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SAMSILOGO

Kalman Filter
Optimal way to combine data and model-based predictions if...

model noise/uncertainty & obs error are both Gaussian

xa = x f +
σ2

f

σ2
f + σ2

o
(y − x f )

x f forecasted state estimate (model, prior, background)
y observation of state (data)

xa analysis, best (combined) state estimate
σ2

f forecast variance (uncertainty)
σ2

o data model variance (uncertainty)

DATA ASSIMILATION TUTORIAL 5 / 58



SAMSILOGO

Kalman Filter

Optimal way to combine data and model-based predictions if...

model noise/uncertainty & obs error are both Gaussian

xa = x f +
σ2

f

σ2
f + σ2

o
(y − x f )

If σ2
o >> σ2

f

xa ≈ x f

DATA ASSIMILATION TUTORIAL 6 / 58



SAMSILOGO

Kalman Filter

Optimal way to combine data and model-based predictions if...

model noise/uncertainty & obs error are both Gaussian

xa = x f +
σ2

f

σ2
f + σ2

o
(y − x f )

If σ2
o >> σ2

f
xa ≈ x f

DATA ASSIMILATION TUTORIAL 6 / 58



SAMSILOGO

Kalman Filter

Optimal way to combine data and model-based predictions if...

model noise/uncertainty & obs error are both Gaussian

xa = x f +
σ2

f

σ2
f + σ2

o
(y − x f )

If σ2
f >> σ2

o

xa ≈ y

DATA ASSIMILATION TUTORIAL 7 / 58



SAMSILOGO

Kalman Filter

Optimal way to combine data and model-based predictions if...

model noise/uncertainty & obs error are both Gaussian

xa = x f +
σ2

f

σ2
f + σ2

o
(y − x f )

If σ2
f >> σ2

o
xa ≈ y

DATA ASSIMILATION TUTORIAL 7 / 58



SAMSILOGO

Data assimilation – scalar example

Observation Model,
forecast,
prior,
background

Analysis

DATA ASSIMILATION TUTORIAL 8 / 58



SAMSILOGO

Data assimilation – scalar example

Observation Model,
forecast,
prior,
background

Analysis,
posterior
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Kalman Filter
Optimal way to combine data and model-based predictions if...

model noise/uncertainty & obs error are both Gaussian

xa = x f + k(y − x f ) analysis mean

σ2
a = (1− k)2σ2

f + k2σ2
o analysis variance

k =
σ2

f

σ2
f + σ2

o
Kalman gain
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Bayes

Analysis, pa(x|y)

Prior, p f (x)
Likelihood, po(y|x)

truth, x tobservation, y
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Bayes

p(state | data) ∝ p(data | state)p(state)

or

pa(x | y) ∝ po(y | x)pf (x)

or

posterior ∝ likelihood · prior
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Kalman Filter via Least Squares
Since both posterior and prior are Gaussian,

pf (x) =
1√

2πσ2
f

exp
(−(x − x f )2

2σ2
f

)

po(y | x) =
1√

2πσ2
o

exp
(−(x − y)2

2σ2
o

)

maximizing the posterior is equivalent to minimizing a sum of squares.

J(x) = Jo(x) + Jb(x)

J(x) =
(x − y)2

2σ2
o

+
(x − xb)2

2σ2
b

(Note, change in notation — f = b, forecast = background)
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Least Squares Cost Function

y xb  (= x f )xa

J
o

J
b

J
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Beyond scalars — x ∈ Rn and y ∈ Rp

xt true model state (dim n)
xb background model state (dim n, also mean of prior xb = xf )
xa analysis model sate (dim n, also mean of posterior)
y vector of observations (dim p)

H observation operator (from dim n to p)
H assuming H(x) = Hx (dim p × n)
B covariance of background errors (xb − xt ) (dim n × n, B = Pf )
R covariance matrix of observation errors (xb − H(xt )) (dim p × p)
A covariance matrix of analysis errors (xa − xt ) (dim n × n, A = Pa)
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Kalman update

J(x) = (x− xb)T B−1(x− xb) + (y− H(x))T R−1(y− H(x))

or

pa(x |y)∝exp
(
−(x−xf )T (Pf )−1(x−xf )

)
exp

(
−(y−H(x))T R−1(y−H(x))

)

xa = xb + K(y− H(xb)) analysis mean

K = BHT (HBHT + R
)−1 Kalman gain

A = Pa = (I− KH)B analysis covariance
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Kalman update1

Data assimilation concepts and methods

18 Meteorological Training Course Lecture Series

 ECMWF, 2002

ref: Lorenc 1986

9.6  Numerical cost of least-squares analysis
In current operational meteorological models, the dimension of the model state (or, more precisely, of the control
variable space) is of the order of , and the dimension of the observation vector (the number of observed
scalars) is of the order of per analysis18. Therefore the analysis problem is mathematically underdeter-
mined (although in some regions it might be overdetermined if the density of the observations is larger than the
resolution of the model). In any practical application it is essential to keep in mind the size of the matrix operators
involved in computing the analysis (Fig. 4 ). The least-squares analysis method requires in principle the specifica-
tion of covariance matrices and (or their inverses in the variational form of the algorithm) which respectively
contain of the order of and distinct coefficients, which are statistics to estimate (the estimation of a
variance or covariance statistic converges like the square root of the number of realizations). The explicit determi-
nation of requires the inversion of a matrix of size , which has an asymptotic complexity of the order of

. The exact minimization of the cost function requires, in principle, evaluations of the cost
function and its gradient, assuming is quadratic and there are no numerical errors (e.g. using a conjugate gradient
method).

Figure  4. Sketches of the shapes of the matrices and vector dimensions involved in an usual analysis problem
where there are many fewer observations than degrees of freedom in the model: from top to bottom, in the

equations of the linear analysis, the computation of , of the  term, and the computation of the cost
function .

It is obvious that, except in analysis problems of very small dimension (like one-dimensional retrievals), it is im-
possible to compute exactly the least-squares analysis. Some approximations are necessary, they are the subject of
the following sections.

18. At ECMWF in winter 1998 the control variable dimension was 512000, the number of active observations (per 6-hour interval) was about
150000

x � 107=
� 105=

B R
�

2 2⁄ �
2 2⁄

K � �×
�

2
�( )log � � 1+

�

K HBHT

�

1
borrowed from tutorial by F. Bouttier and P. Courtier, Data assimilation concepts and methods March 1999
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Challenges (not an exhaustive list)

What if n and/or p are large?

What if prior and/or likelihood non-Gaussian?

What if we have a time series of data?
y = {y1,y2, . . . ,yN} = y1:N

And a dynamic model ẋ = f (x)?

What if dynamics are nonlinear?
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Dynamic data assimilation2

0t t=

t t

1 0 2 0( ), ( )x t x t

2
borrowed from random talk of Chris Jones
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Initial conditions: 

( ), ( ), ( )x t x t tP
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Dynamic data assimilation

f f f

1 1 2 1 1

Model forecast: 
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Data assimilation is a state estimation problem3

Dynamical model for the state vector x ∈ X

dx
dt

= f (x) with x(0) = x0

The solution denoted by x(t) = Φ(x0, t)

Given some noisy observations of the system at times
0 < t1 < t2 < · · · < tN , we can consider three problems:

3
borrowed from random talk of Amit Apte
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The solution denoted by x(t) = Φ(x0, t)

Given some noisy observations of the system at times
0 < t1 < t2 < · · · < tN , we can consider three problems:

Smoothing: Obtain a state estimate x(t) for t < tN ;
In particular, determine x(0).

Filtering: Obtain a state estimate x(ti).

Prediction: Obtain a state estimate x(t) for t > tN
(the time horizon of prediction is important).

3
borrowed from random talk of Amit Apte
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Data assimilation is a state estimation problem3

Dynamical model for the state vector x ∈ X

dx
dt

= f (x) with x(0) = x0

The solution denoted by x(t) = Φ(x0, t)

Given some noisy observations of the system at times
0 < t1 < t2 < · · · < tN , we can consider three problems:

Data assimilation and the probabilistic formulation

Data assimilation is a state estimation problem

Dynamical model for the state vector x ∈ X

dx

dt
= f(x) with x(0) = x0

The solution denoted by x(t) = Φ(x0, t)

Given some noisy observations of the system at times
0 < t1 < t2 < · · · < tN , we can consider three problems:

(Lagrangian/En-route DA) Amit Apte (TIFR-CAM) apte@math.tifrbng.res.in 4 / 37

3
borrowed from random talk of Amit Apte
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Or data assimilation ≡ determination of posterior
distribution

Observations yi ∈ Y at time ti depend on the state at that time.

yi = H
(
xt (ti)

)
+ ηi , i = 1, . . . ,N

ηi is observational noise which is usually finite dimensional.

Probabilistic statement of data assimilation problem: find the posterior
distribution of the state conditioned on the observations

Smoothing: p(x(t) | y1,y2, . . . ,yN) for t < tN
Filtering: p(x(tN) | y1,y2, . . . ,yN)

Prediction: p(x(t) | y1,y2, . . . ,yN) for t > tN
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distribution

Observations yi ∈ Y at time ti depend on the state at that time.

yi = H
(
xt (ti)

)
+ ηi , i = 1, . . . ,N

ηi is observational noise which is usually finite dimensional.

Probabilistic statement of data assimilation problem: find the posterior
distribution of the state conditioned on the observations

Filtering: p
(
x(tN) | y1,y2, . . . ,yN

)
Filtering is also know as Sequential data assimilation
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Sequential data assimilation

Model + observations prediction
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t
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(particle filter)
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Sequential data assimilation

Model + observations prediction

obs update

0
t

1
t

2
t N

t
modelmodel

interpolation

(particle filter)

obs update
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Sequential data assimilation — filtering with ensembles

t t

1 1 2 1( ), ( )x t x t0t t=

t t

1 0 2 0( ), ( )x t x t

1t t=
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Sequential data assimilation — filtering with ensembles

t t

1 1 2 1( ), ( )x t x t0t t=

t t

1 0 2 0( ), ( )x t x t

1t t=

*SV�IEGL�IRWIQFPI�WXEXI�QIQFIV�
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Ensemble Kalman Filter – Forecast

observation

prior ensemble
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Ensemble Kalman Filter – Analysis

observation

prior ensemble

posterior ensemble
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SAMSILOGO

Ensemble Kalman Filter
Start with an ensemble of state values {xa,j

i } j = 1, . . . ,M at time ti .

Evenly weighted samples of pa(x(ti) | y1:i)

1. Evolve each ensemble member according to system dynamics to
ti+1

xf ,j
i+1 = φ(xa,j

i , ti+1)

2. Compute sample covariance P̂f
i+1, often just HP̂f

i+1

3. Update states (below, so-called perturbed observation EnKF)

xa,j
i+1 = xf ,j

i+1 + K̂
(
yi+1 + ηi − Hxp,j

i+1

)
where ηi ∼ N(0,R) and Kalman gain K̂ uses P̂f

i+1.

Another possibility — so-called square root filter.
4. Repeat
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Ensemble Kalman Filter – Forecast

observation

prior ensemble
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Ensemble Kalman Filter – Analysis

observation

prior ensemble

posterior ensemble
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Ensemble Kalman Filter (EnKF)

Pros:

Works well for high
dimensional state space

I Why? Open research
question

Relatively easy to
implement

Relatively low
computational overhead
M ∼ O(10− 102)

Cons:

Struggles with nonlinearity

I think saddles

Struggles with
non-Gaussian probability
densities

I bi-modal

I skew or crescent shaped
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Particle Filter – Forecast

observation

prior ensemble,
weighted 
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Particle Filter – Analysis

observation

prior ensemble,
weighted 

posterior ensemble,
weighted
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Particle Filter

Start with an ensemble of state values and weights {xj
i ,w

j
i } j = 1, . . . ,M

at time ti .

pa(xi | y1:i) ≈
M∑

j=1

δ(x− xj
i)w

j
i at t = ti

Often, particle filters are called Sequential Monte Carlo, because if
we’re looking for expectations

E
[
g(Xi) | y1:i ] =

∫
g(x)pa(x | y1:i)dx ≈

M∑
j=1

g
(
xj

i

)
w j

i
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Particle Filter
Start with an ensemble of state values and weights {xj

i ,w
j
i } j = 1, . . . ,M

at time ti .

1. Evolve each ens member according to system dynamics to ti+1

xj
i+1 = φ(xj

i , ti+1)

2. Update weight of each ens member using obs yi+1 & likelihood

w j
i+1 = po(yi+1 | xj

i+1) · w j
i

3. Note forecast and analysis at time ti+1 are respectively given by

pf (xi+1 |y1:i) ≈
M∑

j=1

δ(x−xj
i+1)w j

i & pa(xi+1 |y1:i+1) ≈
M∑

j=1

δ(x−xj
i+1)w j

i+1

4. Repeat
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Particle Filter – Forecast

observation

prior ensemble,
weighted 
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Particle Filter – Analysis

observation

prior ensemble,
weighted 

posterior ensemble,
weighted
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Particle Filter, Sequential Monte Carlo (SMC)

Pros:

Nonlinearity not a problem

I think saddles

Works well for
non-Gaussian,
non-symmetric probability
densities

I bi-modal

I skew or crescent shaped

Cons:

Suffers from “curse of
dimensionality”

I SMC fails in high
dimensional systems

Relatively high
computational overhead
M ∼ O(103 − 106)

Weight collapses onto a
few particles – need
resampling
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Resampling4A single step of the particle filter
Left: Propagation (only few arrows shown).
Right: Reweighting and resampling
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spatially and temporally averaged to yield a representative point measures of chlorophyll on an

approximately weekly basis. Chlorophyll was converted to carbon concentrations using a carbon to

cholorphyll ratio of 100 (Cloern et al., 1995). The terms ‘phytoplankton’ and ‘chlorophyll’ are used

interchangeably hereafter.

The resultant phytoplankton time series is shown in Figure 2. There are 190 data points distributed

over the approximately 5-year period. The shortest sampling interval is approximately weekly, but at

times valid observations are absent for up to a month or more. The series exhibits plankton blooms

which are quasi-periodic and irregular in their magnitude, shape and duration. These may to be linked

to climatic processes.1 It is well established that bio-optical cholophyll measurements follow a

lognormal distribution (Campbell, 1995). Examination of the extensive comparisons of in situ and

SeaWiFS derived chlorophyll estimates compiled by O’Reilly et al. (1998) and McClain et al. (2000)

lead us to choose a standard deviation � ¼ 0:3 for the lognormal distribution which characterises

observation uncertainty.

2.3. State space framework

The nonlinear and nonGaussian state space model provides the basis for combining ecological

dynamics with measurements. The vector xt represents the state of the ecological system at time t. It

includes the abundances of P, Z, N and D, as well as the current value of the time-varying stochastic

parameter � (Kitagawa, 1998). The model and measurement equations are:

xt ¼ �ðxt�1; vtÞ ð6Þ

yt ¼ htðxt; ntÞ ð7Þ

The state evolution equation (6) is comprised of a Markovian transition linking xt with xt�1. The

discrete version of the nonlinear dynamics of equations (1)–(4) are embodied in the time-invariant

1The beginning of the record in late 1997 to mid 1998 was a strong El Niño period. This rapidly transitioned to a La Niña in mid-1998
to early 2000 after which the equatorial Pacific remained in a neutral phase until the end of the analysis period in mid-2002.

Figure 2. Satellite derived time series of phytoplankton biomass concentration from SeaWiFS in the eastern equatorial Pacific

(12circN 95�W). Dates here indicate the beginning of calendar year

440 M. DOWD

Copyright # 2005 John Wiley & Sons, Ltd. Environmetrics 2006; 17: 435–455

DATA ASSIMILATION TUTORIAL 49 / 58



SAMSILOGO

Dowd, Environmetrics 2006, 17: 435-455
An SMC approach for Marine Ecology

A conceptual diagram of the model is given in Figure 1 and describes the linkages amongst these

ecosystem state variables. The state variables and parameters used in equations (1)–(4) are

summarised in Table 1. The nondimensional modulation functions f are of the form

ffX; kXg ¼ X

kX þ X
ð5Þ

Z

D

P

N

Figure 1. Conceptual diagram of the ecosystem box model. Prognostic ecosystem state variables are phytoplankton (P),

zooplankton (Z), nutrients (N) and detritus (D). Arrows represent the direction of mass, or nutrient, fluxes between these

populations

Table 1. Definition of terms in the ecosystem model

Quantity Units Value Definition

(i) State variables
P gC=m3

Eqn. (1) Phytoplankton concentration
Z gC=m3

Eqn. (2) Zooplankton concentration
N gC=m3

Eqn. (3) Nutrients concentration
D gC=m3

Eqn. (4) Detritus concentration
(ii) Parameters
kN gC=m3

0.2 Rate constant for N uptake by P
� d�1 0.14 P growth rate (photosynthesis)
lp d�1 0.1 Loss/mortality term for P
I d�1 0.6 Ingestion rate of P by Z
kP gC=m3

0.1 Rate constant for Z ingestion of P
� — 0.3 Assim fraction for Z ingested

ration
� — 0.4 Excreted fraction for Z ingested

ration
lz d�1 0.1 Loss/mortality term for Z
� — 0.5 Fraction of Z loss to N
� d�1 0.1 Remineralisation rate of D to N

For each quantity the following information is given: units, its numerical value (or its source), and a brief definition. Here gC
denotes grams carbon, m is metres, and d is days.
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1. Growth rate �: The mean value, ��, is 0.14 and its daily variability, ��, follows an AR(1) process,

that is

��t ¼ ���t�1 þ "t

where � ¼ 0:9 and "t � NIDð0; 0:01Þ. The daily varying growth rate is reconstructed as

�t ¼ �� þ 3��t. These values are reasonable for a depth averaged mixed layer � computed with

representative light levels. The decorrelation time matches that of the meteorological band. With �t
as defined above, the ecosystem will regularly transition across the bifurcation point.

2. Dynamical noise: Additive zero-mean normally distributed i.i.d. noise was added to each of the

discretised (1)–(4). Its standard deviation is 0:01� X�, where X� is one of P�, Z�, N� and D�. These
values are the same order of magnitude as those of Bailey et al. (2004).

These complete the specification of the state Equation (6). The remaining parameters are assumed

fixed and known. Note that the stochastic system is constructed to conserve total mass in an ensemble

sense such that its expected value remains constant.2

Figure 5 shows a realisation of the stochastic simulation. The effect of adding stochastic variability

is dramatic when compared to the regular cycles of the deterministic system. The realisation exhibits

irregular and aperiodic oscillations punctuated by periods of little biological activity. These are due

2During simulation, the dynamical noise acts as source and sink terms which changes the total mass. Careful treatment of the
ecological refuge is required to prevent model drift.

Figure 4. Hopf bifurcation for ecosystem state variables resulting from varying the parameter �. For � below bifurcation point,

the solid line represents the equilibrium value for the ecosystem state variables (stable attractor). For � above this value, it

represents upper and lower limits of a periodic orbit, with the gray shaded area indicating the range

444 M. DOWD
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spatially and temporally averaged to yield a representative point measures of chlorophyll on an

approximately weekly basis. Chlorophyll was converted to carbon concentrations using a carbon to

cholorphyll ratio of 100 (Cloern et al., 1995). The terms ‘phytoplankton’ and ‘chlorophyll’ are used

interchangeably hereafter.

The resultant phytoplankton time series is shown in Figure 2. There are 190 data points distributed

over the approximately 5-year period. The shortest sampling interval is approximately weekly, but at

times valid observations are absent for up to a month or more. The series exhibits plankton blooms

which are quasi-periodic and irregular in their magnitude, shape and duration. These may to be linked

to climatic processes.1 It is well established that bio-optical cholophyll measurements follow a

lognormal distribution (Campbell, 1995). Examination of the extensive comparisons of in situ and
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Table 1. Definition of terms in the ecosystem model

Quantity Units Value Definition

(i) State variables
P gC=m3

Eqn. (1) Phytoplankton concentration
Z gC=m3

Eqn. (2) Zooplankton concentration
N gC=m3

Eqn. (3) Nutrients concentration
D gC=m3

Eqn. (4) Detritus concentration
(ii) Parameters
kN gC=m3

0.2 Rate constant for N uptake by P
� d�1 0.14 P growth rate (photosynthesis)
lp d�1 0.1 Loss/mortality term for P
I d�1 0.6 Ingestion rate of P by Z
kP gC=m3

0.1 Rate constant for Z ingestion of P
� — 0.3 Assim fraction for Z ingested

ration
� — 0.4 Excreted fraction for Z ingested

ration
lz d�1 0.1 Loss/mortality term for Z
� — 0.5 Fraction of Z loss to N
� d�1 0.1 Remineralisation rate of D to N

For each quantity the following information is given: units, its numerical value (or its source), and a brief definition. Here gC
denotes grams carbon, m is metres, and d is days.
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The moments for the filter estimated P from mid-1999 to mid-2000 are given in Figure 10. The

mean level shows similar patterns to the median. The variance scales with the mean level and shows

exponential growth between observation times due to prediction uncertainty. For low P abundance,

skewness and kurtosis increase between observation times with maximal values corresponding to the

longest forecasts. An interesting feature is that skewness, and to a lesser extent kurtosis, shows

a pronounced dip at the bloom peak implying that far from edge effects (nonnegativity constraints) the

P distribution is closer to normal.

Forecast errors are defined as the difference between a P observation and the median value of the

associated forecast ensemble at that time. The forecast period is the time difference between the last

observation used to create the forecast ensemble, and the (future) observation used to compute the

forecast error. (Note then that, a forecast period of zero yields the analysis errors at the measurement

time.) Forecast errors were compiled for all possible forecasts for periods up to 50 days. These were

binned on a roughly weekly basis to reflect the sampling interval (and allow a sufficient number of

realisations for summary statistics to be compiled). Figure 11 reports some properties of these forecast

errors. Figure 11a indicates that the root mean square (RMS) forecast error increases from the analysis

RMS error of 0.01, until it asymptotes after 30 days to around 0.05. This overall error includes

Figure 7. Filtering results for the observed state variable P. Shown are the filter estimate of the median (black line), the

observations (dots), the approximate 95 per cent confidence intervals (gray shaded area). a: Results for the full analysis period

from mid-1997 to mid-2002. b: Results for the central time period as designated in panel a by the vertical-dashed lines
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components due to both bias and variance. Figure 11b shows that the forecast errors have a negative

bias which increases linearly with the forecast period. This under-forecasting is pronounced for low

values of P since, relative to the SeaWiFS observations, the model system under-predicts P when the

biology is turned off (see Figure 5). The forecast errors also exhibit significant variability. Figure 11c

shows the forecast error standard deviation (the variability about their respective weekly means).

Figure 8. Filtering results for the unobserved state variables Z, N and D, as well as the dynamic parameter �. The median

(black line) is given for all state variables. For Z, N and D the approximate 95 per cent confidence intervals are also shown

(gray-shaded area)

Figure 9. Time evolution of the pro pdf for P as estimated by the filter. The period covered is 100 days. The beginning of the

2000 calendar year is indicated
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Take away

Data assimilation is a broad framework to combine data and
dynamical models

Often provides both estimates of state and of uncertainty

Large body of research over last 20 years
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