Data Assimilation: Part 1
Overview and Particle Filters

Elaine Spiller
Marquette University

May 21, 2017

DATA ASSIMILATION TUTORIAL



Data assimilation — scalar example

Model,
forecast,
prior,
background

Observation

DATA ASSIMILATION TUTORIAL



Data assimilation — scalar example

Model,
forecast,
prior,
background

Observation Analysis

DATA ASSIMILATION TUTORIAL



Data assimilation — scalar example

Observation  Analysis Model,
forecast,

prior,
background

DATA ASSIMILATION TUTORIAL



Kalman Filter
Optimal way to combine data and model-based predictions if...

e model noise/uncertainty & obs error are both Gaussian

x' forecasted state estimate (model, prior, background)
y observation of state (data)

x2 analysis, best (combined) state estimate

a? forecast variance (uncertainty)

o2 data model variance (uncertainty)
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Data assimilation — scalar example
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Data assimilation — scalar example
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Kalman Filter

Optimal way to combine data and model-based predictions if...

e model noise/uncertainty & obs error are both Gaussian

x?=x"4+k(y —x")  analysis mean

02 =(1-k)%0% + k?¢2  analysis variance
of

k=——1
a?—kag

Kalman gain



Bayes

Analysis, p2(xly)
Prior, pf(x)

Likelihood, p°(y|x)

observation, y truth, x!
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Bayes

p(state | data) «x p(data | state)p(state)

DATA ASSIMILATION TUTORIAL



Bayes

p(state | data) « p(data | state)p(state)

or

PA(x | y) o< p°(y | x)p'(x)



Bayes

p(state | data) «x p(data | state)p(state)

or
PA(x | y) o< p°(y | x)p'(x)
or

posterior « likelihood - prior



Kalman Filter via Least Squares
Since both posterior and prior are Gaussian,
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Kalman Filter via Least Squares
Since both posterior and prior are Gaussian,

P00 = L exp (“ )

1/2770? 20?
(o} _ 1 _(X_Y)z
p(y|x)—mexp( 22 )

maximizing the posterior is equivalent to minimizing a sum of squares.

J(x) = Jo(X) + Jp(X)

_ v)2 _ yb)2
o liEE

(Note, change in notation — f = b, forecast = background)
13758



Least Squares Cost Function

DATA ASSIMILATION TUTORIAL



Beyond scalars — X € R" and 'y € RP

x! true model state (dim n)
xP background model state (dim n, also mean of prior x? = x/)
x@ analysis model sate (dim n, also mean of posterior)

y vector of observations (dim p)



Beyond scalars — X € R" and 'y € RP

x! true model state (dim n)
xP background model state (dim n, also mean of prior x? = x/)
x@ analysis model sate (dim n, also mean of posterior)

y vector of observations (dim p)

H observation operator (from dim nto p)

H assuming H(x) = Hx (dim p x n)

B covariance of background errors (x° — x!) (dim n x n, B = P/)

R covariance matrix of observation errors (x? — H(x!)) (dim p x p)
A covariance matrix of analysis errors (x2 — x!) (dim n x n, A = P?)



Kalman update

J(x) = (x —x°) "B~ (x — x°) + (y — H(x))"R™'(y — H(x))

or

PA(xly) xexp (~(x—x)T(P") ! (x—x") ) exp (~(y—H(x)) "R~ (y~H(x)))



Kalman update

J(x) = (x —x°) "B~ (x — x°) + (y — H(x))"R™'(y — H(x))

or

PA(xly) xexp (~(x—x)T(P") ! (x—x") ) exp (~(y—H(x)) "R~ (y~H(x)))

x? = xP + K(y — H(x?)) analysis mean
K=BH"(HBH” +R)™' Kalman gain

A =P?=(1-KH)B analysis covariance



Kalman update’

- {|+| |a-e=l)
xa:xb+K(y-be)

1=

K=BHTHBHLR)'

HBH'

8 = == + ED”

1(x) = (x-x,)B (xx,) + (v Ho'R {y-Hx)

1 borrowed from tutorial by F. Bouttier and P. Courtier, Data assimilation concepts and methods March 1999
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Challenges (not an exhaustive list)

e What if n and/or p are large?

DATA ASSIMILATION TUTORIAL



Challenges (not an exhaustive list)

e What if n and/or p are large?

e What if prior and/or likelihood non-Gaussian?



Challenges (not an exhaustive list)

e What if n and/or p are large?
e What if prior and/or likelihood non-Gaussian?
e What if we have a time series of data?

Yy =1{¥1,¥2,.. ., YN} = ¥iN

And a dynamic model x = f(x)?



Challenges (not an exhaustive list)

e What if n and/or p are large?
e What if prior and/or likelihood non-Gaussian?
e What if we have a time series of data?

Yy =1{¥1,¥2,.. ., YN} = ¥iN

And a dynamic model x = f(x)?

e What if dynamics are nonlinear?



Dynamic data assimilation®

Ax; () x; ()

2borrowed from random talk of Chris Jones
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Dynamic data assimilation

" Initial conditions:
X (), 5 (1), P (8)
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Dynamic data assimilation

t=t, X)L (1)

- Model forecast:

x (6,25 (). P (¢,)

A1), % 1,)

" Initial conditions:
X (), 5 (1), P (8)
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Dynamic data assimilation

7\

t=t, x:(tlxéx;(tl)

X (6), %5 (1), P'( ;>

K

Measurement:

A1), % 1,)

{ oy
. Initial conditions: n)=x)+e
X (1,5, (1), P (2)
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Dynamic data assimilation

()

¥ Stafe estimate:
4 xla (¢ );Jx; (), P’ )

X (6), %5 (1), P'( ;>

K

Measurement:

A1), % 1,)

{ oy
. Initial conditions: n)=x)+e
X (1,5, (1), P (2)
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Data assimilation is a state estimation problem?®

e Dynamical model for the state vector x € X

dx
a
e The solution denoted by x(t) = ®(Xo, t)

f(x) with x(0) =X

3borrowed from random talk of Amit Apte



Data assimilation is a state estimation problem?®

e Dynamical model for the state vector x € X

ax
dt
e The solution denoted by x(t) = ®(xq, f)

= f(x) with x(0) =X

e Given some noisy observations of the system at times
0<t <b<--<ty,wecan consider three problems:

Smoothing: Obtain a state estimate x(t) for t < ty;
In particular, determine x(0).
(t)-
(t

Filtering: Obtain a state estimate x(¢;

Prediction: Obtain a state estimate x(t) for t > ty
(the time horizon of prediction is important).

3borrowed from random talk of Amit Apte



Data assimilation is a state estimation problem?®

e Dynamical model for the state vector x € X

dx _
at
e The solution denoted by x(t) = (X, t)

f(x) with x(0) =xg

e Given some noisy observations of the system at times
0<t <b<-- <ty,wecan consider three problems:

Smoothing Filtering Prediction

L o ¢
o

Observations taken over this period

3borrowed from random talk of Amit Apte



Or data assimilation = determination of posterior
distribution

Observations y; € Y at time t; depend on the state at that time.

y/‘:H(Xt(ti))+77i, I:177N

7; is observational noise which is usually finite dimensional.

Probabilistic statement of data assimilation problem: find the posterior
distribution of the state conditioned on the observations

Smoothing: p(X(t) | Y1,Y2,...,¥Yn) fort <ty
Filtering: p(X(tn) | Y1.Y2,---,YN)
Prediction: p(X(t) | Y1,Y2,...,¥Yn) fort >ty



Or data assimilation = determination of posterior
distribution

Observations y; € Y at time t; depend on the state at that time.

y,':H(Xt(t,'))—i-U,', i:1,...,N

7; is observational noise which is usually finite dimensional.

Probabilistic statement of data assimilation problem: find the posterior
distribution of the state conditioned on the observations

Filtering: p(x(TN) | Y1,¥2,. .. ,VN)

Filtering is also know as Sequential data assimilation



Sequential data assimilation

Model + observations

prediction
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Sequential data assimilation
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Sequential data assimilation

Model + observations prediction

t, model 1

4
-

ob

interpolation
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Sequential data assimilation

Model + observations prediction
I model 4
obs update

N

interpolation
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Sequential data assimilation

Model + observations prediction

t, . model

/\

update

N

interpolation
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Sequential data assimilation

Model + observations prediction

t, model model Iy

/\/\

update obs update

NN

interpolation interpolation
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Sequential data assimilation

Hacd I\

Model + observations prediction

update obs update
interpolation interpolation
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Sequential data assimilation — filtering with ensembles

L=1, X/ (6).3(0)




Sequential data assimilation — filtering with ensembles

t=1, x1<t)x2<t>

For each ensemble state member:

A\ 1), 33() 2 - 30

or

TR(x ) ¥, (k) ¢ (%)L,



Ensemble Kalman Filter — Forecast

prior ensemble

observation H ‘ H
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Ensemble Kalman Filter — Analysis

posterior ensemble

prior ensemble

observation ‘ ‘
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Ensemble Kalman Filter
Start with an ensemble of state values {xf’j} j=1,...,Mattime .

Evenly weighted samples of p?(x(t;) | Y1./)
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Ensemble Kalman Filter
Start with an ensemble of state values {xf’j} j=1,...,Mattime t.
Evenly weighted samples of p?(x(t) | Y1.;)

1. Evolve each ensemble member according to system dynamics to

fit1

2. Compute sample covariance P,+1, often just HP,+1
3. Update states (below, so-called perturbed observation EnKF)

aj _ pJ
Xj1= /+1 +R(Yis1 +mi — HXFY)

where 7; ~ N(0, R) and Kalman gain K uses P,+1
Another possibility — so-called square root filter.



Ensemble Kalman Filter
Start with an ensemble of state values {xf’j} j=1,...,Mattime t.
Evenly weighted samples of p?(x(t) | Y1.;)

1. Evolve each ensemble member according to system dynamics to
fit1

2. Compute sample covariance P,+1, often just HP,+1
3. Update states (below, so-called perturbed observation EnKF)

aj _ pJ
Xj1= /+1 +R(Yis1 +mi — HXFY)

where 7; ~ N(0, R) and Kalman gain K uses P,+1
Another possibility — so-called square root filter.
4. Repeat



Ensemble Kalman Filter — Forecast

prior ensemble

observation H ‘ H

DATA ASSIMILATION TUTORIAL



Ensemble Kalman Filter — Analysis

posterior ensemble

prior ensemble

observation ‘ ‘
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Ensemble Kalman Filter (EnKF)

Pros:

e Works well for high
dimensional state space

» Why? Open research
question

o Relatively easy to
implement

e Relatively low
computational overhead
M ~ O(10 — 102?)



Ensemble Kalman Filter (EnKF)

Pros: Cons:

e Works well for high e Struggles with nonlinearity
dimensional state space
» think saddles
» Why? Open research

question e Struggles with
non-Gaussian probability
o Relatively easy to densities
implement
» bi-modal

o Relatively low
computational overhead » skew or crescent shaped
M ~ O(10 — 102?)



Particle Filter — Forecast

prior ensemble,
weighted

observation
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Particle Filter — Analysis

posterior ensemble,
weighted prior ensemble,
weighted

observation
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Particle Filter

Start with an ensemble of state values and weights {x/,:, W{}j =1,....M
at time t;.

M
PP [yr) =Y d(x—x)w at t=t
=



Particle Filter

Start with an ensemble of state values and weights {x/,:, w{}j =1,....M
at time t;.

P2(X; | y1.1) Z(S(x xyw at t=t

Often, particle filters are called Sequential Monte Carlo, because if
we’re looking for expectations

E[g(X;) | y1] = / g | yr)dx ~ 3 g(x)w!



Particle Filter

Start with an ensemble of state values and weights {x/,:, W{}j =1,....M
at time t;.

1. Evolve each ens member according to system dynamics to ;. 1

x{'+1 = ¢(xj/7 ti+1)



Particle Filter

Start with an ensemble of state values and weights {x/, w/} j=1,..., M
at time t;.

1. Evolve each ens member according to system dynamics to ¢, 1

xji+1 = ¢(xjiv ti1)

2. Update weight of each ens member using obs y;. 1 & likelihood

Wl = p(Yigt | X)W



Particle Filter

Start with an ensemble of state values and weights {x/, w/} j=1,..., M
at time t;.

1. Evolve each ens member according to system dynamics to t;, 1

/+1 - ¢(x/’ tl+1)

2. Update weight of each ens member using obs y;. 1 & likelihood

W,/+1 = PO(Yis1 | Xy y) - W
3. Note forecast and analysis at time t; ¢ are respectively given by

P (Xi1|y1i) = Z(SX X]+1)WI & PA(Xit1|Yiiiv1) Z‘Sx xl+1) i+1



Particle Filter

Start with an ensemble of state values and weights {x/, w/} j=1,..., M
at time t;.

1. Evolve each ens member according to system dynamics to ¢, 1

le+1 - (xj/" ti+1)

2. Update weight of each ens member using obs y;. 1 & likelihood

W,/+1 = PO(Yis1 | Xy y) - W
3. Note forecast and analysis at time t; ¢ are respectively given by

P (Xi1|y1i) = Z(SX X]+1)WI & PA(Xit1|Yiiiv1) Z‘Sx xl+1) i+1

4. Repeat
44758



Particle Filter — Forecast

prior ensemble,
weighted

observation
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Particle Filter — Analysis

posterior ensemble,
weighted prior ensemble,
weighted

observation
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Farticle Filter, Sequential Monte Carlo (SMC)

Pros:

e Nonlinearity not a problem

» think saddles

o Works well for
non-Gaussian,
non-symmetric probability
densities

» bi-modal

» skew or crescent shaped



Farticle Filter, Sequential Monte Carlo (SMC)

Pros:

e Nonlinearity not a problem

» think saddles

o Works well for
non-Gaussian,
non-symmetric probability
densities

» bi-modal

» skew or crescent shaped

Cons:

e Suffers from “curse of
dimensionality”

» SMC fails in high
dimensional systems

e Relatively high
computational overhead
M ~ O(10° — 108)

e Weight collapses onto a
few particles — need
resampling



Resampling®

analysis

o

4borrowed from SIAM UQ16 mini-tutorial of H.R. Kiinsch
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Dowd, Environmetrics 2006, 17: 435-455
An SMC approach for Marine Ecology

o
w

o
)

o
=

Plankton biomass (gC m™>)

1998 1999 2000
time

2001 2002

Figure 2. Satellite derived time series of phytoplankton biomass concentration from SeaWiFS in the eastern equatorial Pacific
(12%reN 95°W). Dates here indicate the beginning of calendar year
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Dowd, Environmetrics 2006, 17: 435-455
An SMC approach for Marine Ecology

e |
! |
: |
! |
| x |
! |
: |
: |
! |
! . |
! |
! |
L - - - - - - - - - -
Figure 1. Conceptual diagram of the ecosystem box model. Prognostic ecosystem state variables are phytoplankton (P),
zooplankton (Z), nutrients (N) and detritus (D). Arrows represent the direction of mass, or nutrient, fluxes between these
populations
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Dowd, Environmetrics 2006, 17: 435-455
An SMC approach for Marine Ecology

dP N 1 3 P

o, N p p 2 7

at %—i—N 10 511_0+P

dZ 9 P 1

e_ 2.0 7 0L

dt ~50 L1 p° 10

aN 1 12 P N 1

N _1p e P, Npily
g ~10° "s0 L P PIIN" T 20

b 1

1_ 9 P 1
P Ipylpy 2 P 717
dt ~ 10 10" "s0 1 p° 20



Dowd, Environmetrics 2006, 17: 435-455
An SMC approach for Marine Ecology

0.8 0.06
0.6
0.04
o 04 N
0.02
02
0 h 0
0.1 0.15 02 0.1
TP
1 0.4
08 03
Z 06 002
04 0.1
02 0
0.1 0.15 0.2 0.1 0.15 0.2
TP ?D

Figure 4. Hopf bifurcation for ecosystem state variables resulting from varying the parameter ~y. For ~ below bifurcation point,
the solid line represents the equilibrium value for the ecosystem state variables (stable attractor). For ~ above this value, it
represents upper and lower limits of a periodic orbit, with the gray shaded area indicating the range

ON TUTORIAL




kton biomass (gC m':’)

Plan

Dowd, Environmetrics 2006, 17: 435-455
An SMC approach for Marine Ecology
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Dowd, Environmetrics 2006, 17: 435-455
An SMC approach for Marine Ecology

(a)
03

0.2

01

(b)

0.3

o 02

01

2000
Time
Figure 7. Filtering results for the observed state variable P. Shown are the filter estimate of the median (black line), the
rvations (dots), the approximate 95 per cent intervals (gray shaded area). a: Results for the full analysis period
from mid-1997 to mid-2002. b: Results for the central time period as designated in panel a by the vertical-dashed lines




Dowd, Environmetrics 2006, 17: 435-455
An SMC approach for Marine Ecology

Figure 9. Time evolution of the pro pdf for P as estimated by the filter. The period covered is 100 days. The beginning of the
2000 calendar year is indicated
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Dowd, Environmetrics 2006, 17: 435-455
An SMC approach for Marine Ecology

0.015
0.01
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0.005
0 ' : 0
1908 2000 2002 1908 2000 2002
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0.3
0.2 | 1
a . 0.15
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0.1
Q
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Time Time

Figure 8.  Filtering results for the unobserved state variables Z, N and D, as well as the dynamic parameter 5. The median
(black line) is given for all state variables. For Z, N and D the approximate 95 per cent confidence intervals are also shown
(gray-shaded area)



Take away

e Data assimilation is a broad framework to combine data and
dynamical models

e Often provides both estimates of state and of uncertainty

e Large body of research over last 20 years
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