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Isochrons

For any system of ordinary differential equations (ODE’s), e.g.,

ẋ = µax− y − bx(x2 + y2),

ẏ = x+ µ(a+ c)y − (b+ d)y(x2 + y2),

a = 0.1, b = −0.05, c = 0.9, d = 0.45, µ = 2.0,

which contains an attracting periodic orbit, we can assign an asymptotic phase to all
initial conditions which tend towards that orbit. An ’isochron’ is a unique object that
connects all initial conditions that have identical asymptotic phase.

Isochrons were introduced by Winfree in 1974.
A.T. Winfree, Patterns of phase compromise in biological cycles, J. Math. Biol., 1 (1974) pp73-93.

Guckenheimer formalised the isochron definition as the stable manifold of the time-TΓ

map of the point γθ on the periodic orbit Γ.
J. Guckenheimer, Isochrons and Phaseless Sets,J. Math. Biol., 1 (1975) pp259-273.

The isochrons of a periodic orbit Γ define a set of (n− 1)-dimensional smooth manifolds
that foliate its n-dimensional basin of attraction.

James Hannam (The University of Auckland) : 1/16
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Motivation

Isochrons have been applied in the study a variety of phenomena including,

Phase resetting in cardiac cells

Neuronal bursting

Models of chemical reactions

Electronics.

They are particularly useful when considering phase resetting experiments often
encountered in biology, and phase reductions of models.

James Hannam (The University of Auckland) : 2/16
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A notion of phase
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For an attracting periodic orbit, the convention is to choose the zero-phasezero-phase point
γ0γ0 as the maximum in x.

Phase is defined on [0, 1), such that a phase θ = 0 corresponds to a time of
nTΓ, n ∈ Z.

Γ is defined such that it begins and ends at γ0γ0; it lies on the zero-phasezero-phase isochron.

James Hannam (The University of Auckland) : 3/16



Background Phase out of the plane Complex Invariant Manifolds

A notion of phase

-2 0 2

-2

0

2

0 6 12

-2

0

2

0  

0.3

0.6

0.9

y

x

γ0γ0

y

t

θ

For an attracting periodic orbit, the convention is to choose the zero-phasezero-phase point
γ0γ0 as the maximum in x.

Phase is defined on [0, 1), such that a phase θ = 0 corresponds to a time of
nTΓ, n ∈ Z.

Γ is defined such that it begins and ends at γ0γ0; it lies on the zero-phasezero-phase isochron.

James Hannam (The University of Auckland) : 3/16



Background Phase out of the plane Complex Invariant Manifolds

A notion of phase

-2 0 2

-2

0

2

0 6 12

-2

0

2

0  

0.3

0.6

0.9

y

x

γ0γ0

y

t

θr1

Γ is defined such that it begins and ends at γ0γ0; it lies on the zero-phasezero-phase isochron.

The zero-phasezero-phase isochron intersects the periodic orbit at γ0γ0.

r1 also starts on the zero-phasezero-phase isochron; r1 must syncrhonise with Γ.

Any trajectory that starts on the zero-phasezero-phase isochron will synchronise with the
periodic orbit with phase θ = 0.

James Hannam (The University of Auckland) : 3/16
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A notion of phase
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Γ is defined such that it begins and ends at γ0γ0; it lies on the zero-phasezero-phase isochron.

Any trajectory that starts on the zero-phasezero-phase isochron will synchronise with the
periodic orbit with phase θ = 0.

r2 starts on the half-phase isochron, and so remains identically out of phase with Γ
and r1 in asymptotic time.

James Hannam (The University of Auckland) : 3/16
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Isochron computation by Numerical Continuation
We use the numerical continuation of a two-point boundary value problem as an
effective and accurate method for computing isochrons.1 2 This boundary value problem
is a direct result of the definition of isochrons as the stable manifold of the associated
time-TΓ map for a phase point γθ ∈ Γ. The eigenvector associated with this stable
manifold is the linear approximation ~wlinear approximation ~w of the associated isochron. The two point
boundary value problem that we will continue requires that the end point ~u(TΓ) lies on
the linear approximationlinear approximation.

(~u(TΓ)− ~γθ) · ~w~w = η

(~u(TΓ)− ~γθ) · ~w⊥~w⊥ = 0

1H.M. Osinga, J. Moehlis, Continuation-based computation of global isochrons, SIAM
Journal on Applied Dynamical Systems, 9(4) (2010)

2P. Langfield, B. Krauskopf, H.M. Osinga, Solving Winfree’s puzzle: the isochrons in the
FitzHugh-Nagumo model, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24 (2014)

James Hannam (The University of Auckland) : 4/16
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Isochrons by numerical continuation
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We start with an attracting periodic orbit Γ, and the linear approximationlinear approximation of the
isochron at γ0γ0.

The Periodic orbit is a trajectory that satisfies the two-point boundary value
problem.

Γ begins on the linear approximationlinear approximation of the isochron.
Γ has an integration time TΓ.

James Hannam (The University of Auckland) : 5/16
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Isochrons by numerical continuation
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By moving the end point of Γ along the linear approximationlinear approximation, a new trajectory is
created.

This new trajectory returns to the linear approximationlinear approximation at time TΓ.
The trajectory’s start point must lie on the isochron.

We monitor the distance of the start point from the linear approximationlinear approximation until it
reaches δmaxδmax.

James Hannam (The University of Auckland) : 5/16
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Isochrons by numerical continuation
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We monitor the distance of the start point from the linear approximationlinear approximation until it
reaches δmaxδmax.

This trajectory defines the fundamental domainfundamental domain, a closer approximation to the
isochron than the linear approximationlinear approximation.

The start point of the trajectory has swept out the zero phasezero phase isochron as it was
continued.

James Hannam (The University of Auckland) : 5/16
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Isochrons by numerical continuation

-2 0 2

-2

0

2

y

x

The start point of the trajectory has swept out the zero phasezero phase isochron as it was
continued.

We continue the trajectory such that it’s end point lies on the fundamental domainfundamental domain.

James Hannam (The University of Auckland) : 5/16
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Isochrons by numerical continuation
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When the trajectory’s end point reaches the fundamental domain’sfundamental domain’s length:

Stop continuation.

Append the trajectory that defines the fundamental domainfundamental domain.
Increase the time interval for the trajectory to 2TΓ.
Continue the new trajectory over the fundamental domainfundamental domain.

James Hannam (The University of Auckland) : 5/16
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Isochrons by numerical continuation
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Repeat for different phases.

James Hannam (The University of Auckland) : 5/16
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Isochrons by numerical continuation
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Isocrhons must accumulate on the basin boundary.

The unstable invariant manifolds of the saddle points must intersect each isochron
infinitely many times.

James Hannam (The University of Auckland) : 5/16
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Non-compact basin boundaries
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We can compactify R2 onto D in order to apply our method effectively far away
from Γ.

This compactification preserves geometry, invariant dynamics, and introduces
equilibria at infinity.

James Hannam (The University of Auckland) : 6/16
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Non-compact basin boundaries
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We can compute global isochrons effectively and accurately, and visualise their
geometries near infinity.a

For this example, the isochrons must be computed to very large arclengths in order
to confirm phase sensitivity at the basin boundary.

aJ. Hannam, B. Krauskopf, H.M. Osinga, Global isochrons of a planar system near a
phaseless set with saddle equilibria, The European Physical Journal Special Topics,
225(13-14) (2016)

James Hannam (The University of Auckland) : 6/16
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We can compute global isochrons effectively and accurately, and visualise their
geometries near infinity.a

For this example, the isochrons must be computed to very large arclengths in order
to confirm phase sensitivity at the basin boundary.

aJ. Hannam, B. Krauskopf, H.M. Osinga, Global isochrons of a planar system near a
phaseless set with saddle equilibria, The European Physical Journal Special Topics,
225(13-14) (2016)
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Adaptation of method for saddle-type periodic orbits

We can compute the isochrons of a saddle-type periodic orbit in a three-dimensional
system by modifying the method used in the plane to account for the extra degrees of
freedom.

Fundamental DomainFundamental Domain

(~u(TΓ)− ~γθ) · ~w~w = η

(~u(TΓ)− ~γθ) · ~w⊥~w⊥ = 0

(~u(0)− ~γθ) · ~w⊥~w⊥ = δδ

Isochron

(~u(TΓ)− ~γθ) · ~s~s = τ

(~u(TΓ)− ~γθ) · ~s⊥~s⊥ = 0

James Hannam (The University of Auckland) : 7/16
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2

Isochron

(~u(TΓ)− ~γθ) · ~s~s = τ
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Backward time isochrons

The phase θ of an initial condition ~u0 is given by the asymptotic phase function
Θ(~u0) ∈ [0, 1) assigned by the condition,

lim
t→∞

||Φ(t, ~u0)− Φ(t+ Θ(~u0)TΓ, γ0) ||= 0.

For the unstable manifolds of periodic orbits, we can define backward-time isochrons –
objects equivalent to the forward-time isochrons of that periodic orbit under the
transformation t = −t. Thus the asymptotic phase of an ’initial condition’ ~u0 on a
backwards-time isochron governed by the condition,

lim
t→∞

||Φ(−t, ~u0)− Φ(Θ(~u0)TΓ − t, γ0) ||= 0.

James Hannam (The University of Auckland) : 8/16
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Simple isochrons on orientable manifolds

ẋ = βx− ωy − x(x2 + y2)

ẏ = ωx+ βy − y(x2 + y2)

ż = αz

The stable and unstable invariant manifolds or Γ are known analytically, and serve
as a good test case.

The basin of attraction of Γ is its stable invariant manifold.

James Hannam (The University of Auckland) : 9/16
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Simple isochrons on orientable manifolds
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Simple isochrons on orientable manifolds
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ẋ = βx− ωy − x(x2 + y2)

ẏ = ωx+ βy − y(x2 + y2)

ż = αz

The stable and unstable invariant manifolds or Γ are known analytically, and serve
as a good test case.

In reverse time the unstable invariant manifold forms the basin of attraction of Γ.

The Backward-time isochrons of Γ foliate its unstable invariant manifold.

Since ω has no dependence on x, y, z, the isochrons are straight lines.
James Hannam (The University of Auckland) : 9/16
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Simple isochrons on orientable manifolds
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ẋ = βx− (1− κz)ωy − x(x2 + y2)

ẏ = (1− κz)ωx+ βy − y(x2 + y2)

ż = αz

By changing ω to depend on z, the isochrons on the unstable invariant manifold are
no longer straight lines.

The geometry of the unstable invariant manifold is the same, but the geometry of
its isochrons change due to the new dynamics.

James Hannam (The University of Auckland) : 9/16
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Simple isochrons on orientable manifolds
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1− zζ
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ż = αz

We can change the geometry of the unstable invariant manifold so that it is no
linger a cylinder.

The geometry of the isochrons also change to account for the new geometry of the
unstable invariant manifold.
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Simple isochrons on orientable manifolds
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Sanstede’s System

For parameter values,

a = 0.22, b = 1.0, c = −2.0, α = 0.3, β = 1.0, γ = 2.0, µ = 0.004, µ̃ = 0.0

this system3 contains a saddle-type periodic orbit.

ẋ = ax+ by − ax2 + x(2− 3x)(µ̃− αz)
ẏ = bx+ ay − 1.5bx2 − 1.5axy − 2y(µ̃− αz)
ż = cz + µx+ γxz + αβ(x2(1− x)− y2)

3B. Sandstede, Constructing dynamical systems having homoclinic bifurcation points of
codimension two, Journal of Dynamics and Differential Equations, 9 (1997)

James Hannam (The University of Auckland) : 10/16
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Visulalising the stable invariant manifold?
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Seeing complicated geometry with isochrons
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Seeing complicated geometry with isochrons
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Arneodo’s System

For parameter values,
α = 3.2, β = 2.0,

this system4 contains a non-orientable saddle-type periodic orbit.

ẋ = y,

ẏ = z,

ż = (α− x)x− βy − z

4A. Arneodo, P.H. Coullet, E.A.Spiegel, C. Tresser, Asymptotic chaos, Physica, D14 (1985)
James Hannam (The University of Auckland) : 13/16
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How does a Mobiüs strip grow?
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Conclusion

Work so far

Compactification is a useful tool in the realisation of global isochron geometry.

We can compute isochrons on the invariant manifolds of saddle type periodic orbits.

Visualising manifolds in terms of their isochrons is useful in determining their geometry
and embedded dynamics.

Future endeavours

Investigate the interactions of forward and backward time isochrons in 3D.

Compute the isochrons of purely attracting periodic orbits in 3D.

James Hannam (The University of Auckland) : 16/16
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