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Outline

Goal:
validation of Hopt bifurcation and validated continuation
of periodic orpbits

Steps:
e validation of a periodic orbit

e validation of a branch of periodic orbits
e reformulation of Hopf into that framework



First problem

Periodic orbit validation

u:f()‘au)

A € RYscalar variables, u : [0, 27] — RV periodic,
f:RM x RY - RY polynomial



First problem

Periodic orbit validation



First problem

Periodic orbit validation

Some interesting properties of this space

(u" - u?)(t) +— (W' * 0

Jat = @[], < |3l ]|,

Thus it is a Banach algebra.



First problem

Periodic orbit validation

We can reformulate f In the sequence space as a sum
of convolutions.

Then
U = f()\,u) — ikﬂk — f(f()\,u))k =
N—— ——
Fr(\,4)
forall kK € Z

)
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First problem

Periodic orbit validation

We can reformulate f In the sequence space as a sum
of convolutions.

Then
U = f()\,u) < ikﬂk — f(f()\,u))k = ()
N————— —
Fi ()
forall k=—N,...,N

_F—N(Av /&N)_

FNOaN) = | Fo(h, a?)




First problem

Periodic orbit validation

Underdetermined system:
FYO\u™) =0

We need M extra scalar equations.
We assume that the scalar equations G are polynomials
depending on A and v (to avoid truncations).

he full problem



First problem

Periodic orbit validation

Assume we have a numerical solution
= (\a)
of the truncated system
YO = (3 )

we want to validate it as solution of the full problem.



First problem

Periodic orbit validation
T(z)=x— DH *(%)H(x)

T(x)=x— AH(x)
and we prove that 1" i1s a contraction with the radil

polynomials: o
IT@) -2z <Y

|DT(z +7r2)|| < Z(r)

It it existsr
Y+ Z(r)<r

the solution Is validated.



First problem

Periodic orbit validation

Remarks:

ethe bounds are little affected by the dimension of the
problem

ethey are not very affected by the nonlinearity of f

ethey are affected by the norm of the solution

ethey are affected by the number of nodes and the

conditioning of DH




Second problem

Periodic orbit continuation

By adding a parameter, A € R !

H(\u) = (?85;)

H has, generically, a 1D zero-curve.



Second problem

Periodic orbit continuation

Assume we have a numerical solution

zo = (Ao, Uo)
next proposed solution step:

T1 = To + hv /

with A step size and
v:DH(xg)v ~0

then we search for ;1 such that
H(Qil) — O,

(261 —:’El,v) = ()



Second problem

Periodic orbit continuation

xo satisfies a similar problem.

We call the extended problems Hyand H;.

Introducing a parameter S, We defm\ / \

s = Vg + s(v1 — vg)

rs = 2o + s(x1 — o)



Second problem

Periodic orbit continuation
The Newton-like operator gets to be

T.(x) =2 — DH, ' (z,)H,(x)

AS — AO —+ S(Al — A())
Ts(x) =x— AsHs(x)

and we solve for
max ||Ts(Zs) — Ts|| <Y
max || DT (xs +rz)|| < Z(r) I,

Y+ Z(r)<r



Second problem

Periodic orbit continuation

A useful theorem
f:10,1] - B, B Banach,

max |£(s)] < max{|£(O)], |[F(1)[} + = max |f(h)|

s€[0,1] 8 hel0,1]



Second problem

Periodic orbit continuation

Example: Lorenz system

r=o(y — )
y=x(p—2)+y
z =xy + Bz

3
(7:10,6:§,p:28



Second problem

Periodic orbit continuation

Example: 19 coupled Lorenz systems

T, =0y —x)+ ex;_q
i =x(p—2) +y i =1,...,19
Zi = xY + Bz

3
(7:10,6:§,p:28



Second problem

Periodic orbit continuation

Example: 19 coupled Lorenz systems

Z0 = 6.718099707278059e-09

50 — /1 =0.644547421850151
/2 = 8009
|I=[1.218771941228040e-05,
3.219459245131732e-05]
40—
~30-
* / 50
10 0



Hopf bifurcation

&= f(p,x)

2 steps:
e find the Hopft bifurcation
¢ validated continuation of the periodic orbits




Hopf bifurcation

&= f(p,x)

At (pm,xm), a pair of eigenvalues of Df passes the
imaginary axes with non-zero velocity




Hopf bifurcation

= f(p,x)
)
f(p,z) =0 N
Df(pxyo =iy D ERVEC
|/
fp,z) =10
Df(pv x)/Ul — _BUZ 5 cR,v1,v9 € RN

Df(p7 x)UQ — Bvl

+ 2 phase conditions



Hopf bifurcation

Finite dimensional system, solved numerically and then
validated.

During validation, a posteriori check of the first
Lyapunov coetticient.

A posteriori check for no other eigenvalues of Df along
the imaginary axes.



Hopf bifurcation

New variable: a
the amplitude of y(p,t) — z(p)




Hopf bifurcation

Rescaling




Hopf bifurcation




Hopf bifurcation




Hopf bifurcation

T,D : f(p,x) =0
z |z|| =1

1 d~f
. k|1 _k
I E I dxk(x,p)a 2
keNN

Back to the continuation formulation!



Hopf bifurcation




Hopf bifurcation

Parameter and amplitude

b=c=4
= —by + x2
d + d = 0.04
= —cz+dr+=x
Y e=1.4



Thanks for your attention!



