

Validated continuation and Hopf bifurcations in ODEs

Elena Queirolo

Joint work with J.P. Lessard and J.B van den Berg

Outline

Goal:

validation of Hopf bifurcation and validated continuation of periodic orbits

Steps:

- validation of a periodic orbit
- validation of a branch of periodic orbits
- reformulation of Hopf into that framework

Periodic orbit validation

$$\dot{u} = f(\lambda, u)$$

 $\lambda \in \mathbb{R}^M$ scalar variables, $u:[0,2\pi] \to \mathbb{R}^N$ periodic, $f:\mathbb{R}^M \times \mathbb{R}^N \to \mathbb{R}^N$ polynomial

$$u(t) = \sum_{k \in \mathbb{Z}} \hat{u}_k e^{\mathbf{i}kt}, \qquad \hat{u}_k \in \mathbb{C}^N$$

Periodic orbit validation

$$\{\hat{u}_k^i\}_{k\in\mathbb{Z},i=1,\dots,N}$$

with the analytic norm

$$\|\hat{u}^i\|_{\nu} = \sum_{k \in \mathbb{Z}} |\hat{u}_k^i| \nu^{|k|}, \qquad \nu > 1$$

Periodic orbit validation

Some interesting properties of this space

$$(u^{i} \cdot u^{j})(t) \longleftrightarrow (\hat{u}^{i} * \hat{u}^{j})_{k}$$

$$\dot{u}(t) \longleftrightarrow \mathbf{i}k\hat{u}_{k}$$

$$\|\hat{u}^{i} * \hat{u}^{j}\|_{\nu} \leq \|\hat{u}^{i}\|_{\nu} \|\hat{u}^{j}\|_{\nu}$$

Thus it is a Banach algebra.

Periodic orbit validation

We can reformulate f in the sequence space as a sum of convolutions.

$$\dot{u} = f(\lambda, u) \longleftrightarrow \underbrace{\mathbf{i}k\hat{u}_k - \mathcal{F}(f(\lambda, u))_k}_{F_k(\lambda, \hat{u})} = 0$$

for all $k \in \mathbb{Z}$

$$F(\lambda, u) = \begin{pmatrix} \vdots \\ F_{-1}(\lambda, u) \\ F_{0}(\lambda, u) \\ F_{1}(\lambda, u) \\ \vdots \end{pmatrix}$$

Periodic orbit validation

We can reformulate f in the sequence space as a sum of convolutions.

Then
$$\dot{u} = f(\lambda, u) \longleftrightarrow \underbrace{\mathbf{i} k \hat{u}_k - \mathcal{F}(f(\lambda, u))_k}_{F_k(\lambda, \hat{u})} = 0$$
 for all $k = -N, \dots, N$
$$F^N(\lambda, \hat{u}^N) = \begin{bmatrix} F_{-N}(\lambda, \hat{u}^N) \\ \vdots \\ F_0(\lambda, \hat{u}^N) \\ \vdots \\ F_N(\lambda, \hat{u}^N) \end{bmatrix}$$

Periodic orbit validation

Underdetermined system:

$$F^N(\lambda, u^N) = 0$$

We need M extra scalar equations.

We assume that the scalar equations G are polynomials depending on λ and u^N (to avoid truncations).

The full problem

$$H(\lambda, u) = \begin{pmatrix} G(\lambda, u) \\ F(\lambda, u) \end{pmatrix}$$

Periodic orbit validation

Assume we have a numerical solution

$$\tilde{x} = (\tilde{\lambda}, \tilde{u}^N)$$

of the truncated system

$$H^{N}(\lambda, u^{N}) = \begin{pmatrix} G(\lambda, u^{N}) \\ F^{N}(\lambda, u^{N}) \end{pmatrix}$$

we want to validate it as solution of the full problem.

Periodic orbit validation

$$T(x) = x - DH^{-1}(\tilde{x})H(x)$$

$$T(x) = x - AH(x)$$

and we prove that T is a contraction with the radii polynomials:

$$||T(\tilde{x}) - \tilde{x}|| \le Y$$

$$||DT(\tilde{x} + rz)|| \le Z(r)$$

If it exists r

$$Y + Z(r) \le r$$

the solution is validated.

Periodic orbit validation

Remarks:

- the bounds are little affected by the dimension of the problem
- ullet they are not very affected by the nonlinearity of f
- they are affected by the norm of the solution
- •they are affected by the number of nodes and the conditioning of DH

Periodic orbit continuation

By adding a parameter, $\lambda \in \mathbb{R}^{M+1}$

$$H(\lambda, u) = \begin{pmatrix} G(\lambda, u) \\ F(\lambda, u) \end{pmatrix}$$

H has, generically, a 1D zero-curve.

Periodic orbit continuation

Assume we have a numerical solution

$$x_0 = (\lambda_0, u_0)$$

next proposed solution step:

$$\tilde{x}_1 = x_0 + hv$$

with h step size and

$$v: DH(x_0)v \approx 0$$

then we search for x_1 such that

$$H(x_1) = 0,$$
$$(x_1 - \tilde{x}_1, v) = 0$$

Periodic orbit continuation

 x_0 satisfies a similar problem.

We call the extended problems H_0 and H_1 .

Introducing a parameter s, we define

$$v_s = v_0 + s(v_1 - v_0)$$

$$x_s = x_0 + s(x_1 - x_0)$$

$$H_s(x_s) = \begin{pmatrix} (x_s - \tilde{x}_s, v_s) \\ H(x_s) \end{pmatrix}$$

 Π_0

Periodic orbit continuation

The Newton-like operator gets to be

$$T_s(x) = x - DH_s^{-1}(x_s)H_s(x)$$

$$A_s = A_0 + s(A_1 - A_0)$$

$$T_s(x) = x - A_s H_s(x)$$

and we solve for

$$\max_{s} \|T_s(\tilde{x}_s) - \tilde{x}_s\| \le Y$$

$$\max_{s} \|DT_s(\tilde{x}_s + rz)\| \le Z(r)$$

$$\prod_{\Omega_0} \Pi_0$$

$$Y + Z(r) \le r$$

Periodic orbit continuation

A useful theorem

$$f:[0,1]\to\mathcal{B},\quad\mathcal{B}$$
 Banach,

$$\max_{s \in [0,1]} |f(s)| \le \max\{|f(0)|, |f(1)|\} + \frac{1}{8} \max_{h \in [0,1]} |f''(h)|$$

Periodic orbit continuation

Example: Lorenz system

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = x(\rho - z) + y$$

$$\dot{z} = xy + \beta z$$

$$\sigma = 10, \beta = \frac{8}{3}, \rho = 28$$

Periodic orbit continuation

Example: 19 coupled Lorenz systems

$$\dot{x}_i = \sigma(y - x) + \epsilon x_{i-1}$$

$$\dot{y}_i = x(\rho - z) + y \qquad i = 1, \dots, 19$$

$$\dot{z}_i = xy + \beta z$$

$$\sigma = 10, \beta = \frac{8}{3}, \rho = 28$$

Periodic orbit continuation

Example: 19 coupled Lorenz systems

$$\dot{x} = f(p, x)$$

2 steps:

- find the Hopf bifurcation
- validated continuation of the periodic orbits

$$\dot{x} = f(p, x)$$

At (p_H, x_H) , a pair of eigenvalues of Df passes the imaginary axes with non-zero velocity

$$\dot{x} = f(p,x)$$

$$\downarrow \downarrow$$

$$f(p,x) = 0$$

$$Df(p,x)v = \mathbf{i}\beta v$$

$$\downarrow \downarrow$$

$$f(p,x) = 0$$

$$Df(p,x)v_1 = -\beta v_2$$

$$\beta \in \mathbb{R}, v \in \mathbb{C}^N$$

$$\beta \in \mathbb{R}, v_1, v_2 \in \mathbb{R}^N$$

$$\beta \in \mathbb{R}, v_1, v_2 \in \mathbb{R}^N$$

$$\beta \in \mathbb{R}, v_1, v_2 \in \mathbb{R}^N$$

$$\beta \in \mathbb{R}, v \in \mathbb{C}^N$$

$$\beta \in \mathbb{R}, v \in \mathbb{C}^N$$

Finite dimensional system, solved numerically and then validated.

During validation, a posteriori check of the first Lyapunov coefficient.

A posteriori check for no other eigenvalues of Df along the imaginary axes.

New variable: a the amplitude of y(p,t)-x(p)

$$x, p: f(p, x) = 0$$

$$z: ||z|| = 1$$

$$\dot{z} = \frac{\dot{y}}{a} = \frac{f(p, az + x)}{a}$$

$$x, p: \qquad f(p, x) = 0$$

$$z: \qquad ||z|| = 1$$

$$\dot{z} = \frac{f(p, x)}{a} + \sum_{k \in \mathbb{N}^N} \frac{1}{k!} \frac{d^k f}{dx^k} (x, p) (az)^k$$

$$x, p: \qquad f(p, x) = 0$$

$$z: \qquad ||z|| = 1$$

$$\dot{z} = \sum_{k \in \mathbb{N}^N} \frac{1}{k!} \frac{d^k f}{dx^k}(x, p) a^{|k|-1} z^k$$

Back to the continuation formulation!

Parameter and amplitude

$$\dot{x} = p(x - y) - yz + w$$

$$\dot{y} = -by + xz$$

$$\dot{z} = -cz + dx + xy$$

$$\dot{w} = -e(x + y)$$

$$b = c = 4$$

$$d = 0.04$$

$$e = 1.4$$

Thanks for your attention!