P 2017S1AM CSE

ve. Atlanta, Georgia

Towards Efficient Multiscale Numerical
Methods for Kinetic Models in Plasma Physics

James A. Rossmanith

Department of Mathematics
lowa State University

Joint work with: Erica Johnson (ISU), Lopamudra Palodhi (ISU)
Partially funded by: NSF Grant DMS-1620128

March 2™ 2017

J.A Hossmanith | ISU




P 2017S1AM CSE

M Atlanta, Georgia

Towards Efficient Multiscale Numerical
Methods for Kinetic Models in Plasma Physics

James A. Rossmanith

Department of Mathematics
lowa State University

Joint work with: Erica Johnson (ISU), Lopamudra Palodhi (ISU)
Partially funded by: NSF Grant DMS—-1620128

March 2™ 2017

J.A. Hossmanith | ISU

1133




introduction

& Outline

Introduction

J.A. Hossmanith | ISU

333




introduction

P 1 Real-world problems are multiscale

Y Example: Magnetically-confined fusion
electron ion drift
gyromotion gyromotion rotation
electron plasma Alfven wave energy global resistive
oscillation propagation turnover diffusion
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Characteristic Time Scales in ITER (seconds)
electron ion effective particle
gyroradius gyroradius mean-free path
electron lon plasma
skin depth skin depth circumference
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Characteristic Length Scales in ITER (meters)

m |TER: effort to develop largest tokamak for magnetic confined fusion

m Nonlinear effects couple many of the space and time scales, very stiff PDEs
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Introduction

P\ state-of-the-art I: Hall MHD + PIC

m [Daldorft, Toth, Gombosi, Lapenta, Amaya, Markidis, & Brackbill 2014]

PIC code region embedded in Hall MHD model

Restriction (PIC — Hall MHD): modified Ohm's law
Prolongation (Hall MHD — PIC): BCs of PIC region
Difficulty #1: consistency problems between models (quasineutrality)

Difficulty #2: PIC introduces statistical noise

Difficulty #3: dynamically deciding fluid/kinetic boundary
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P\ state-of-the-art II: Viasov + 2-Fluid

oY [Rieke & Grauer, 2015]

Kt

| IIJ!l‘l

m Fluid region: 2-fluid 5-moment (Euler-Maxwell) using finite differences

m Kinetic region: operator split finite differences

m Restriction (Kinetic — Fluid): compute moments of kinetic PDF (+ smoothing)
m Prolongation (Fluid — Kinetic): construct PDF from moments

m Difficulty: dynamically deciding fluid/kinetic boundary
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Introduction

& Paradigms for multiscale simulations

Fluid and kinetic regions that couple at boundaries
m How do the regions couple?

m How do we determine dynamically where to place regions?

m (Fluid everywhere/kinetic in some regions) vs. (non-overlapping regions)
Global kinetic solvers that are asymptotic-preserving to fluid regime

m No coupling, but inefficient in fluid regimes

m Try to achieve efficiency via AMR techniques (not trivial in phase space)
Fluid solvers that try to extend to kinetic regime by including high moments

m How many moments do we need?

m How to close the moment expansion? (physical accuracy, well-posedness)
Micro-macro decomposition

m Write the solution as (fluid) + (kinetic corrections) and split the two

m Solve both everywhere, but kinetic can be coarsely resolved when not important

m How to design good schemes for (kinetic carrections)?
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Introduction

& Asymptotlc preserving [Jin, 1999] [Jln 2012}

v, Commutative diagram

J

Method for kinetic:
fr+v-Vef+a-Vyf = (M —f)

Method for fluid:
q:+V-F(q) =w(q)

T

Exact solution of kinetic:
fr+v-Vef+a-Vyf = L(M —f)

Exact solution of fluid:
q:+V-F(q) =w(q)

m AP applies to a large class of singularly-perturbed ODEs/PDEs

m AP: Numerical method limits to a convergent method when € — 0™

m AP is a necessary condition for efficient numerical methods in the limite — 0™

m AP is not sufficient, since limiting method could be convergent but not efficient
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Moment Closure

’3 Gaussian-based moment closure

m [Groth, Gombosi, Roe, & Brown, 1994, 2003]

B Knock-out missing moments by pretending they come from a Gaussian

20—moment: R « 3PP/p (Kurtosis: K=R —3PP/p =0)
35—moment: 5 < 10pPQ

m Example: 20-moments in 1D (reduces to only 4 moments):

—_ — —_ —

p e
B pu i Hq)= p+pu?
= p+pu? g U= q+3pu+pu°
g+ 3pu+pu’ _% +4qu+6pu® +put + (K =0)|

m Four eigenvalues of flux Jacobian:

l:u+s\/§. s* —6s° —4sh+3=0. h::ﬂr\/!:3
P p\V P

m Advantage: no direct moment inversion

m Disadvantage: limited hyperbolicity: |h| < vV V8 —220.9102
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