A Highly Scalable Implementation of the BDDC Preconditioner

Alberto F. Martín, Santiago Badia, Javier Principe
LSSC Team, Centre Internacional de Mètodes Numèrics a l'Enginyeria (CIMNE)
Castelldefels, Spain
Universitat Politècnica de Catalunya
Barcelona, Spain
SIAM Conference on Computational Science and Engineering March 3, 2017
Atlanta, Georgia, USA

Outline

(1) Introduction and motivation
(2) BDDC preconditioner
(3) BDDC MPI-parallel implementation
(4) MultiLevel BDDC MPI-parallel implementation
(5) Conclusions and future work

Outline

(1) Introduction and motivation
(2) BDDC preconditioner
(3) BDDC MPI-parallel implementation
(4) MultiLevel BDDC MPI-parallel implementation
(5) Conclusions and future work

Problem statement

- Variational problem: Find $u \in H^{1}(\Omega)$ s.t.:

$$
a(u, v)=(f, v), \quad \forall v \in H_{0}^{1}(\Omega)
$$

assuming $a(\cdot, \cdot)$ symmetric, coercive (e.g., Laplacian, Linear Elasticity)

- Discrete problem: Find $u_{h} \in V_{h} \subset H^{1}(\Omega)$ (conforming FE space) s.t.:

$$
a\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right), \quad \forall v_{h} \in V_{h}^{0} .
$$

- Algebraic problem: Find $x \in \mathbb{R}^{n}$ s.t.:

$$
A x=b,
$$

where A is a large, sparse, SPD matrix

Problem statement

- Variational problem: Find $u \in H^{1}(\Omega)$ s.t.:

$$
a(u, v)=(f, v), \quad \forall v \in H_{0}^{1}(\Omega)
$$

assuming $a(\cdot, \cdot)$ symmetric, coercive (e.g., Laplacian, Linear Elasticity)

- Discrete problem: Find $u_{h} \in V_{h} \subset H^{1}(\Omega)$ (conforming FE space) s.t.:

$$
a\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right), \quad \forall v_{h} \in V_{h}^{0} .
$$

- Algebraic problem: Find $x \in \mathbb{R}^{n}$ s.t.:

$$
A x=b,
$$

where A is a large, sparse, SPD matrix

Problem statement

- Variational problem: Find $u \in H^{1}(\Omega)$ s.t.:

$$
a(u, v)=(f, v), \quad \forall v \in H_{0}^{1}(\Omega)
$$

assuming $a(\cdot, \cdot)$ symmetric, coercive (e.g., Laplacian, Linear Elasticity)

- Discrete problem: Find $u_{h} \in V_{h} \subset H^{1}(\Omega)$ (conforming FE space) s.t.:

$$
a\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right), \quad \forall v_{h} \in V_{h}^{0} .
$$

- Algebraic problem: Find $x \in \mathbb{R}^{n}$ s.t.:

$$
A x=b
$$

where A is a large, sparse, SPD matrix

Problem statement

- Variational problem: Find $u \in H^{1}(\Omega)$ s.t.:

$$
a(u, v)=(f, v), \quad \forall v \in H_{0}^{1}(\Omega)
$$

assuming $a(\cdot, \cdot)$ symmetric, coercive (e.g., Laplacian, Linear Elasticity)

- Discrete problem: Find $u_{h} \in V_{h} \subset H^{1}(\Omega)$ (conforming FE space) s.t.:

$$
a\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right), \quad \forall v_{h} \in V_{h}^{0} .
$$

- Algebraic problem: Find $x \in \mathbb{R}^{n}$ s.t.:

$$
A x=b,
$$

where A is a large, sparse, SPD matrix

Motivation:
Efficient exploitation of current petascale supercomputers (and beyond)
Domain decomposition framework
o: interior DoFs (I); ©: interface DOFs (Г)

Numerical solution of $A x=b$

- Solve iteratively $M^{-1} A x=M^{-1} b \rightarrow \tilde{A}=\tilde{b}$
- Preconditioner M aims at accelerating convergence
- M should be a parallel, cheap-to-invert, "good" approximation of A

Numerical solution of $A x=b$

- Solve iteratively $M^{-1} A x=M^{-1} b \rightarrow \tilde{A}=\tilde{b}$
- Preconditioner M aims at accelerating convergence
- M should be a parallel, cheap-to-invert, "good" approximation of A

Numerical solution of $A x=b$

- Solve iteratively $M^{-1} A x=M^{-1} b \rightarrow \tilde{A}=\tilde{b}$
- Preconditioner M aims at accelerating convergence
- M should be a parallel, cheap-to-invert, "good" approximation of A

Solve $A x=b$ by $M-P C G$
Set-up M
call $\operatorname{PCG}\left(A, M, b, x^{0}\right)$

Numerical solution of $A x=b$

- Solve iteratively $M^{-1} A x=M^{-1} b \rightarrow \tilde{A}=\tilde{b}$
- Preconditioner M aims at accelerating convergence
- M should be a parallel, cheap-to-invert, "good" approximation of A

Solve $A x=b$ by $M-P C G$
Set-up M
call $\operatorname{PCG}\left(A, M, b, x^{0}\right)$

```
PCG (In: \(\left(A, M, f, x^{0}\right)\), Out: \(\left.x\right)\)
    \(r^{0}:=f-A x^{0}\)
    \(z^{0}:=\mathbf{M}^{-1} r^{0}\)
    \(p^{0}:=z^{0}\)
    for \(j=0, \ldots\), till convergence do
    \(s^{j+1}=A p^{j}\)
    \(\alpha^{j}:=\left(r^{j}, z^{j}\right) /\left(s^{j+1}, p^{j}\right)\)
    \(x^{j+1}:=x^{j}+\alpha^{j} p^{j}\)
    \(r^{j+1}:=r^{j}-\alpha^{j} s^{j}\)
    \(z^{j+1}:=\mathbf{M}^{-1} r^{j+1}\)
    \(\beta^{j}:=\left(r^{j+1}, z^{j+1}\right) /\left(r^{j}, z^{j}\right)\)
    \(p^{j+1}:=z^{j+1}+\beta^{j} p^{j}\)
    end for
```


Numerical solution of $A x=b$

- Solve iteratively $M^{-1} A x=M^{-1} b \rightarrow \tilde{A}=\tilde{b}$
- Preconditioner M aims at accelerating convergence
- M should be a parallel, cheap-to-invert, "good" approximation of A

Solve $A x=b$ by $M-P C G$
Set-up M
call $\operatorname{PCG}\left(A, M, b, x^{0}\right)$

$$
\begin{aligned}
& \text { PCG }\left(\operatorname{In}:\left(A, M, f, x^{0}\right), \text { Out: } x\right) \\
& r^{0}:=f-A x^{0} \\
& z^{0}:=M^{-1} r^{0} \\
& p^{0}:=z^{0} \\
& \text { for } j=0, \ldots, \text { till convergence do } \\
& s^{j+1}=A p^{j} \\
& \alpha^{j}:=\left(r^{j}, z^{j}\right) /\left(s^{j+1}, p^{j}\right) \\
& x^{j+1}:=x^{j}+\alpha^{j} p^{j} \\
& r^{j+1}:=r^{j}-\alpha^{j} s^{j} \\
& z^{j+1}:=\mathbf{M}^{-1} r^{j+1} \\
& \beta^{j}:=\left(r^{j+1}, z^{j+1}\right) /\left(r^{j}, z^{j}\right) \\
& p^{j+1}:=z^{j+1}+\beta^{j} p^{j} \\
& \text { end for }
\end{aligned}
$$

Outline

(1) Introduction and motivation
(2) BDDC preconditioner
(3) BDDC MPI-parallel implementation
(4) MultiLevel BDDC MPI-parallel implementation
(5) Conclusions and future work

BDDC Balancing DD by constraints

V_{h}

BDDC preconditioner [Dohrmann, 2003]

- Replace V_{h} by \bar{V}_{h} (reduced continuity)
- Define the injection $E: V_{h} \longrightarrow V_{h}$ (weighted average; involves nearest neighbours communication)

- Find $\bar{z}_{h} \in \bar{V}_{h}$ such that:

$$
a\left(\bar{z}_{h}, \bar{v}_{h}\right)=\left(E^{T} r_{h}, \bar{v}_{h}\right), \quad \forall \bar{v}_{h} \in \bar{v}_{h}
$$

and obtain $z_{h}=M_{B D D C}^{-1} r_{h}=\mathcal{E} E \bar{z}_{h}$

- Last correction \mathcal{E} is the harmonic extension of the interface values (involves local Dirichlet solvers)

\bar{v}_{h}

BDDC Balancing DD by constraints

BDDC Balancing DD by constraints

BDDC preconditioning

Given a conforming FE space V_{h}, we have:

- The unassembled space $\tilde{V}_{h}=V_{h}^{1} \times \ldots \times V_{h}^{n}\left(V_{h} \subset \tilde{V}_{h}\right)$
- The BDDC (under-assembled) space $\bar{V}_{h}=\left\{\tilde{v}_{h} \in \tilde{V}_{h} \mid\right.$ continuous $\left.\mathcal{F}\left(\tilde{V}_{h}\right)\right\}$

BDDC preconditioning

Given a conforming FE space V_{h}, we have:

- The unassembled space $\tilde{V}_{h}=V_{h}^{1} \times \ldots \times V_{h}^{n}\left(V_{h} \subset \tilde{V}_{h}\right)$
- The BDDC (under-assembled) space $\bar{V}_{h}=\left\{\tilde{V}_{h} \in \tilde{V}_{h} \mid\right.$ continuous $\left.\mathcal{F}\left(\tilde{V}_{h}\right)\right\}$

BDDC preconditioning

Given a conforming FE space V_{h}, we have:

- The unassembled space $\tilde{V}_{h}=V_{h}^{1} \times \ldots \times V_{h}^{n}\left(V_{h} \subset \tilde{V}_{h}\right)$
- The BDDC (under-assembled) space $\bar{V}_{h}=\left\{\tilde{v}_{h} \in \tilde{V}_{h} \mid\right.$ continuous $\left.\mathcal{F}\left(\tilde{V}_{h}\right)\right\}$

BDDC preconditioning

- The under-assembled space \bar{V}_{h} can be decomposed as:

$$
\bar{V}_{h}=\bar{V}_{h}^{F} \oplus \bar{V}_{h}^{c}, \text { with }\left\{\begin{array}{l}
\bar{V}_{h}^{F}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \mathcal{F}\left(\bar{v}_{h}\right)=0\right\} \\
\bar{V}_{h}^{c}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \bar{v}_{h} \perp_{\tilde{\mathcal{A}}} \bar{V}_{h}^{F}\right\}
\end{array}\right.
$$

- Sought-after correction split into fine-grid $\left(\bar{z}_{F}\right)+$ coarse-grid $\left(\bar{z}_{C}\right)$ correction

\bar{V}_{h}

BDDC preconditioning

- The under-assembled space \bar{V}_{h} can be decomposed as:

$$
\bar{V}_{h}=\bar{V}_{h}^{F} \oplus \bar{V}_{h}^{c}, \text { with }\left\{\begin{array}{l}
\bar{V}_{h}^{F}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \mathcal{F}\left(\bar{v}_{h}\right)=0\right\} \\
\bar{V}_{h}^{C}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \bar{V}_{h} \perp_{\tilde{\mathcal{A}}} \bar{V}_{h}^{F}\right\}
\end{array}\right.
$$

- Sought-after correction split into fine-grid $\left(\bar{z}_{F}\right)+$ coarse-grid $\left(\bar{z}_{C}\right)$ correction

BDDC preconditioning

- The under-assembled space \bar{V}_{h} can be decomposed as:

$$
\bar{V}_{h}=\bar{V}_{h}^{F} \oplus \bar{V}_{h}^{c}, \text { with }\left\{\begin{array}{l}
\bar{V}_{h}^{F}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \mathcal{F}\left(\bar{v}_{h}\right)=0\right\} \\
\bar{V}_{h}^{c}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \bar{v}_{h} \perp_{\tilde{\mathcal{A}}} \bar{V}_{h}^{F}\right\}
\end{array}\right.
$$

- Sought-after correction split into fine-grid $\left(\bar{z}_{F}\right)+$ coarse-grid $\left(\bar{z}_{C}\right)$ correction Fine-grid correction $\left(\bar{z}_{F}\right)$
- Find $\bar{z}_{F} \in \mathbb{R}^{\tilde{n}}$ such that

$$
\left[\begin{array}{cc}
\tilde{A} & C^{T} \\
C & 0
\end{array}\right]\left[\begin{array}{c}
\bar{z}_{F} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
E^{T} r \\
0
\end{array}\right]
$$

- Equivalent to P independent problems

Find $\bar{z}_{F}^{(i)} \in \mathbb{R}^{\tilde{n}^{(i)}}$ such that

$$
\left[\begin{array}{cc}
\tilde{A}^{(i)} & C^{(i) T} \\
C^{(i)} & 0
\end{array}\right]\left[\begin{array}{l}
\bar{z}_{F}^{(i)} \\
\lambda^{(i)}
\end{array}\right]=\left[\begin{array}{c}
E^{(i) T} r^{(i)} \\
0
\end{array}\right]
$$

BDDC preconditioning

- The under-assembled space \bar{V}_{h} can be decomposed as:

$$
\bar{V}_{h}=\bar{V}_{h}^{F} \oplus \bar{V}_{h}^{C}, \text { with }\left\{\begin{array}{l}
\bar{V}_{h}^{F}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \mathcal{F}\left(\bar{v}_{h}\right)=0\right\} \\
\bar{V}_{h}^{C}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \bar{V}_{h} \perp_{\tilde{\mathcal{A}}} \bar{V}_{h}^{F}\right\}
\end{array}\right.
$$

- Sought-after correction split into fine-grid $\left(\bar{z}_{F}\right)+$ coarse-grid $\left(\bar{z}_{C}\right)$ correction

\bar{V}_{h}^{C}

BDDC preconditioning

- The under-assembled space \bar{V}_{h} can be decomposed as:

$$
\bar{V}_{h}=\bar{V}_{h}^{F} \oplus \bar{V}_{h}^{c}, \text { with }\left\{\begin{array}{l}
\bar{V}_{h}^{F}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \mathcal{F}\left(\bar{v}_{h}\right)=0\right\} \\
\bar{V}_{h}^{C}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \bar{v}_{h} \perp_{\tilde{\mathcal{A}}} \bar{V}_{h}^{F}\right\}
\end{array}\right.
$$

- Sought-after correction split into fine-grid $\left(\bar{z}_{F}\right)+$ coarse-grid $\left(\bar{z}_{C}\right)$ correction Coarse-grid correction $\left(\bar{z}_{C}\right)$
Computation of $\bar{V}_{h}^{C}=\operatorname{span}\left\{\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n_{C}}\right\}$
- Find $\Phi \in \mathbb{R}^{\tilde{n} \times n c}$ such that

$$
\left[\begin{array}{cc}
\tilde{A} & C^{T} \\
C & 0
\end{array}\right]\left[\begin{array}{c}
\Phi \\
\Lambda
\end{array}\right]=\left[\begin{array}{c}
0 \\
I_{n_{C}}
\end{array}\right]
$$

- Equivalent to P independent problems

Find $\Phi^{(i)} \in \mathbb{R}^{\bar{n} \times n_{c}^{(i)}}$ such that

$$
\left[\begin{array}{cc}
\tilde{A}^{(i)} & C^{(i) T} \\
C^{(i)} & 0
\end{array}\right]\left[\begin{array}{l}
\Phi^{(i)} \\
\Lambda^{(i)}
\end{array}\right]=\left[\begin{array}{c}
0 \\
I_{n_{C}^{(i)}}
\end{array}\right]
$$

BDDC coarse space basis functions

Circle domain partitioned into 9 subdomains

BDDC coarse space basis functions

Circle domain partitioned into 9 subdomains

BDDC preconditioning

- The under-assembled space \bar{V}_{h} can be decomposed as:

$$
\bar{V}_{h}=\bar{V}_{h}^{F} \oplus \bar{V}_{h}^{c}, \text { with }\left\{\begin{array}{l}
\bar{V}_{h}^{F}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \mathcal{F}\left(\bar{v}_{h}\right)=0\right\} \\
\bar{V}_{h}^{c}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \bar{v}_{h} \perp_{\tilde{\mathcal{A}}} \bar{V}_{h}^{F}\right\}
\end{array}\right.
$$

- Sought-after correction split into fine-grid $\left(\bar{z}_{F}\right)+$ coarse-grid $\left(\bar{z}_{C}\right)$ correction

Coarse-grid correction (\bar{z}_{C})

Assembly and solution of coarse-grid problem:

- $A_{C}=\operatorname{assembly}\left(\phi^{(i) T} \tilde{A}^{(i)} \Phi^{(i)}\right)$
- $r_{C}=\operatorname{assembly}\left(\Phi^{(i) T} E^{(i)} r^{(i)}\right)$
- Solve $A_{C} \alpha_{C}=r_{C}$
- $\bar{z}_{C}=\Phi \alpha_{C}$

Coarse-grid problem is:

- Global, i.e. couples all subdomains
- But much smaller than original problem
- Potential loss of parallel efficiency with P

\bar{V}_{h}^{C}

BDDC preconditioning

- The under-assembled space \bar{V}_{h} can be decomposed as:

$$
\bar{V}_{h}=\bar{V}_{h}^{F} \oplus \bar{V}_{h}^{c}, \text { with }\left\{\begin{array}{l}
\bar{V}_{h}^{F}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \mathcal{F}\left(\bar{v}_{h}\right)=0\right\} \\
\bar{V}_{h}^{c}=\left\{\bar{v}_{h} \in \bar{V}_{h} \mid \bar{v}_{h} \perp_{\tilde{\mathcal{A}}} \bar{V}_{h}^{F}\right\}
\end{array}\right.
$$

- Sought-after correction split into fine-grid $\left(\bar{z}_{F}\right)+$ coarse-grid $\left(\bar{z}_{C}\right)$ correction Coarse-grid correction (\bar{z}_{C})
Assembly and solution of coarse-grid problem:
- $A_{C}=\operatorname{assembly}\left(\phi^{(i) T} \tilde{A}^{(i)} \Phi^{(i)}\right)$
- $r_{C}=\operatorname{assembly}\left(\Phi^{(i) T} E^{(i) T} r^{(i)}\right)$
- Solve $A_{C} \alpha_{C}=r_{C}$
- $\bar{z}_{C}=\Phi \alpha_{C}$

Coarse-grid problem is:

- Global, i.e. couples all subdomains
- But much smaller than original problem
- Potential loss of parallel efficiency with P

\bar{V}_{h}^{C}

Coarse DoFs definition

Key aspect: Selection of coarse DoFs, i.e. continuity among subdomains

- Weak scalability $\left(\kappa\left(M_{B D D C}^{-1} A\right)\right.$ constant for fixed N / P and $\left.\uparrow P\right)$
- N / P large in practice $\sim \mathcal{O}\left(10^{4-5}\right)$
- $\operatorname{BDDC}(\mathrm{ce})$ and $\operatorname{BDDC}($ cef) require much less iterations in $3 D$
- But at the expense of a more costly coarse-grid problem

Coarse DoFs vs. $\kappa\left(M_{B D D C}^{-1} A\right)$:

$$
d=2
$$

$$
d=3
$$

Continuity on corners

$$
\begin{array}{ll}
{\left[1+d^{-2} \log ^{2}\left(\frac{N}{P}\right)\right]} & \frac{N^{\frac{1}{d}}}{P}\left[1+d^{-2} \log ^{2}\left(\frac{N}{P}\right)\right] \\
{\left[1+d^{-2} \log ^{2}\left(\frac{N}{P}\right)\right]} & {\left[1+d^{-2} \log ^{2}\left(\frac{N}{P}\right)\right]} \\
& {\left[1+d^{-2} \log ^{2}\left(\frac{N}{P}\right)\right]}
\end{array}
$$

Continuity of mean value on edges too
Continuity of mean value on faces too

Outline

(1) Introduction and motivation
(2) BDDC preconditioner
(3) BDDC MPI-parallel implementation
(4) MultiLevel BDDC MPI-parallel implementation
(5) Conclusions and future work

Why BDDC for extreme scales?

(1) (Mathematically supported) extremely aggressive coarsening ($10^{5}-10^{6}$ size reduction between fine/coarse level)
(2) The coarse matrix has a similar sparsity as the original matrix
(3) Coarse/local components can be computed in parallel (like additive)

- ALL local + coarse problems can be solved inexactly (AMG-cycle)
(5) A multilevel extension is possible (for extreme core counts)

Why BDDC for extreme scales?

(1) (Mathematically supported) extremely aggressive coarsening ($10^{5}-10^{6}$ size reduction between fine/coarse level)
(2) The coarse matrix has a similar sparsity as the original matrix
(3) Coarse/local components can be computed in parallel (like additive)
(4) ALL local + coarse problems can be solved inexactly (AMG-cycle)
(3) A multilevel extension is possible (for extreme core counts)

Why BDDC for extreme scales?

(1) (Mathematically supported) extremely aggressive coarsening ($10^{5}-10^{6}$ size reduction between fine/coarse level)
(2) The coarse matrix has a similar sparsity as the original matrix
(3) Coarse/local components can be computed in parallel (like additive)
(4) ALL local + coarse problems can be solved inexactly (AMG-cycle)
(5) A multilevel extension is possible (for extreme core counts)

Why BDDC for extreme scales?

(1) (Mathematically supported) extremely aggressive coarsening ($10^{5}-10^{6}$ size reduction between fine/coarse level)
(2) The coarse matrix has a similar sparsity as the original matrix
(3) Coarse/local components can be computed in parallel (like additive)
(4) ALL local + coarse problems can be solved inexactly (AMG-cycle)
(3) A multilevel extension is possible (for extreme core counts)

Why BDDC for extreme scales?

(1) (Mathematically supported) extremely aggressive coarsening ($10^{5}-10^{6}$ size reduction between fine/coarse level)
(2) The coarse matrix has a similar sparsity as the original matrix
(3) Coarse/local components can be computed in parallel (like additive)
(4) ALL local + coarse problems can be solved inexactly (AMG-cycle)
(5) A multilevel extension is possible (for extreme core counts)

Why BDDC for extreme scales?

(1) (Mathematically supported) extremely aggressive coarsening ($10^{5}-10^{6}$ size reduction between fine/coarse level)
(2) The coarse matrix has a similar sparsity as the original matrix
(3) Coarse/local components can be computed in parallel (like additive)
(4) ALL local + coarse problems can be solved inexactly (AMG-cycle)
(5) A multilevel extension is possible (for extreme core counts)

- (1)-(2) always exploited in BDDC implementations
- Let us see how to exploit (3), in order to introduce asynchronicity and boost scalability (overlapped implementation)

Naive parallel implementation

- All MPI tasks have f-g duties and one/several have also c-g duties
- Computation of $\mathrm{f}-\mathrm{g} / \mathrm{c}-\mathrm{g}$ duties serialized (but they are independent!)
- $T_{C} \propto O\left(P^{2}\right) \rightarrow$ idling $\simeq P T_{C}$
- mem $\propto \mathcal{O}\left(P^{\frac{4}{3}}\right) \rightarrow$ mem per core rapidly exceeded

Naive parallel implementation

- All MPI tasks have f-g duties and one/several have also c-g duties
- Computation of $\mathrm{f}-\mathrm{g} / \mathrm{c}-\mathrm{g}$ duties serialized (but they are independent!)
- $T_{C} \propto O\left(P^{2}\right) \rightarrow$ idling $\simeq P T_{C}$
- mem $\propto \mathcal{O}\left(P^{\frac{4}{3}}\right) \rightarrow$ mem per core rapidly exceeded

Overlapped implementation
Our approach

Our approch

- MPI tasks have either f-g OR c-g duties
- $\mathrm{f}-\mathrm{g} / \mathrm{c}-\mathrm{g}$ corrections OVERLAPPED in time
- c-g duties can be MASKED with f-g ones duties
- OpenMP/MPI-based (MPI later on this talk) solutions possible for c-g correction

Overlapping regions

$$
\begin{aligned}
& \text { Solve } A x=b \text { by BDDC-PCG } \\
& \text { Set-up } M_{\mathrm{BDDC}} \\
& r^{0}:=b-A x^{0} \\
& x^{0}:=x^{0}+R_{l} A_{l l}^{-1} R_{l}^{t} r^{0} \\
& \text { call PCG }\left(A, M^{\mathrm{BDDC}}, b, x^{0}\right) \\
& \text { PCG } \\
& r^{0}:=b-A x^{0} \\
& z^{0}:=M_{\mathrm{BDDC}}^{-1} r^{0} \\
& p^{0}:=z^{0} \\
& \text { for } j=0, \ldots, \text { till CONV do } \\
& s^{j+1}=A p^{j} \\
& \cdots \\
& z^{j+1}:=M_{\mathrm{BDDC}}^{-1} j^{j+1} \\
& \cdots \\
& \text { end for }
\end{aligned}
$$

Overlapping regions

Weak scalability for 3D Laplacian

Target machine: HELIOS@IFERC-CSC
4,410 bullx B510 compute blades (2 Intel Xeon E5-2680 8-core CPUs; 64GB)

- Target problem: $-\Delta u=f$ on $\bar{\Omega}=[0,2] \times[0,1] \times[0,1]$
- Uniform global mesh (Q1 FEs) + Uniform partition (cubic local meshes)
- $8,432, \ldots, 27648$ cores for fine duties
- Direct solution of Dirichlet/Neumann/coarse problems (PARDISO)
- Entire 16-core blade for coarse-grid duties (multi-threaded PARDISO)
- Gradually larger local problem sizes: $\frac{H}{h}=30^{3}, 40^{3} \mathrm{FEs} /$ core

Weak scaling 2-level BDDC

3D Laplacian problem on HELIOS@IFERC

 4,410 bullx B510 compute blades (2 Intel Xeon E5-2680 8-core CPUs; 64GB)
Largest problem size is 1.8 billion DoFs

Total time (secs.)

Outline

(1) Introduction and motivation
(2) BDDC preconditioner
(3) BDDC MPI-parallel implementation
(4) MultiLevel BDDC MPI-parallel implementation
(5) Conclusions and future work

Why BDDC for extreme scales?

(1) (Mathematically supported) extremely aggressive coarsening ($10^{5}-10^{6}$ size reduction between fine/coarse level)
(2) The coarse matrix has a similar sparsity as the original matrix
(3) Coarse/local components can be computed in parallel (like additive)
(4) ALL local + coarse problems can be solved inexactly (AMG-cycle)
(5) A multilevel extension is possible (for extreme core counts)

- (1)-(2)-(3)-(4) already exploited in our codes
- Let us see how to exploit (5), in order to boost scalability even further (for exact version for the moment)

MLBDDC basic idea

MLBDDC [Mandel et. al., 2008]: Replace coarse problem by BDDC precond

LEVEL 1

MLBDDC basic idea

MLBDDC [Mandel et. al., 2008]: Replace coarse problem by BDDC precond

LEVEL 1

LEVEL 2

Highly scalable implementation of MLBDDC

Naive parallel implementation

Overlapped implementation Our approach

Goal: strike a balance such that blue/red areas are kept below green ones!

Weak scaling (1K FEs/core)

Weak scaling for MLBDDC(cef) solver with 1K FEs/core

Total Time (secs.)

Algorithm 4
$\delta_{l}^{(k)} \leftarrow\left(A_{I I}^{(k)}\right)^{-1} r_{1}^{(k)}$
$r_{\Gamma}^{(k)} \leftarrow r_{\Gamma}^{(k)}-A_{\Gamma I}^{(k)} \delta_{l}^{(k)}$
$r^{(k)} \leftarrow E_{k}^{t} r$

Algorithm 5
Solve
$A_{F}^{(k)}\left[\begin{array}{c}t \\ s_{\mathrm{F}}^{(k)} \\ \lambda\end{array}\right]=\left[\begin{array}{c}0 \\ r^{(k)} \\ 0\end{array}\right]$

Algorithm 6
$s_{\mathrm{C}}^{(k)} \leftarrow \Phi_{k} z_{\mathrm{C}}^{(k)}$
$z^{(k)} \leftarrow E_{k}\left(s_{\mathrm{F}}^{(k)}+s_{\mathrm{C}}^{(k)}\right)$
$z_{I}^{(k)} \leftarrow-\left(A_{I I}^{(k)}\right)^{-1} A_{I \Gamma}^{(k)} z_{\Gamma}^{(k)}$
$z_{I}^{(k)} \leftarrow z_{I}^{(k)}+\delta_{I}^{(k)}$

Weak scaling 3-lev BDDC(ce) solver

3D Laplacian problem on IBM BG/Q (JUQUEEN@JSC) 16 MPI tasks/compute node, 1 OpenMP thread/MPI task

Largest problem size is 29.2 billion DoFs

Weak scaling for MLBDDC(ce) solver

\#PCG iterations

Weak scaling for MLBDDC(ce) solver

Total time (secs.)

Experiment set-up

Lev.	\# MPI tasks							
	1st	42.8 K	74.1 K	117.6 K	175.6 K	250 K	343 K	456.5 K
			FEs $\mathbf{2 0}^{3} / \mathbf{2 5}^{3} / 30^{3} / 40^{3}$					
2nd	125	216	343	512	729	1000	1331	7^{3}
3rd	1	1	1	1	1	1	1	n / a

Weak scaling 3-lev BDDC(cef) solver

3D Laplacian problem on IBM BG/Q (JUQUEEN@JSC) 16 MPI tasks/compute node, 1 OpenMP thread/MPI task

Largest problem size is 29.2 billion DoFs

Weak scaling for MLBDDC(cef) solver

\#PCG iterations

Weak scaling for MLBDDC(cef) solver

Total time (secs.)

Experiment set-up

Lev.	\# MPI tasks							
	1st	42.8 K	74.1 K	117.6 K	175.6 K	250 K	343 K	456.5 K
			FEs $\mathbf{2 0}^{3} / \mathbf{2 5}^{3} / 30^{3} / 40^{3}$					
2nd	125	216	343	512	729	1000	1331	7^{3}
3rd	1	1	1	1	1	1	1	n / a

Weak scal. 4-lev BDDC(cef)+4 MPI tasks/core 3D Laplacian problem on IBM BG/Q (JUQUEEN@JSC) 64 MPI tasks/compute node, 1 OpenMP thread/MPI task

Largest problem size is 27 billion DoFs

Weak scaling for 4-level BDDC (cef) solver with $\mathrm{H} 2 / \mathrm{h} 2=4, \mathrm{H} 3 / \mathrm{h} 3=3$

Total time (secs.)

Lev.	$\#$ MPI tasks							
	FEs/core							
1st	110.6 K	216 K	373.2 K	592.7 K	884.7 K	1.26 M	1.73 M	
2nd	1.73 K	3.38 K	5.83 K	9.26 K	13.8 K	19.7 K	64 K	$4^{3} / 25^{3}$
3rd	64	125	216	343	512	729	1 K	3^{3}
4th	1	1	1	1	1	1	1	n/a

Weak scaling 3-lev $\operatorname{BDDC}(c e)$ solver

3D Linear Elasticity problem on IBM BG/Q (JUQUEEN@JSC) 16 MPI tasks/compute node, 1 OpenMP thread/MPI task

Largest problem size is 21.4 billion DoFs

Weak scaling for MLBDDC(ce) solver

\#PCG iterations

Weak scaling for MLBDDC(ce) solver

Total time (secs.)

Experiment set-up

Lev.	\# MPI tasks							
	FEs/core							
	42.8 K	74.1 K	117.6 K	175.6 K	250 K	343 K	456.5 K	
$\mathbf{1 5}^{3} / \mathbf{2 0 ^ { 3 }} / 25^{3}$								
2nd	125	216	343	512	729	1000	1331	7^{3}
3rd	1	1	1	1	1	1	1	n / a

Weak scaling 3-lev BDDC

3D Laplacian problem + unstructured mesh discretizations 16 MPI tasks/compute node, 1 OpenMP thread/MPI task

- Unstructured meshes of tetrahedra
- Each L_{2} subdomain aggregates $\approx 384 L_{1}$ subdomains
- Largest unstructured problem has ~ 3.6 billion FEs
- Remarkable scalability despite underlying irregularity of the problem

Outline

(1) Introduction and motivation
(2) BDDC preconditioner
(3) BDDC MPI-parallel implementation
(4) MultiLevel BDDC MPI-parallel implementation
(5) Conclusions and future work

Conclusions

- Highly scalable implementation of (linear/exact) MLBDDC
- Fully-distributed
- Communicator-aware
- Interlevel-overlapped (coarse-grain comput./comput./comm. overlap)
- Recursive (extensible to arbitrary \# levels)
- Remarkable scalability
- 3D Laplacian and Linear Elasticity PDEs
- $3 / 4$ levels are sufficient to (efficiently) scale till full JUQUEEN
- Largest scaling/problem sizes reported so far with (linear/exact) DDM

Conclusions

- Highly scalable implementation of (linear/exact) MLBDDC
- Fully-distributed
- Communicator-aware
- Interlevel-overlapped (coarse-grain comput./comput./comm. overlap)
- Recursive (extensible to arbitrary \# levels)
- Remarkable scalability
- 3D Laplacian and Linear Elasticity PDEs
- 3/4 levels are sufficient to (efficiently) scale till full JUQUEEN
- Largest scaling/problem sizes reported so far with (linear/exact) DDM

FEMPAR

- The algorithms presented herein have been implemented in FEMPAR:
- OO framework for the development of parallel multiphysics FE solvers
- From desktops/laptops to extreme scale supercomputers
- More than >200K Fortran2008 code long
- JSC High-Q club member since 2014
- Open source project (GNU GPLv3)
- At the solver's level, FEMPAR provides an advanced OO user-customizable framework for the development of highly scalable MLBDDC precond's:
- Tight integration among discretization/preconditioner (not black-box)
- Up-to-know: "standard" MLBDDC [this talk], (r)PB-BDDC [Badia, Martín, Nguyen, Submitted'16], BDD by constraints+perturbation [Badia, Nguyen, SISC'16], Inexact BDDC [Badia, Martín, Principe, ParCo'15]
- On-going: (ML)BDDC for unfitted FEM [Badia's talk SIAM CSE17], Inexact MLBDDC (hybrid DD/AMG)
- Future plans: MLBDDC suitable for \mathcal{H} (curl) and $\mathcal{H}($ div $)$ FE spaces
- Other extensions that we envision possible are: deluxe scaling, spectral methods ... (volunteers?)
https://gitlab.com/fempar/fempar

Farewell

Thank you!

Santiago Badia, Alberto F. Martín and Hieu Nguyen Physics-based balancing domain decomposition by constraints for heterogeneous problems. Submitted, 2016.
國 Santiago Badia, A. F. Martín and J. Principe. Multilevel balancing domain decomposition at extreme scales. SIAM Journal on Scientific Computing. Vol. 38(1), pp. C22-C52, 2016.
(Santiago Badia, A. F. Martín and J. Principe. A highly scalable parallel implementation of balancing domain decomposition by constraints. SIAM Journal on Scientific Computing. Vol. 36(2), pp. C190-C218, 2014.

