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Rigorous numerics results for time-dependent PDEs

P. Zgliczy«ski, Existence of periodic orbits for Kuramoto-Sivashinsky PDE, 2004

S. Day, Y. Hiraoka, K. Mischaikow, T. Ogawa, Proofs of connecting orbits using
Conley index, 2005

S. Maier-Paape, K. Mischaikow, T. Wanner, Connection matrices approach for the
Cahn-Hillard equation on a square, 2006

G. Arioli, H. Koch, dissipative PDEs integration algorithm, periodic orbits for KS
equation + stability, 2010

T. Kinoshita, T. Kimura, M. T. Nakao, Numerical enclosure of solutions of
parabolic PDEs using Finite Elements, 2012

J. Mireles-James, C. Reinhardt, Parametrization of invariant manifolds of parabolic
PDEs, 2016

D. Wilczak, P. Zgliczy«ski, Computer assisted proof of chaos in
Kuramoto-Sivashinsky equation, 2017

M. Breden, J.-P. Lessard, R. Sheombarsing, work in progress on applying
Chebyshev interpolation

J Cyranka Chebyshev PDE 3/18



J.C. and T. Wanner 2017, Computer assisted proof of heteroclinic connections in 1d Ohta-Kawasaki
diblock copolymers model

J.C. and P. Zgliczy«ski 2015, Computer assisted proof of globally attracting solutions of the forced
viscous Burgers equation � a generalization of a result by H. R. Jauslin, J. Moser, H.O. Kreiss



Let us consider a 1D PDE Cauchy problem

ut(t, x) = L(u(t, x)) +N(u(t, x), ux(t, x), . . . ),

u(0, x) = u0(x),

Ω = [0, 1],

+ bd. condition (periodic / Neumann / Dirichlet) .
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Use the Fourier expansion

u(t, x) =
∑
k∈Z

ãk(t)e
ikx

Obtain system of equations for the Fourier coe�cients {ãk}k∈Z

ã′k(t) = fk(ã(t)),

ãk(0) = bk.
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Most of the approaches are based on the Taylor expansion in time.

ã(t) = ã(0)+ ã[1](0)t+ ã[2](0)t2 + · · ·+ ã[p](0)tp+ ã[p+1]([0, t])tp+1 + . . . .

Our goal is to apply the Chebyshev expansion instead.

ak(τ) = ak,0 + 2
∑
j≥1

ak,jTj(τ) = ak,0 + 2
∑
j≥1

ak,j cos(jθ) =
∑
j∈Z

ak,je
ijθ,

where τ = cos(θ).

Rescale time, integrate the equations in time

ak(τ) = h

∫ h

−1
fk(a(s) + b) ds, k ≥ 0, τ ∈ [−1, 1].
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We also expand fk(a(τ)) using the Chebyshev series

fk(a(τ) + b) = φk,0(a, b) + 2
∑
j≥1

φk,j(a, b) cos(jθ) =
∑
j∈Z

φk,j(a, b)e
ijθ,

This results in solving F (a) = 0, where F (a) = (Fk,j(a))k,j≥0 is given
component-wise by

Fk,j(a, b) =

ak,0 + 2

∞∑
`=1

(−1)`ak,`, j = 0, k ≥ 0

2jak,j + h(φk,j+1(a, b)− φk,j−1(a, b)), j > 0, k ≥ 0.

(1)
It is tridiagonal in j.

J Cyranka Chebyshev PDE 8/18



We can write the operator F as

F (a, b) = La+N (a, b).

The problem is to solve

F (a, b) = La+N (a, b) = 0⇐⇒ La = −N (a, b). (2)

We interpret the zero-�nding problem as the �xed point problem

T (a) = L−1 (−N (a, b)) = a.
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De�ne the linear operator L by

Lk,j(a) =

ak,0 + 2

∞∑
`=1

(−1)`ak,`, j = 0, k ≥ 0

µkak,j−1 + 2jak,j − µkak,j+1, j > 0, k ≥ 0,

We use stability of the norm of the inverse of L̃ (projected operator)
with respect to its projection size N.

L̃ =


L̃1 0 . . . 0

0 L̃2 0 . . .

. . .
. . .

0 . . . 0 L̃N

 L̃k =


1 −2 2 −2 2 · · ·
µk 2 −µk 0 · · ·
0 µk 4 −µk 0 · · ·

. . .
. . .

. . .
. . .

. . .

. . . 0 µk 2(N − 1) −µk
. . . 0 µk 2N


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We use the Radii polynomial approach.

Sarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow. Validated continu-
ation for equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398�1424 (electronic),
2007.

We compute:

The residual norm

‖T (a)− a‖ ≤ ‖L−1‖‖F (a)‖ =: Y,

and the 'Z' bound in a neighborhood � ball of radius r centered
at a

sup
a∈Br(a)

‖DT (a, b)‖ ≤ Z(r)

we can bound it using

Z(r) := ‖L−1‖‖G(‖a+ b‖, r)‖h,

Finally, we use local version of Banach's contraction principle,
which holds under the assumption that r satis�es

P (r) := Y + Z(r)r − r < 0.
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A bound for the inverse of the in�nite dimensional linear operator

‖L−1‖

is essential.

We work in the following Banach space

X
(M)
ν,1

def
=

a = (ak,j) k=0,...,M
j≥0

: ak,j ∈ R,
M∑
k=0

∑
j≥0
|ak,j |νk <∞


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Stability of the norm

‖L̃‖1,ν = sup
1≤k≤M
1≤j≤N

νk‖L̃k,·,j‖l1
1

νk
= sup

k
‖L̃k‖l1 .

We exploit the tridiagonal + rank one form of blocks

L̃k = Ak + Uk =


1 0 · · · 0
µk
0 Tk
...

 +


0 −2 2 . . .

0

 .
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Lemma

For any µk ∈ R. For all k and N ‖Tk−1‖l1 satis�es the following

bound

‖Tk−1‖l1 ≤ 4.

J. Cyranka, P. Mucha, A construction of two di�erent solutions to an elliptic

system, (2015) arXiv:1502.03363 preprint.
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Compute the bound for the inverse of Lk as a rank-one perturbation
of Ak, related with Sherman-Morrison formula.

L̃−1k = A−1k −
A−1k UkA

−1
k

1 + vTA−1k u
.

Theorem

For all k such that µk ≥ 0 (k su�ciently large for a dissipative PDEs)

and for all N it holds that

‖L̃−1k ‖l1 ≤ 2‖T−1k ‖l1 ≤ 8.

Lemma (Passage to the limit)

We have that

(L̂M,N )−1 → (L̂M,∞)−1, as N →∞ in l1.

Moreover, the limit (L̂M,∞)−1 satis�es the bound

‖(L̂M,∞)−1‖l1 ≤ 8.
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Final step

We obtain a solution, which is only l1 in time.
We do a 'bruteforce' bootstrap of the regularity in time, to verify that
we have in fact a solution to a PDE involving a time derivative.
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Numerical tests

A numerical comparison test using some Galerkin approximations of
the Fisher equation.

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + λu(t, x)(1− u(t, x)), t ∈ [0, 2h], x ∈ [0, π]

u(0, x) = u0(x), x ∈ [0, π],

∂

∂x
u(t, 0) =

∂

∂x
u(t, π) = 0, for all t ≥ 0.

We have for this equation
µk = λ− k2.

We compared performing one time-step using our prototype implementation of a
Chebyshev method, and a solver based on the Taylor method + Lohner algorithm.

J. Cyranka, E�cient and generic algorithm for rigorous integration forward in time

of dPDEs: Part I. Journal of Scienti�c Computing, 59(1):28�52, 2014.
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Numerical tests 2

As the initial condition we take

{C(k + 1)−4}mk=0,

Fixed Taylor method order 15, # Chebyshev modes 25
(it is much cheaper to compute Chebyshev expansion)

time step/error/remainder
λ # Fourier modes m i.c. ∞ norm C Taylor Chebyshev

20 200 10 1e-05/2e-8/1e-28 1.2e-04/1e-09/1e-11
20 200 1 1e-04/2e-9/1e-13 1e-03/1e-06/1e-13
20 200 0.1 1e-04/2e-12/1e-14 2e-03/1e-06/6e-11

20 50 10 1e-04/5e-10/1e-27 same as for m = 200
20 50 1 1e-03/5e-11/1e-14 same as for m = 200
20 50 0.1 1e-03/5e-14/1e-15 same as for m = 200

2 200 10 1e-04/4e-8/1e-12 1e-03/1e-07/1e-11
2 200 1 1e-04/4e-9/1e-13 8e-03/1e-05/3e-10
2 200 0.1 1e-04/2e-12/1e-14 2e-02/3e-05/2e-10

2 50 10 1e-04/1e-07/3e-27 same as for m = 200
2 50 1 1e-03/2e-8/2e-14 same as for m = 200
2 50 0.1 1e-03/5e-14/1e-15 same as for m = 200
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