

2017 SIAM CSE

Atlanta, Georgia

Towards Efficient Multiscale Numerical Methods for Kinetic Models in Plasma Physics

James A. Rossmanith

Department of Mathematics Iowa State University

Joint work with: Erica Johnson (ISU), Lopamudra Palodhi (ISU)

Partially funded by: NSF Grant DMS-1620128

March 2nd, 2017

メロトリボトリオトリカッ 裏

J.A. Rossmanith ISU

2017 SIAM CSE

Atlanta, Georgia

Towards Efficient Multiscale Numerical Methods for Kinetic Models in Plasma Physics

James A. Rossmanith

Department of Mathematics Iowa State University

Joint work with: Erica Johnson (ISU), Lopamudra Palodhi (ISU)

Partially funded by: NSF Grant DMS-1620128

March 2nd, 2017

1/33

Outline

- 1 Introduction
- 2 Approach #1: Moment Closure Methods
- 8 Approach #2: AP Kinetic Schemes
- 4 Approach #3: Micro-Macro Partitioned Schemes
- 5 Conclusions & Future Work

J.A. Rossmanith | ISU 3/33

1日1日日1日1日1日日日

Real-world problems are multiscale

Example: Magnetically-confined fusion

- ITER: effort to develop largest tokamak for magnetic confined fusion
- Nonlinear effects couple many of the space and time scales, very stiff PDEs

J.A. Rossmanith | ISU 4/33

State-of-the-art I: Hall MHD + PIC

[Daldorff, Tóth, Gombosi, Lapenta, Amaya, Markidis, & Brackbill 2014]

- PIC code region embedded in Hall MHD model
- Restriction (PIC → Hall MHD): modified Ohm's law
- Prolongation (Hall MHD → PIC): BCs of PIC region
- Difficulty #1: consistency problems between models (quasineutrality)
- Difficulty #2: PIC introduces statistical noise
- Difficulty #3: dynamically deciding fluid/kinetic boundary

J.A. Rossmanith | ISU 5/33

イロトイラトイントイラッ 至

State-of-the-art II: Vlasov + 2-Fluid

[Rieke & Grauer, 2015]

- Fluid region: 2-fluid 5-moment (Euler-Maxwell) using finite differences
- Kinetic region: operator split finite differences
- Restriction (Kinetic → Fluid): compute moments of kinetic PDF (+ smoothing)
- Prolongation (Fluid → Kinetic): construct PDF from moments
- Difficulty: dynamically deciding fluid/kinetic boundary

J.A. Rossmanith | ISU 6/33

Moment Closure Micro-Macro Partition Conclusions & Future Work AP Kinetic

Paradigms for multiscale simulations

Fluid and kinetic regions that couple at boundaries

- How do the regions couple?
- How do we determine dynamically where to place regions?
- (Fluid everywhere/kinetic in some regions) vs. (non-overlapping regions)

Global kinetic solvers that are asymptotic-preserving to fluid regime

- No coupling, but inefficient in fluid regimes
- Try to achieve efficiency via AMR techniques (not trivial in phase space)

Fluid solvers that try to extend to kinetic regime by including high moments

- How many moments do we need?
- How to close the moment expansion? (physical accuracy, well-posedness)

Micro-macro decomposition

- Write the solution as (fluid) + (kinetic corrections) and split the two
- Solve both everywhere, but kinetic can be coarsely resolved when not important
- How to design good schemes for (kinetic corrections)?

J.A. Rossmanith | ISU 7/33

10110121121 3 500

Asymptotic-preserving [Jin, 1999], [Jin, 2012]

Commutative diagram

- AP applies to a large class of singularly-perturbed ODEs/PDEs
- \blacksquare AP: Numerical method limits to a convergent method when $\epsilon \to 0^+$
- \blacksquare AP is a necessary condition for efficient numerical methods in the limit $\epsilon \to 0^+$
- AP is not sufficient, since limiting method could be convergent but not efficient

J.A. Rossmanith | ISU 8/33

Gaussian-based moment closure

[Groth, Gombosi, Roe, & Brown, 1994, 2003]

Knock-out missing moments by pretending they come from a Gaussian

20 - moment : $\mathbb{R} \leftarrow 3\mathbb{PP}/\rho$ (Kurtosis: $\mathbb{K} = \mathbb{R} - 3\mathbb{PP}/\rho \equiv 0$)

 $35 - moment: S \leftarrow 10 \rho \mathbb{P} \mathbb{Q}$

Example: 20-moments in 1D (reduces to only 4 moments):

$$q = \begin{bmatrix} \rho \\ \rho u \\ p + \rho u^2 \\ q + 3\rho u + \rho u^3 \end{bmatrix} \quad \text{and} \quad f(q) = \begin{bmatrix} \rho u \\ p + \rho u^2 \\ q + 3\rho u + \rho u^3 \\ \frac{3\rho^2}{\rho} + 4qu + 6\rho u^2 + \rho u^4 + (\mathbb{K} = \mathbf{0}) \end{bmatrix}$$

Four eigenvalues of flux Jacobian:

$$\lambda = u + s\sqrt{\frac{p}{\rho}}, \qquad s^4 - 6s^2 - 4sh + 3 = 0, \qquad h := \frac{q}{p}\sqrt{\frac{\rho}{p}}$$

Advantage: no direct moment inversion

■ Disadvantage: limited hyperbolicity: $|h| < \sqrt{\sqrt{8} - 2} \approx 0.9102$

J.A. Rossmanith | ISU 13/33