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» Linear wave propagation in inhomogeneous media

» Continuous transition from propagating to evanescent medium

» Accurate numerical simulation of this transition




Waves in plasmas

Charged particles Electro-Magnetic fields
» Various possible models » Maxwell's equations
» Kinetic or fluid » Electric and Magnetic
description fields
Coupling

== Electric currents
< Lorentz force

Road map to the cold plasma model

v

Single fluid model with no thermal velocity

v

Linearize the particle model for |Bg| >> 1

v

Time-harmonic regime

v

Eliminate the current and the magnetic field



The cold plasma mathematical model

Maxwell’s time-harmonic equations
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[ Stix] A general analysis of this model is able to provide a
surprisingly comprehensive view of plasma waves



Dispersion relation : Cutoffs and Resonances

w?(x . wew?(x
1- w2p—(w)g w(pr—(wé) 0
wew?(x w2(x
ex)=| - .w(w2p—(w%) 1- w2p—(w)2 0
0 01—

Suppose that the coefficients are slowly varying, and look for plane
wave solutions :

E(x) =p ®® and p e C3.

Condition for propagation : w € R for k € R3.

Definition : {k = 0}.
=
Definition : {k = o0}.

=



Perpendicular propagation, parallel polarization
O-mode equation and CutOff
2D Helmholtz equation for the total field
o —Au— (1 Cne(x))u=0
e smooth variable coefficient : Cutoff < 1 — Cne(x) =0

Airy function in 1D : —v" +xu =0

v ne<1/C » ne=1/C X ne>1/C
= Propagating waves = Cutoff = Evanescent waves



The scattering problem
2D Helmholtz equation for the total field

o —Au-— ";—22(1 — Cne(x))u=0
e smooth variable coefficient
sign = £1, Cutoff & 1 — Cne(x) =0

Scattering by a penetrable medium

Au(x) + &1+ g(x))u(x) =0, x€R?

u=u+ us
the Sommerfeld radiation condition

S
lim r/2 <8_u - i/ius> =0 r=|x|
r—o0 or




Numerical methods for scattering by a penetrable medium

> Barnett et al. - uniform discretization

> 15 A spectrally accurate direct solution technique for frequency-domain scattering problems with

variable media

> Bruno et al. - large patches

> '03 Wave scattering by inhomogeneous media : efficient algorithms and applications
> '04 An efficient, preconditioned, high-order solver for scattering by 2D inhomogeneous media

» '05 Higher-order Fourier approximation in scattering by two-dimensional, inhomogeneous media
1= Fast solvers for dense linear algebra

» block decomposition of a matrix
» algebraic/analytic low rank block compression
» 13 An O(N log N) fast direct solver for partial hierarchically semi-separable matrices — with

application to radial basis function interpolation [Ambikasaran, Darve]
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Novelty Challenges

> Integral formulation

» Adaptive discretization )
» Implementation



Integral formulation :
Lippmann-Schwinger Equation Il

> Free space Green's function ®(x,y) = ﬁH(()l)(/qx -yl

AD + k2D = dx—y + Sommerfeld condition

> Volume potential representation

(A+r(1+q)) [®p =(A+K) [Sp+r°q[Pp
=p+r%q [ ®p

u® = /]R L O(x¥)oy) dy
(A+ K21+ q)) v =— (A+K) U — K2qu’

= 0x)+ 24() || 0()nly) dy = ~ra(x)u/ ()



Lippmann-Schwinger Equation
Summary
vifes [ oCy)ry)dy

| Green’s theorem '
(I + x*V(q))u = u'
X Integral kernel depending on g

Il Volume potential representation
(I 4+ K*qV)p = —K*qu’
u=YVp
Integral kernel translation invariant

Compact support of the unknown
Easy computation of Vu

Difficulty
> Rapid, high order discretization of the volume integral

[Ambikasaran, Borges, |G, Greengard, '16]



Adaptive discretization : Quad-tree structure

Resolve e the contrast g
e the local wavenumber k+/1 + g
e the background wavenumber

User-specified parameter ¢




Integral discretization and collocation method

Leaf node of the tree structure
Notation B

For mth order accuracy

Translation invariance

> mth order polynomial
approximation

X1 —€CB1 y X2 —CpB.2
Lp Lg

Nystrom discretization
For mth order accuracy
> m X m grid points on each box




Integral computation

Generic domain of integration
Py being the /th monomial of degree < m—1

—C
Vilx.t) = [ #0bc— ye (Y2 ) oy

- / HSY (Ll — )Py (n) (Lis)2dln

Bo

X —Cp .
= B is called the target
Lg

— %5 i called the source n € By = [-0.5,0.5]?
B

7’]:

= Only Lg and & depend on BB

But what about the singularity of H(()l) ?
Identify two regimes : near and far field interactions



Local Interactions Level restricted tree

Expansion of the Hankel function

H(1 (ar) Zcp 2P< ) —i—Zda ( >2p|og(£)

Precomputation independent of k
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Far-field Interactions

If the target and source points are far away
Multipole expansion of H(()l) - Graf's addition theorem
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Summary

> Far field
< O(N) interactions per target point
< Smooth
> Near field
“ O(1) interactions per target point but O(1) storage
<% Delicate but precomputed

Quadrature characteristics

Accuracy O(h™) + O(¢)
<+ Precomputation
Speed

<+ Precomputation

1= Very fast access to matrix entries
for the scattering problem
X K as a parameter
1T g as a parameter




Scattering test case

Gaussian contrast and Total field
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Uniform grid
| N | ¢(0.5, 0) | e(1,0.5) |
256 0.8925E + 0 0.4890E + 0
1024 0.1809E + 0 0.1406E + 0
4096 1.0938E — 2 9.6485E — 3
16384 3.1169E — 4 3.2633E — 4
65536 1.4300E — 5 1.2537E — 5
262144 8.8874E — 7 6.4485E — 7
Adaptive grid
€ N ] e05,0) [ e(1,05) |
1E — 4 4096 1.09E — 2 9.65E — 3
1E -5 4864 7.89E — 4 1.20E — 4
1E -6 6400 2.99E — 4 3.33E — 4
1E —7 10240 4.83E — 5 8.75E — 6
1E — 8 16384 1.13E — 5 5.35E — 6
1E —9 34816 2.30E — 6 3.86E — 7
1E — 10 70912 7.14E — 7 3.16E — 7
1E — 11 138688 4.25E — 8 1.94E — 8




Scattering by blobs in a plasma
Contrast and Total field
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Thank you for your attention

Collaborators : L. Greengard, C. Borges, and S. Ambikasaran.
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