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Let us consider a 1D PDE Cauchy problem

wg(t, ) = L(u(t,z)) + N(u(t,z),uy(t, x),...),
u(0, ) = ug(x),
Q=10,1],
+ bd. condition (periodic / Neumann / Dirichlet) .
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Use the Fourier expansion
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Most of the approaches are based on the Taylor expansion in time.

a(t) = a(0) +all 0yt +a ()2 + - - - +alPl () +-alP+(jo, )+ 4. ...

Our goal is to apply the Chebyshev expansion instead.

ap(r) = apo +2 ) arTj(r) = aro +2 ) ap;cos(jo) = Y ay e’

j>1 j>1 JEL
where 7 = cos(6).

Rescale time, integrate the equations in time

h
T)= h/1 fr(a(s) +b)ds, k>0, 7€[-1,1].
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We also expand fx(a(7)) using the Chebyshev series

fr(a(T) +b) = ¢ro(a,b) +2Z¢k‘3 (a,b) cos(jh) = Z‘ﬁ’w (a,b)e?,

j>1 JEZ

This results in solving F'(a) = 0, where F(a) = (Fkvj(a))kj>0 is given
component-wise by a

ako + 2 (—1)6(2%75, 7j=0,k>0
Fk,j(av b) = Z

2jay,; + h(¢p,j+1(a,b) — drj—1(a, b)), j>0,k>0.
(1)

It is tridiagonal in j.
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We can write the operator F' as
F(a,b) = La+ N(a,b).
The problem is to solve
F(a,b) = La+ N(a,b) =0 <= La=—N(a,b). (2)
We interpret the zero-finding problem as the fized point problem

T(a) = L7 (-=N(a,b)) = a.
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Define the linear operator £ by

aro+2) (—1Dfagy, j=0, k>0
Ly j(a) = ;

Mk j—1 + 2Jak; — prakj+1, J >0, k>0,

We use stability of the norm of the inverse of L (projected operator)
with respect to its projection size N.

_ 1 -2 2 -2 2
L1 [N 0 L 2 —ug 0 .
~ 0 L 0 ... ~ 0k 4 - 0
L= . Ly =
0 ... 0 ZLn . 0 pe 2(N—=1) —ppg
0 Lk 2N
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We use the Radit polynomial approach.

@ Sarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow. Validated continu-
ation for equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398-1424 (electronic),
2007.

We compute:

@ The residual norm

IT@) —all < Il F@)l =Y,
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We use the Radit polynomial approach.

@ Sarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow. Validated continu-
ation for equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398-1424 (electronic),
2007.

We compute:
@ The residual norm
IT (@) —al| < |£7Y|F@)] =Y,
e and the 'Z’ bound in a neighborhood — ball of radius r centered
at a
sup |[|[DT(a,b)|| < Z(r)
a€By(a)

we can bound it using

Z(r) = L7 IG(l@ + bll, 7).
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We use the Radit polynomial approach.
@ Sarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow. Validated continu-

ation for equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398-1424 (electronic),
2007.

We compute:
@ The residual norm

IT(@) —all < [~ [F@)] =Y.

e and the 'Z’ bound in a neighborhood — ball of radius r centered
at a

sup || DT(a,b)|| < Z(r)
a€By(a)

we can bound it using

Z(r) = L7 IG(l@ + bll, 7).

o Finally, we use local version of Banach’s contraction principle,
which holds under the assumption that r satisfies

P(r):=Y+Z(r)r—r <0.
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A bound for the inverse of the infinite dimensional linear operator
—1
[l
is essential.

We work in the following Banach space

M
X;]\ff) © La=(ar;)imo..r : ap; R, ZZ |ay ;% < oo

>0 -
k=0 j>0
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Stability of the norm

~ ~ 1 ~
1L, = sup Pk jln— = sup || Ll
1<k<M v k
1<j<N

We exploit the tridiagonal + rank one form of blocks

L0 -0 0 —2 2
~ 223
Ly=Ar+U; = 0 T, + 0
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Lemma

For any juy € R. For all k and N ||T},7 ||, satisfies the following
bound

1Tl < 4.

I 2 x 2 diagonal blocks

II \/2m uniformly{
bounded elements

IIT geometric
decay regime {

B J. Cyranka, P. Mucha, A construction of two different solutions to an elliptic
system, (2015) arXiv:1502.03363 preprint.
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Compute the bound for the inverse of £ as a rank-one perturbation
of Ay, related with Sherman-Morrison formula.

-1 -1
F o1+ TA

Theorem
For all k such that pr > 0 (k sufficiently large for a dissipative PDEs)
and for all N it holds that

1€ i < 20T Hin < 8.
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Compute the bound for the inverse of £ as a rank-one perturbation
of Ay, related with Sherman-Morrison formula.

—1 —
Yy e Ay UkA/cl
F Pl peTA

Theorem
For all k such that pr > 0 (k sufficiently large for a dissipative PDEs)
and for all N it holds that

1€ i < 20T Hin < 8.

Lemma (Passage to the limit)

We have that

(Lan)™' = (Laroo)™t, as N — oo in It
Moreover, the limit (EM,OQ)*1 satisfies the bound

I(£az,00) "l < 8.
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Final step

We obtain a solution, which is only I! in time.
We do a ’bruteforce’ bootstrap of the regularity in time, to verify that
we have in fact a solution to a PDE involving a time derivative.

Assume that

a1 <G (@)
for
then
()
(n—3)° -
o< | ——+ ) Cimipe 11
’( R =T S ) G o
-1 dissapeared in the formula (10), in the formula for a; we sed the trivial bound (3) a1 < 1/,
and Tonotonkity wrs. aj-1

(@) 5= g(a) + hiz),

9(2) = (=2,

W) =

2p—2e+ D)2 EE T Y

Therefore, for j = 2,...— 1 it holds that
a5 < f()C-h (12)

Iterative application of (12) shows that
;< FG) 1 = 1)+ FR2)Cup (13)

Using substitution y = j —x We write f(z) as

T =5+ e

()

Using the change of variables (12) becomes

ay = flu

Cyeuts

and (15) becomes

ay < flu= )=+ 1)+ = 2)Cup

The derivative of  is

v et 22y + )4+ 8(2y +1

22y + 1)+ A2y + (2,

82y iy

1) =

16) [er
ErnGyr D+ ey Y

o [t

Let us pick the following constants

€ =001
=01
=02,

Using the Mathematica notebook bootstrapping.nb we prove several facts about f. we list them below

J Cyranka

Fact T f decreasing for y > Cy/*

F(u) < 0 for y > Cyp®’* and ju sufficiently large (x> 1000).

see a proof in bootstrapping.nb.

Fact I f(Cyp?’) i s than 1
1t holds that
Jes) <

O

From (17) and (18) it Hllows that

F) <1, fory =yl

(0) ()

Fact II f has at least one local max in the interval [Cy

F(Cu) >0 and (O

Fact IV is concave dow in the interval [0, o). The second derivative of f(y) is

iy = C) for any possible v
g interval arithmetic with

By pluggin i of the constant C°

computation u;

0.0.2]. From Mathanaticn
0,0.2])%% we obtain (see bootstrapping.nb file)

G002 A0, 48] 70, 068 7 R0 08T T

We take right-end of the intervals for all of the terms with + sign in front of them, and keft-end for the

terms with

£ (0021

The term — & dominates in the munerator. Now it is clearly seen that f7([0,0.2%%) <
Targe .

0 for sufficiently

Fact V. [ has at the global max in the interval [Cy/%, Copi®
Follows from Fact 111 and Fact IV.
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Numerical tests

A numerical comparison test using some Galerkin approximations of

the Fisher equation.

592
te[0,2h], = €0,

o = —u(t,x) + Au(t, x)(1 — u(t, x)),

—u(t,x) = 92

ot
U(O,CC) = ’u/()(a?), T e [0771-}7
3u(t,()) = 2u(i&7 m) =0, for all t > 0.
oz oxr
‘We have for this equation
e =X — k2.

We compared performing one time-step using our prototype implementation of a
Chebyshev method, and a solver based on the Taylor method + Lohner algorithm.

@ J. Cyranka, Efficient and generic algorithm for rigorous integration forward in time
of dPDEs: Part I. Journal of Scientific Computing, 59(1):28-52, 2014.
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Numerical tests 2

As the initial condition we take
{C(k+ 1),

Fixed Taylor method order 15, # Chebyshev modes 25
(it is much cheaper to compute Chebyshev expansion)

time step/error/remainder

A # Fourier modes m | i.c. oc norm C Taylor ‘ Chebyshev

20 200 10 Te-05/2¢-8/1e28 | 1.2e-04/1e-09/1e-11
20 200 1 Te-04/2¢-9/1e-13 | 1e-03/1e-06/le-13
20 200 0.1 Te-01/Ze-12/1e-14 | 26-03/1e-06/6e-11
20 50 10 1e-04/5e-10/1e-27 | same as for m = 200
20 50 1 le-03/5e-11/1e-14 | same as for m = 200
20 50 0.1 1e-03/5e-14/1e-15 | same as for m = 200
2 200 10 Te-04/4e-8/1e-12 | 1e-03/1e-07/le-11
2 200 1 Te-04/4e-9/1e-13 | 8e-03/1e-05/3e-10
2 200 0.1 Te-04/2e-12/1e-14 | 26-02/36-05/26-10
2 50 10 le-04/1e-07/3e-27 | same as for m = 200
2 50 1 le-03/2e-8/2e-14 | same as for m = 200
2 50 0.1 le-03/5e-14/1e-15 | same as for m = 200
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