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N
Outline

@ Method of lines transpose approach for Vlasov simulations
@ A new formulation for general nonlinear time dependent problems

@ Summary and future work
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|
Method of lines (MOL)

Space discretization = time evolution

o explicit:

> easy to implement

> restriction on time step
e implicit:

> larger time step

> need to solve the system
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Method of lines transpose (MOLT)

As opposed to MOL approaches, the method of lines transpose (MOLT)
schemes

@ discretize in time first;

@ solve the resulting boundary value problem (BVP) at discrete time
levels;

@ also known as Rothe’s method Schemann, Bornemann (98), Salazar
et al. (00).
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One-dimensional advection equation

ur+cux =0, x¢€[a,b] (1)

periodic boundary condition

Dirichlet boundary condition

u(a, t) =gi(t), forc >0, or u(b,t)=g(t), for c <O.
@ Neumann boundary condition
ux(a, t) = hi(t), for ¢ >0, or ux(b,t) = hy(t), for c <O0.

uniform mesh a = xg < x1 < -+ < xp—1 < xp = b with Ax = (b/\_;)-
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N
MOLT framework

un+17

@ backward Euler: T”n + cuttl =0.

e BVP (¢ >0)
Cofo] (™) = (T + éé?x)u’”“l o,
U (x) = L a](u") = 1Hu", a](x) + AT (2)
where o = 1/(cAt), and

1L a](x) = a / T el yn(y ) dy. (3)

a

Remark: The scheme is implicit. But we do not need to invert the linear
matrix.
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Recursive form

Let IF = It[u", o](x):
/iL = IiL_le_aAX + JiLa = 17 e 7M7 Ié_ = 07 (4)

where »
J= / u"(y)e i) dy,
Xj—1
Remark 1: The recursive form is developed in Causley, Christlieb, Guclu,
Wolf (13).
Remark 2: The existing MOL” schemes mainly use linear interpolation

(quadrature) methods to compute J*, which work well for smooth
problems.
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|
Weighted essentially non-oscillatory (WENO)

JE= :’71 u"(y)e i dy -
i=3 -2 -1 ; i1 i+2
So
S
S
s
@ small stencil S;: u"(x) = p(x) = J-, = Zf:o c,.(i)3+,+ju{’_3+,+j

@ big stencil S: u"(x) = p(x) = JF =32, d I,
@ nonlinear weights: d, = w, by smoothness indicators

0(1), u"(x) is smooth in S,

— 2 —
wr = dr + O(Ax7) or wy = { O(Ax*), u"(x) has a discontinuity inside S,

@ final result

2
L 2 : L
J,' = er,'J
r=0
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High order time discretization

uy = F(u)

Strong-stability-preserving (SSP) diagonally implicit Runge-Kutta (DIRK)
methods: RK(s,k)

=u +AtZa,J U t, + ¢At), i<s, (5a)
u"tl = u"+AthjF(uU),t,,+cht). (5b)
j=1
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-
Splitting framework

ur + f(ya t)uX = 05

ug + f(y, t)ux + g(x, t)u, = 0 = { ut + g(x, t)u, =0.

@ The fourth order splitting is

U™ =Q((a +1/2)At) - Q1((2a + 1)At) - Qx(—aAt) - Qu(—(4a + 1)At)-
@Q(—alt) - Qi ((2a+ 1)At) - Q((a+ 1/2)At)u",

where a = (21/3 +271/3 —1)/6.
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-
Rigid body rotation

ur +yux —xu, =0, x,y €Q (6)

@ continuous initial condition, with Q = [—1, 17]?

u(x,y,0) = 0.5B(y/x? + 8y?) + 0.5B(1/8x% + y?),

~f cos(r)®, ifr< %ﬂ',
where B(r) = { 0, otherwise.

@ dicontinuous initial condition, with Q = [—1, 1]
1, (x,y) € [-0.75,0.75] x [~0.25,0.25] |

u(x,y,0) = [-0.25,0.25] x [-0.75,0.75],
0, otherwise.

@ 5-th order WENO integration. RK(4,4) with CFL = 2.9.

Kernel based scheme for the VP system SIAM CSE17@Atlanta, Mar., 2017 Page 11



Table: T = 27.

N, x N, | Ly errors | order | L, error | order | min value

40 x 40 | 6.26E-02 - 7.43E-02 - -1.21E-03

Without 80 x 80 | 5.10E-03 | 3.62 | 7.49E-03 | 3.31 | -6.88E-05

PP-limiters 160 x 160 | 1.53E-04 | 5.05 | 2.75E-04 | 4.77 | -4.76E-06

Periodic 320 x 320 | 4.13E-06 | 5.22 | 7.56E-06 | 5.18 | -1.03E-07
boundary 40 x 40 | 6.19E-02 - 7.43E-02 - 1.00E-16
condition. | With 80 x 80 | 5.06E-03 | 3.61 | 7.50E-03 | 3.31 | 1.00E-16
PP-limiters 160 x 160 | 1.52E-04 | 5.06 | 2.75E-04 | 4.77 | 1.00E-16

320 x 320 | 4.10E-06 | 5.21 | 7.56E-06 | 5.18 | 1.00E-16

40 x 40 | 6.08E-02 - 7.43E-02 - -1.67E-05

Without 80 x 80 | 4.98E-03 | 3.61 | 7.49E-03 | 3.31 | -2.50E-05

PP-limiters 160 x 160 | 1.34E-04 | 5.22 | 2.75E-04 | 4.77 | -4.76E-06

Dirichlet 320 x 320 | 3.73E-06 | 5.16 | 7.56E-06 | 5.18 | -1.03E-07
boundary 40 x 40 | 6.09E-02 - 7.43E-02 - 0.00E+4-00
condition. | With 80 x 80 | 4.98E-03 | 3.61 | 7.49E-03 | 3.31 | 0.00E+00
PP-limiters 160 x 160 | 1.34E-04 | 5.22 | 2.75E-04 | 4.77 | 0.00E+00

320 x 320 | 3.72E-06 | 5.17 | 7.56E-06 | 5.18 | 0.00E+400

40 x 40 | 6.08E-02 - 7.43E-02 - -1.66E-05

Without 80 x 80 | 4.98E-03 | 3.61 | 7.49E-03 | 3.31 | -2.50E-05

PP-limiters 160 x 160 | 1.34E-04 | 5.22 | 2.75E-04 | 4.77 | -4.76E-06

Neumann 320 x 320 | 3.73E-06 | 5.16 | 7.56E-06 | 5.18 | -1.03E-07
boundary 40 x 40 | 6.09E-02 - 7.43E-02 - 0.00E+00
condition. | With 80 x 80 | 4.98E-03 | 3.61 | 7.49E-03 | 3.31 | 0.00E+00
PP-limiters 160 x 160 | 1.34E-04 | 5.22 | 2.75E-04 | 4.77 | 0.00E+00

320 x 320 | 3.72E-06 | 5.17 | 7.56E-06 | 5.18 | 0.00E+400




(a) Periodic boundary condition. (b) Dirichlet boundary condition.

Figure: T = 2m.



|
Vlasov-Poisson (VP) system

fr +v-Vxf +E(x,t)-Vyf =0, xxveEQxQ (7a)
E(x,t) = —Vxp(x,t), —Axd(x,t) =p(x,t) —1 (7b)

describe the dynamics of charged particles due to the self-consistent
electric force

f(x,v, t): probability of finding a particle with velocity v at position x
at time t

E: electrostatic field

¢: self-consistent electrostatic potential

p(x, t): electron charge density p(x, t) fQ (x,v, t)d
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-
The VP systems

@ Strong Landau damping:

V2
f(Xv V,O) = kx))exp(—i),

1
—(1 + acosl
Vo acest
xe[o,L], vel[-V, V] where a =05, k=0.5 L =47 and V. = 2m.

@ Two-stream instability I:

f(x,v,0) = %(1 +5v2)(1 4 a((cos(2kx) + cos(3kx))/1.2 + cos(kx))) exp(fv?z).,

x €[0,L], v e[V, V], where « =0.01, k = 0.5, L =47 and V. = 27.
@ Two-stream instability II:

V2
f(x,v,0) = \/%(1 + a cos(kx))v? exp(—?)7

x €[0,L], v e[-Ve V], where « = 0.05, k =0.5, L =4 and V. = 27.
o Bump-on-tail instability:

f(x,v,0) = \/%(1 + a cos(kx))(0.9 exp(—0.5v2) + 0.2 exp(—4(v — 4.5)?))

x € [~L,L], v e[~V V], where « = 0.04, k=03, L= 7 and V = 10.
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(c) Two-stream instability 1. T=40. (d) Bump-on-tail instability. T=60.



The time evolution of relative deviation in L! norm
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New differential operators

Define
£L:I+éax, D =1L (8a)
Lr=1T-— éax, Dr=T- Lz, (8b)

where, o« > 0 is a constant. EZI and EEI can be computed via the
WENQO method we discussed.

Then,
1
—0y = T —LS D I D D
" Li(T - LyY) =Di/( L) E (9a)
1 1
28, = —T) = —Dr/(T — Dg) § D, b
5 Lr(LR ) r/( R) (9b)

@ Successive convolution Causley, Christlieb (14).
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Second order derivative

Lo=T— 00, Do=1T- Lyt (10a)

1

—500 = Lo(Ly" = T) = —Do/(Z — Do) = ZD" (11)

and
b
Ly, a](x) = (;/ eIy (y)dy + Age ™72 4 Bye=(b=¥) (12)
a

where Ag, By are obtained through boundary conditions. We can evaluate
the convolution integral based on the WENO scheme as well.
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kth order scheme

Consider the nonlinear convection-diffusion equation:
up = —F(u)x + 8(U)x

Then k" order scheme is obtained by truncating the series with the first k
terms. In particular,

~F (e~ = SODEIF (), 100+ —xg D DRI (), 1 )(0),
p=1 p=1
and .
g~ — 51z > DEle(u). /5 15100).

where v > 0 is a parameter associated with the stability of the scheme,

e.g., Ymax = 0.4167 for k = 3. b = max, |g'(u)|, ¢ = max, |f'(u)|, and

f*(u) are obtained by flux splitting of f(u). Then the scheme is k" order.
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Time discretization

@ We use a third order Runge-Kutta numerical scheme for time
discretization.

@ In the numerical tests, we choose the time step as

At = CFL x Ax/ max(b, c).
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Linear advection-diffusion equation
Consider

u(x,0) = sin(x)
with b =0.01 and ¢ = 1.

{ Ut + cuy = buyy, x € [—m,m]

Table: Accuracy test: errors and orders of accuracy at T = 2. Third order scheme.

CFL | Ny Ly errors order | Lo error order
40 | 6.00E-02 - 9.43E-02 -

80 | 8.81E-03 2.77 | 1.38E-02 2.77
160 | 1.16E-03 2.93 | 1.82E-03 2.93
1 320 | 1.46E-04 2.99 | 2.30E-04 2.99
640 | 1.84E-05 3.00 | 2.88E-05 3.00
40 | 4.36E-01 - 6.85E-01 -

80 | 3.34E-01 0.38 | 5.25E-01 0.38
160 | 1.06E-01 1.65 | 1.67E-01 1.65
320 | 1.67E-02 2.67 | 2.63E-02 2.67
640 | 2.23E-03 2.91 | 3.50E-03 2.91
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Buckley-Leverett equation

Consider

u?

ug + <u2—{—(1—u)2>x == 0.01(V(U)UX)X. (13)
In the numerical simulation, we choose ¢ = 0.01, and

[ 4u(l—-u), 0<u<1 [ 1-3x, 0<x<1/3
V(u)_{ 0, otherwise ' U(X’O)_{ 0, 1/3<x<1
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(i) k=3. T=02 N =200.
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Strong degenerate parabolic convection-diffusion equation

Consider
e + (1) = 0.1((u)ux)x (14)
where
1, —-L-04<x<-L+04
v(u) = 0, |ul<0.25 u(x,0)=4¢ -1 i\fz—04<x<i—l\—/§O4
11, |u/>0.25 e ToV2 ) V2 '
0, otherwise
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Conclusion and future work

@ The proposed high order kernel based on algorithm is very efficient to
simulate the Vlasov equation and other time dependent problems
including the nonlinear degenerate convection-diffusion equations.

@ The extension to systems and more complex models is under
development.
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Thank You!



