Calibration

This is a colourful sentence. $\boldsymbol{\square} \times \boldsymbol{\Delta}$

Isochrons for Saddle-Type Periodic Orbits in Three-Dimensional Space

James Hannam
Supervisors: Hinke Osinga Bernd Krauskopf

Department of Mathematics
The University of Auckland

21/05/2017

THE UNIVERSITY
OF AUCKLAND
FACULTY OF SCIENCE
Department of Mathematics

For any system of ordinary differential equations (ODE's), e.g.,

$$
\begin{gathered}
\dot{x}=\mu a x-y-b x\left(x^{2}+y^{2}\right) \\
\dot{y}=x+\mu(a+c) y-(b+d) y\left(x^{2}+y^{2}\right) \\
a=0.1, \quad b=-0.05, \quad c=0.9, \quad d=0.45, \quad \mu=2.0
\end{gathered}
$$

which contains an attracting periodic orbit, we can assign an asymptotic phase to all initial conditions which tend towards that orbit. An 'isochron' is a unique object that connects all initial conditions that have identical asymptotic phase.

- Isochrons were introduced by Winfree in 1974.
A.T. Winfree, Patterns of phase compromise in biological cycles, J. Math. Biol., 1 (1974) pp73-93.
- Guckenheimer formalised the isochron definition as the stable manifold of the time- T_{Γ} map of the point γ_{θ} on the periodic orbit Γ.
J. Guckenheimer, Isochrons and Phaseless Sets,J. Math. Biol., 1 (1975) pp259-273.
- The isochrons of a periodic orbit Γ define a set of $(n-1)$-dimensional smooth manifolds that foliate its n-dimensional basin of attraction.

Isochrons have been applied in the study a variety of phenomena including,

- Phase resetting in cardiac cells
- Neuronal bursting
- Models of chemical reactions
- Electronics.

They are particularly useful when considering phase resetting experiments often encountered in biology, and phase reductions of models.

- For an attracting periodic orbit, the convention is to choose the zero-phase point γ_{0} as the maximum in x.
- Phase is defined on $[0,1)$, such that a phase $\theta=0$ corresponds to a time of $n T_{\Gamma}, n \in \mathbb{Z}$.
$\square \Gamma$ is defined such that it begins and ends at γ_{0}; it lies on the zero-phase isochron.

A notion of phase

- For an attracting periodic orbit, the convention is to choose the zero-phase point γ_{0} as the maximum in x.
- Phase is defined on $[0,1)$, such that a phase $\theta=0$ corresponds to a time of $n T_{\Gamma}, n \in \mathbb{Z}$.
$\square \Gamma$ is defined such that it begins and ends at γ_{0}; it lies on the zero-phase isochron.

$\square \Gamma$ is defined such that it begins and ends at γ_{0}; it lies on the zero-phase isochron.
- The zero-phase isochron intersects the periodic orbit at γ_{0}.
- r_{1} also starts on the zero-phase isochron; r_{1} must syncrhonise with Γ.
- Any trajectory that starts on the zero-phase isochron will synchronise with the periodic orbit with phase $\theta=0$.

A notion of phase

$\square \Gamma$ is defined such that it begins and ends at γ_{0}; it lies on the zero-phase isochron.

- Any trajectory that starts on the zero-phase isochron will synchronise with the periodic orbit with phase $\theta=0$.
- r_{2} starts on the half-phase isochron, and so remains identically out of phase with Γ and r_{1} in asymptotic time.

Isochron computation by Numerical Continuation

We use the numerical continuation of a two-point boundary value problem as an effective and accurate method for computing isochrons. ${ }^{1}{ }^{2}$ This boundary value problem is a direct result of the definition of isochrons as the stable manifold of the associated time- T_{Γ} map for a phase point $\gamma_{\theta} \in \Gamma$. The eigenvector associated with this stable manifold is the linear approximation \vec{w} of the associated isochron. The two point boundary value problem that we will continue requires that the end point $\vec{u}\left(T_{\Gamma}\right)$ lies on the linear approximation.

$$
\begin{aligned}
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \vec{w} & =\eta \\
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \vec{w}^{\perp} & =0
\end{aligned}
$$

[^0]
Isochron computation by Numerical Continuation

OF AUCKLAND

We use the numerical continuation of a two-point boundary value problem as an effective and accurate method for computing isochrons. ${ }^{1}{ }^{2}$ This boundary value problem is a direct result of the definition of isochrons as the stable manifold of the associated time- T_{Γ} map for a phase point $\gamma_{\theta} \in \Gamma$. The eigenvector associated with this stable manifold is the linear approximation \vec{w} of the associated isochron. The two point boundary value problem that we will continue requires that the end point $\vec{u}\left(T_{\Gamma}\right)$ lies on the linear approximation.

$$
\begin{aligned}
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \vec{w} & =\eta \\
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \vec{w}^{\perp} & =0 \\
\left(\vec{u}(0)-\vec{\gamma}_{\theta}\right) \cdot \vec{w}^{\perp} & =\delta
\end{aligned}
$$

[^1]We use the numerical continuation of a two-point boundary value problem as an effective and accurate method for computing isochrons. ${ }^{1}{ }^{2}$ This boundary value problem is a direct result of the definition of isochrons as the stable manifold of the associated time- T_{Γ} map for a phase point $\gamma_{\theta} \in \Gamma$. The eigenvector associated with this stable manifold is the linear approximation \vec{w} of the associated isochron. The two point boundary value problem that we will continue requires that the end point $\vec{u}\left(T_{\Gamma}\right)$ lies on the linear approximation.

$$
\begin{aligned}
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \overrightarrow{\mathbb{s}} & =\tau \\
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \overrightarrow{\mathbb{s}}^{\Perp} & =0
\end{aligned}
$$

[^2]
Isochrons by numerical continuation

- We start with an attracting periodic orbit Γ, and the linear approximation of the isochron at γ_{0}.
- The Periodic orbit is a trajectory that satisfies the two-point boundary value problem.
$\times \Gamma$ begins on the linear approximation of the isochron.
$\times \Gamma$ has an integration time T_{Γ}.

- By moving the end point of Γ along the linear approximation, a new trajectory is created.
\times This new trajectory returns to the linear approximation at time T_{Γ}.
\times The trajectory's start point must lie on the isochron.
- We monitor the distance of the start point from the linear approximation until it reaches $\delta_{\text {mase }}$.

- We monitor the distance of the start point from the linear approximation until it reaches $\delta_{\text {mnase }}$.
- This trajectory defines the fundamental domain, a closer approximation to the isochron than the linear approximation.
- The start point of the trajectory has swept out the zero phase isochron as it was continued.

Isochrons by numerical continuation

- The start point of the trajectory has swept out the zero phase isochron as it was continued.
- We continue the trajectory such that it's end point lies on the fundamental domain.

THE UNIVERSITY

Isochrons by numerical continuation

- When the trajectory's end point reaches the fundamental domain"s length:
\times Stop continuation.

Isochrons by numerical continuation

- When the trajectory's end point reaches the fundamental domain"s length:
\times Stop continuation.
\times Append the trajectory that defines the fundamental domain.
\times Increase the time interval for the trajectory to $2 T_{\Gamma}$.
\times Continue the new trajectory over the fundamentall domain.

Isochrons by numerical continuation

- Repeat for different phases.

Isochrons by numerical continuation

- Isocrhons must accumulate on the basin boundary.
- The unstable invariant manifolds of the saddle points must intersect each isochron infinitely many times.

Non-compact basin boundaries

- We can compactify \mathbb{R}^{2} onto \mathbb{D} in order to apply our method effectively far away from Γ.
- This compactification preserves geometry, invariant dynamics, and introduces equilibria at infinity.

Non-compact basin boundaries

- We can compute global isochrons effectively and accurately, and visualise their geometries near infinity. ${ }^{\text {a }}$
- For this example, the isochrons must be computed to very large arclengths in order to confirm phase sensitivity at the basin boundary.

[^3]
Non-compact basin boundaries

- We can compute global isochrons effectively and accurately, and visualise their geometries near infinity. ${ }^{a}$
- For this example, the isochrons must be computed to very large arclengths in order to confirm phase sensitivity at the basin boundary.

[^4]
Adaptation of method for saddle-type periodic orbits

We can compute the isochrons of a saddle-type periodic orbit in a three-dimensional system by modifying the method used in the plane to account for the extra degrees of freedom.

Fundonnenfal Donnalin

$$
\begin{aligned}
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \vec{w} & =\eta \\
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \vec{w}^{\perp} & =0 \\
\left(\vec{u}(0)-\vec{\gamma}_{\theta}\right) \cdot \vec{w}^{\perp} & =\delta
\end{aligned}
$$

Isochron

$$
\begin{array}{r}
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \overrightarrow{\mathfrak{s}} \\
=\tau \\
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \overrightarrow{\mathfrak{S}}^{\Perp}=0
\end{array}
$$

Adaptation of method for saddle-type periodic orbits

We can compute the isochrons of a saddle-type periodic orbit in a three-dimensional system by modifying the method used in the plane to account for the extra degrees of freedom.

Fundanneniol Dovnclin

$$
\begin{aligned}
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \vec{w} & =\eta \\
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \vec{w}^{\perp} & =0 \\
\left(\vec{u}(0)-\vec{\gamma}_{\theta}\right) \cdot \vec{w}^{\perp} & =\delta_{\theta} \\
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \vec{w}^{n} & =0 \\
\left(\vec{u}(0)-\vec{\gamma}_{\theta}\right) \cdot \vec{w}^{\times} & =\delta_{\sqrt{n}} \\
\delta_{\theta}{ }^{2}+\delta_{n}^{2} & =\delta_{\sqrt{2}}^{2}
\end{aligned}
$$

Isochron

$$
\begin{aligned}
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \vec{s} & =\tau \\
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \vec{s}^{\perp} & =0 \\
\left(\vec{u}\left(T_{\Gamma}\right)-\vec{\gamma}_{\theta}\right) \cdot \vec{s}^{n} & =0
\end{aligned}
$$

Backward time isochrons

The phase θ of an initial condition \vec{u}_{0} is given by the asymptotic phase function $\Theta\left(\vec{u}_{0}\right) \in[0,1)$ assigned by the condition,

$$
\lim _{t \rightarrow \infty}\left\|\Phi\left(t, \vec{u}_{0}\right)-\Phi\left(t+\Theta\left(\vec{u}_{0}\right) T_{\Gamma}, \gamma_{0}\right)\right\|=0
$$

For the unstable manifolds of periodic orbits, we can define backward-time isochrons objects equivalent to the forward-time isochrons of that periodic orbit under the transformation $t=-t$. Thus the asymptotic phase of an 'initial condition' \vec{u}_{0} on a backwards-time isochron governed by the condition,

$$
\lim _{t \rightarrow \infty}\left\|\Phi\left(-t, \vec{u}_{0}\right)-\Phi\left(\Theta\left(\vec{u}_{0}\right) T_{\Gamma}-t, \gamma_{0}\right)\right\|=0
$$

$$
\begin{aligned}
& \dot{x}=\beta x-\omega y-x\left(x^{2}+y^{2}\right) \\
& \dot{y}=\omega x+\beta y-y\left(x^{2}+y^{2}\right) \\
& \dot{z}=\alpha z
\end{aligned}
$$

- The stable and unstable invariant manifolds or Γ are known analytically, and serve as a good test case.
- The basin of attraction of Γ is its stable invariant manifold.

Simple isochrons on orientable manifolds

$$
\begin{aligned}
\dot{x} & =\beta x-\omega y-x\left(x^{2}+y^{2}\right) \\
\dot{y} & =\omega x+\beta y-y\left(x^{2}+y^{2}\right) \\
\dot{z} & =\alpha z
\end{aligned}
$$

- The stable and unstable invariant manifolds or Γ are known analytically, and serve as a good test case.
- The forward-time isochrons of Γ foliate its stable maniold.

Simple isochrons on orientable manifolds

$$
\begin{aligned}
& \dot{x}=\beta x-\omega y-x\left(x^{2}+y^{2}\right) \\
& \dot{y}=\omega x+\beta y-y\left(x^{2}+y^{2}\right) \\
& \dot{z}=\alpha z
\end{aligned}
$$

- The stable and unstable invariant manifolds or Γ are known analytically, and serve as a good test case.
- In reverse time the unstable invariant manifold forms the basin of attraction of Γ.
- The Backward-time isochrons of Γ foliate its unstable invariant manifold.
\square Since ω has no dependence on x, y, z, the isochrons are straight lines.

Simple isochrons on orientable manifolds

$$
\begin{aligned}
& \dot{x}=\beta x-(1-\kappa z) \omega y-x\left(x^{2}+y^{2}\right) \\
& \dot{y}=(1-\kappa z) \omega x+\beta y-y\left(x^{2}+y^{2}\right) \\
& \dot{z}=\alpha z
\end{aligned}
$$

- By changing ω to depend on z, the isochrons on the unstable invariant manifold are no longer straight lines.
- The geometry of the unstable invariant manifold is the same, but the geometry of its isochrons change due to the new dynamics.

Simple isochrons on orientable manifolds

$$
\begin{aligned}
\dot{x} & =\beta x-\omega y-x \frac{x^{2}+y^{2}}{1-z \zeta} \\
\dot{y} & =\omega x+\beta y-y \frac{x^{2}+y^{2}}{1-z \zeta} \\
\dot{z} & =\alpha z
\end{aligned}
$$

- We can change the geometry of the unstable invariant manifold so that it is no linger a cylinder.
- The geometry of the isochrons also change to account for the new geometry of the unstable invariant manifold.

$$
\begin{aligned}
\dot{x} & =\beta x-(1-\kappa z) \omega y-x \frac{x^{2}+y^{2}}{1-z \zeta} \\
\dot{y} & =(1-\kappa z) \omega x+\beta y-y \frac{x^{2}+y^{2}}{1-z \zeta} \\
\dot{z} & =\alpha z
\end{aligned}
$$

- We can change the geometry of the unstable invariant manifold so that it is no linger a cylinder.
- The geometry of the isochrons also change to account for the new geometry of the unstable invariant manifold.

Sanstede's System

For parameter values,

$$
a=0.22, \quad b=1.0, \quad c=-2.0, \quad \alpha=0.3, \quad \beta=1.0, \quad \gamma=2.0, \quad \mu=0.004, \tilde{\mu}=0.0
$$

this system ${ }^{3}$ contains a saddle-type periodic orbit.

$$
\begin{aligned}
\dot{x} & =a x+b y-a x^{2}+x(2-3 x)(\widetilde{\mu}-\alpha z) \\
\dot{y} & =b x+a y-1.5 b x^{2}-1.5 a x y-2 y(\widetilde{\mu}-\alpha z) \\
\dot{z} & =c z+\mu x+\gamma x z+\alpha \beta\left(x^{2}(1-x)-y^{2}\right)
\end{aligned}
$$

${ }^{3}$ B. Sandstede, Constructing dynamical systems having homoclinic bifurcation points of codimension two, Journal of Dynamics and Differential Equations, 9 (1997)

Visulalising the stable invariant manifold?

 Department of Mathematics

Visulalising the stable invariant manifold?

 Department of Mathematics

Visulalising the stable invariant manifold?

Visulalising the stable invariant manifold?

Seeing complicated geometry with isochrons

Seeing complicated geometry with isochrons

Seeing complicated geometry with isochrons

OF AUCKLAND FACULTY OF SCIENCE

Department of Mathematics

For parameter values,

$$
\alpha=3.2, \quad \beta=2.0,
$$

this system ${ }^{4}$ contains a non-orientable saddle-type periodic orbit.

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=z \\
& \dot{z}=(\alpha-x) x-\beta y-z
\end{aligned}
$$

[^5]

Seeing complicated geometry with isochrons

Seeing complicated geometry with isochrons

Conclusion

Work so far

- Compactification is a useful tool in the realisation of global isochron geometry.
- We can compute isochrons on the invariant manifolds of saddle type periodic orbits.
- Visualising manifolds in terms of their isochrons is useful in determining their geometry and embedded dynamics.

Future endeavours

- Investigate the interactions of forward and backward time isochrons in 3D.
- Compute the isochrons of purely attracting periodic orbits in 3D.

Isochron theory
Motivation
A notion of phase
Numerical continuation method
Illustrated numerical method
Non-compact basin boundaries
Phase out of the plane
BVP for saddle-type periodic Orbits
Backward-time isochrons
Simple isochrons on invariant manifolds
Complex Invariant Manifolds
Sunstede's equations
Growing an orientable manifold
Seeing the phase in Sunstede
Arneodo's system
Growing an non-orientable manifold
Seeing the phase
The end
Table of Contents

[^0]: ${ }^{1}$ H.M. Osinga, J. Moehlis, Continuation-based computation of global isochrons, SIAM Journal on Applied Dynamical Systems, 9(4) (2010)
 ${ }^{2}$ P. Langfield, B. Krauskopf, H.M. Osinga, Solving Winfree's puzzle: the isochrons in the FitzHugh-Nagumo model, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24 (2014)

[^1]: ${ }^{1}$ H.M. Osinga, J. Moehlis, Continuation-based computation of global isochrons, SIAM Journal on Applied Dynamical Systems, 9(4) (2010)
 ${ }^{2}$ P. Langfield, B. Krauskopf, H.M. Osinga, Solving Winfree's puzzle: the isochrons in the FitzHugh-Nagumo model, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24 (2014)

[^2]: ${ }^{1}$ H.M. Osinga, J. Moehlis, Continuation-based computation of global isochrons, SIAM Journal on Applied Dynamical Systems, 9(4) (2010)
 ${ }^{2}$ P. Langfield, B. Krauskopf, H.M. Osinga, Solving Winfree's puzzle: the isochrons in the FitzHugh-Nagumo model, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24 (2014)

[^3]: aJ. Hannam, B. Krauskopf, H.M. Osinga, Global isochrons of a planar system near a phaseless set with saddle equilibria, The European Physical Journal Special Topics, 225(13-14) (2016)

[^4]: aJ. Hannam, B. Krauskopf, H.M. Osinga, Global isochrons of a planar system near a phaseless set with saddle equilibria, The European Physical Journal Special Topics, 225(13-14) (2016)

[^5]: ${ }^{4}$ A. Arneodo, P.H. Coullet, E.A.Spiegel, C. Tresser, Asymptotic chaos, Physica, D14 (1985)

