posterior of
Key idea: Replace fi—1 with the GP posterior of the previous level f;_1 4. rzcursive Scieme has exactly the

/‘\ same distribution with the the fully

. P coupled model given a nested

X) = pi_1(X 04 (X .

ft( ) Pt 1< —I_ t( ) ft-1 ft—1 |D1’ Da,...; D experimental design. (under the
assumption of nested training sets!)

M.CKennedy, and A. 0'Hagan. Predicting the output from a complex computer code when fast approximations are available, 2000.

L. Le Gratiet, and J. Garnier, "Recursive co-kriging model for design of computer experiments with multiple levels of fidelity." International Journal for Uncertainty Quantification, 2014



