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•  Brief physics motivation 
•  Vlasov-Fokker-Planck 

– Numerical challenges 
•  Length and time scales 
•  Discrete conservation and equilibrium 

preserving properties 
– Our solution 

•  Adaptive grid and implicit solver 
•  Discrete nonlinear constraints 

•  Verification studies and 
preliminary simulation of 
imploding Omega capsule 

•  Conclusion 
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Progress since last CSE (2015) 
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•  At last CSE meeting: 
– 0D2V grid adaptivity 
– Coarse grained asymptotics for disparate vth ratio 
– Conservation (mass, momentum, energy) for collision operator and Vlasov pieces 

•  Updates: 
– Fluid electrons and electric fields 
– Spherical geometry and adaptivity in space 
– New equilibrium preserving discretization for the Rosenbluth-Fokker-Planck form 
– New null space preserving discretization for the geometrical inertial term 
– Suite of verification studies 
– Physics simulations 

We have many updates. In fact so many that we cannot possibly cover all!  



NOTE: 
This is 
the lab 

color 
palette. Main take away from this talk 

3/1/17   |   5 Los Alamos National Laboratory 

•  Project began exactly 3 years ago (very high paced R&D) 
•  iFP is a first of a kind multi-scale simulation capability 

– Fully implicit, scalable (both algorithmic and parallel) 
– Optimal grid adaptivity 
– Analytical equilibrium preserving property and other discrete null space preserving 

properties 
– Strict conservation enforced 
– Strict verification campaign against hydro limit and other codes 
 

•  Began ICF physics campaign simulation 
 First capsule implosion simulation with hydro boundary conditions 
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https://www.youtube.com/watch?v=Wg8R1lrAiM4 
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•  Contrary to radhydro simulation predictions, NIF’s NIC and consecutive 
campaigns have failed to achieve ignition 

 
 
•  Recent OMEGA campaigns have highlighted serious deficiencies in our 

ability to 
– Predict capsule compression and yield (both are over-predicted) 
– Predict time-dependent core mix (especially when hydro instabilities are not 

expected to play a role) 
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Figure from M.J. Rosenberg, PRL (2014) 

Discrepancies btw experiment and simulations consistently increase with Knudsen number. 
Radiation-hydrodynamics is not valid in many key stages in ICF implosion! 

Los Alamos National Laboratory 
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•  Kinetic ions: Vlasov-Fokker-Planck is considered a first principles 
model for weakly coupled plasmas 
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⌘ @fi
@t

+ ~v ·rfi + ~ai ·rvfi =
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•  Fluid model for electrons 

•  Quasi-neutrality and ambipolarity to close system 
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Dfi
Dt

⌘ @fi
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+ ~v ·rfi + ~ai ·rvfi =
X

j

Cij (fi, fj)

Cij (fi, fj) = �ijrv · [ Dj ·rvfi �
mi

mj
Ajfi ]

r2
vHj (~v) = �8⇡fj (~v)

r2
vGj (~v) = Hj (~v)

Dj = rvrvGj Aj = rvHj

•  A nonlinear integral-differential equation 
•  Supports conservation of mass, momentum, and energy and positivity (numerically, these 

are constraints that must be ensured for long time accuracy and stability) 
•  Supports disparate length and time scales 
•  Supports a non-trivial null space (Maxwellian) 
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Challenges of the problem 
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resolution. 
– vth,max determines Lv 

– vth,min determines Δv 

•  Shock width and capsule 
size dictate physical space 
resolution 

Cold species
essentially a delta
function on hot
species' mesh
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Taitano et al., JCP, 318, 2016 
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•  Intra species vth,max /vth,min~100 
•  Inter species (vth,α /vth,β)max~30 
• Nv~ [10(vth,max/vth,min)x(vth,α /vth,β)]2 ~109 
• Nr ~ 103-104 
• N=NrNv~1012-1013 unknowns in 1D2V! 

  
•  tsim=1 ns  
• Nt>=109 time steps 

3 Numerical Challenges and Algorithms 3

becomes quite restrictive. In a typical shell implosion, the radius decreases from a mm to a few tens
of µm, about 10-30 times. Assuming the lower limit, a static mesh would have to provide su�cient
resolution at the final point of compression, say 50-100 points. This, in turn, would require an
initial uniform static radial mesh of:

N
r

⇠ 103.

Temporal resolution. Challenges in the temporal integration of VFP stem from the two main
phenomena at play: streaming and collisions. These have to be compared against the total simu-
lation time, i.e., the implosion time. Assuming an initial radius R of 1mm, and a typical implosion
velocity v

i

of 20 cm/µs, we find:

⌧
i

⇡ R

v
i

⇠ 5 ns.

The temporal stability limit for integrating collisions with an explicit time integration scheme is
given by the corresponding Courant condition:
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.

We take typical conditions at the end of the compression phase for density and temperature,

n
i

⇡ 200 g/cm3 ⇡ 5⇥ 1025 cm�3 , T
i

⇡ 2.5 keV.

For these conditions, we have v
th

⇡ 10vmin

th

, and the ion collision frequency is:
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where we have assumed ln ⇤ ⇠ 10. It follows that:
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coll
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where we have used Eq. 1. Time steps for the early compression phase will be orders of magnitude
more restrictive even though the plasma is less dense (n

i

⇠ 0.225 g/cm3), because it is significantly
colder (T

i

⇠ 1 eV). This result implies that an explicit scheme, for the conditions and velocity-space
resolution stated, will require > 109 � 1010 time steps to reach the implosion time scale.

Regarding streaming, the time step explicit stability limits of advection in physical and velocity
space are comparable, and are given by the corresponding CFL constraint for the maximum velocity
under consideration in our discretization, v

max

⇠ 10vmax

th

:
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th

.

For T
max

⇡ 100 keV , we have vmax

th

⇠ 3 ⇥ 108 cm/s. Therefore, for R ⇡ 0.1 cm and N
r

⇠ 103, we
find:

�tstr
exp

⇠ 10�4 � 10�5 ns.

Thus, we find streaming to be significantly less restrictive numerically than collisions.
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No conservation With conservation 

Taitano et al., JCP, 318, 2016 
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Our solution:  
Adaptive grid  
Implicit solver 

Exact discrete conservation 
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• v-space adaptivity with vth normalization,                  ,  
Nv~104-105 

• Lagrangian mesh in physical space, Nr~102 

• N=NvNr~106~107 (vs. 1012 with static mesh) 

• Multigrid preconditioned optimal nonlinear implicit solver 
[Chacon et al., JCP, 157 (2000)], Δtimp=Δtstr~10-3 ns 

• Nt~103-104 (vs. 1010 with explicit methods) 
 

bv = v/vth
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1D spherical (with logical mesh); 2D cylindrical geometry in velocity space 624 CHACÓN ET AL.

FIG. 1. Diagram of the local cylindrical velocity coordinate system (vr , vp) considered in this work. Cylin-
drical symmetry is assumed. The spherical radius vector r is included for reference.

by-product, the required numerical representation of the subordinate problems for H and
G, which will be somewhat different from the traditional treatment.

3.1. Definition of the Computational Velocity Domain

So far, the discussionhas been independent of a particular geometry and/or dimensionality
in velocity space. To focus the discussion that follows, a 2D cylindrical velocity space with
angular symmetry is adopted. This space is spanned by (vr , vp), where vr is the cylindrical
z-axis, and vp is the cylindrical r -axis (Fig. 1), and vr ∈ [0, vlimit]; vp ∈ [0, vlimit]. Here, vlimit
is typically set to several times the characteristics velocity of the problem, v0.
The domain is discretized with an integer mesh and a half mesh (Fig. 2). The integer

mesh is defined using Nr (+1) nodes in the vr axis, and Np(+1) nodes in the vp axis, with
the constraints

vr,1 = 0, vr,Nr = vlimit

vp,1 = 0, vp,Np = vlimit.

Each velocity node is characterized by a pair (vr,i , vp, j ), with i = 1, . . . , Nr (+1), and
j = 1, . . . , Np(+1). The additional (i = Nr + 1, j) and (i, j = Np + 1) nodes at the bound-
aries will serve a double purpose: (1) they will be used to impose the far-field boundary
conditions for the Rosenbluth potentials, and (2) they will allow an accurate determina-
tion of the friction and diffusion coefficients of the Fokker–Planck collision operator at the

FIG. 2. Diagram of the 9-point stencil in velocity space employed in the discretization of the Fokker–Planck
collision operator.

Coordinate 
transformation: 

Jacobian of 
transformation: 

Always fixed

Ẋ = dr/dt (mesh speed)
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•  VRFP equation in transformed coordinates 
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Taitano et al., JCP, 318, 2016 
Taitano et al., JCP, 2017, in preparation 
Taitano et al., JCP, 2018, in preparation 

Inertial terms due 
to vth adaptivity 
and Lagrangian 
mesh 
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• D-e-α, 3 species 
thermalization problem 

• Resolution with static grid: 

• Resolution with adaptivity 
and asymptotics:  

 
• Mesh savings of  

Nv ⇠ 2

✓
vth,e,1
vth,D,0

◆2

= 140000⇥ 70000

Nv = 128⇥ 64

⇠ 106
Taitano et al., JCP, 318, 2016 
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Our solution:  
Adaptive grid  
Implicit solver 

Exact discrete conservation 
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• We drive the nonlinear residual to zero 
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•  Consider a fixed point map of form: 

•  If                        , Newton’s method  
•  Anderson updates the solution by using history 

(nonlinear) of solutions to accelerate convergence 
via: 
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Step 1: Velocity space operators (including collisions) 

Step 2: Streaming operator 

Pv = @t �+V Ev � �
h
D ·rv � � ~A�
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P
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Preconditioner is a convergence accelerator!  
 
No splitting error will be present in the actual solution (driven by 
the nonlinear residual) 
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Our solution:  
Adaptive grid  
Implicit solver 

Exact discrete conservation 



NOTE: 
This is 
the lab 

color 
palette. 

Rosenbluth-FP collision operator: 
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Introducing these terms in the collision operator, and noting that the normalized collision operator is:
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we find:
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The above expression is obtained with: br2
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2.6 Treatment of Rosenbluth Potentials between Cross Species
Velocity Space

2.7 Conservative Discretization

We develop a mass, momentum, and energy conserving discretization for the Fokker-Planck operator.

2.7.1 Discrete Mass Conservation Scheme

First, recall the continuum mass conservation statement,

h1, C↵�iv =
D
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iE
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E

v
. (2.7.1)

Here, the surface integral requires the evaluation of the collisional fluxes at the velocity boundaries to be
zero. In the discrete, we do the exactly identical treatment by numerically setting the fluxes to zero at the
boundary.

2.7.2 Discrete Momentum Conservation Scheme

For momentum conservation, the following relation must hold:

m↵ h~v, C↵�i~v = �m� h~v, C�↵i~v . (2.7.2)
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2V Rosenbluth-FP collision operator: 
numerical conservation of energy 
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•  The symmetry to enforce is: 

•  Due to discretization error: 

•  Introduce a constraint coefficient: 
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Taitano et al., JCP, 297, 2015 
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Single-species initial random distribution  
thermalizes to a Maxwellian and HOLDS IT 
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Taitano et al., JCP, 297, 2015 
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Conservation properties enforced down to  
nonlinear convergence tolerance 
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•  Comparison between a reference iFP and fluid simulation for a two ion 
species M=1.5 (weak) shock problem  
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First capsule implosion simulation 



NOTE: 
This is 
the lab 

color 
palette. First implosion calculation 

3/1/17   |   36 Los Alamos National Laboratory 

 
• D-He3 fill Omega capsule 

simulation with hydro 
boundary for fuel [O. Larroche, 
PoP, 2012, collaborator] 

• Studied to investigate Rygg 
effect [J. R. Rygg et al. PoP, 
2006] 

•  FPion was first used to 
investigate fuel stratification to 
explain reactivity drop by 
Rygg et al. 
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Simulation observes fuel stratification. We might be 
able to explain experiment (current effort) 

3/1/17   |   37 Los Alamos National Laboratory 



NOTE: 
This is 
the lab 

color 
palette. 

Kn reveals that D mean free path is on order capsule 
size for an appreciable time post shock convergence 

3/1/17   |   38 Los Alamos National Laboratory 

Kn =
�mfp

Rcapsule
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•  Project began exactly 3 years ago (very high paced R&D) 

•  iFP is a first of a kind multi-scale simulation capability 
– Fully implicit, scalable (both algorithmic and parallel) 
– Optimal grid adaptivity 
– Analytical equilibrium preserving and other discrete null space preserving properties 
– Strict conservation enforced 
– Strict verification campaign against hydro limit and other codes 
 

•  Began ICF physics campaign simulation 
 First capsule implosion simulation with hydro boundary conditions 
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•  Capsule implosion with self consistent pusher species included 
 
•  Investigate more ICF relevant physics 

– Rygg (inverse) effect 
– Kinetically enhanced pusher mix into fuel 
– Kinetic effects on fuel convergence reduction 

•  Implementation of neutron and thermal radiation transport packages to 
investigate multi-physics aspects of ICF implosion 
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is the logo pretty?  


