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Can we model this in a useful way?

Image from: Rogers, R.D. and Monsell, S. (1995) The costs of a predictable switch between simple cognitive
tasks. J. Exp. Psychol. Gen. 124, 207-231
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Heteroclinic cycles

Noisy Consider the ODE:

Networks

Fr‘\»‘:gm» X = f(X), x € R". (1)
m An equilibrium & of (1) satisfies f(§) = 0.

Heteroclinic
networks

m A solution ¢; of (1) is a heteroclinic connection from &; to
&§j+1, if it is backward asymptotic to &; and forward
asymptotic to 1.

m A heteroclinic cycle is a set of
equilibria {&1,...,&m} and orbits
{¢1,..., dm}, where ¢; is a
heteroclinic connection between &;
and &1, and & = Emya.




Noisy heteroclinic cycles
Stone and Holmes, 1990

Noisy
Networks m Consider additive noise to a heteroclinic cycle, i.e. the SDE

Claire

Postlethwaite

dXt = f(Xt) + 77th, Xt € Rn

oy m W; is n-dimensional Brownian motion
networks . . .
® 7) is noise amplitude.

m Mean passage time past an equilibrium
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Heteroclinic networks

Noisy

Networks m A heteroclinic network is a connected union of heteroclinic
; cycles.
&4
&1
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networks
€5 &3

9

m Stability conditions of the network as a whole may be
quite complicated.

m Nearby trajectories may switch between different
sub-cycles of the network.

m Noise can have unexpected effects.
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Excitable networks

Noisy
Networks

m Consider as a pitchfork bifurcation from a heteroclinic
network.

m Original equilibria are now all stable.

i m Small amplitude perturbations can push trajectories
between equilibria.
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Designing networks
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Postlethwaite Consider using heteroclinic networks to model neural processes.
Design a graph structure describing the process, each node
corresponds to an equilibrium.

Constructing Some questionSZ

networks

m For a given graph, can we construct an ODE which
contains that graph embedded as a heteroclinic or
excitable network?

m Can we control the residence times near the equilibria?

m Can we control the switching probabilities between nodes?
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Network construction
Ashwin and P, 2014, 2015
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m Consider a graph with n, vertices and ne edges.

m Several construction methods:

m Simplex network: in R, each vertex is an equilibrium on a

coordinate axes, connections live in two-dimensional
coordinate planes.

m Cylinder network: in R"+1 vertices lie in a line, each
connecting orbit lives in a two-dimensional plane.

m Excitation-inhibition network: in R reminiscent of
neuronal systems.

m Others...
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Network construction: Time series
Ashwin and P, 2014, 2015
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m Cylinder method: Mmfﬂ
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m Excitation-inhibition:
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Network statistics: Noisy Kirk and Silber network
Armbruster, Stone and Kirk, 2003
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m How does noise affect the dynamics near the network?
m Residence times

m Switching rates
m Consider a probability density function of trajectories,
assume it is centered at the origin.

m Proportion of times each cycle visited proportional to
shaded area.

Switching rates
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Network statistics: Noisy Kirk and Silber network
Armbruster, Stone and Kirk, 2003
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m For certain parameter sets, noise ellipse can move into
basin of attraction of one cycle or the other.

m This is termed lift-off.

m Lift-off can reduce switching, and cause memory.

Switching rates
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Escape rates

Noi . . ey -
Moot m To compute mean residence times near equilibria, we
Claire compute escape rates from a potential well.
Postlethwaite .
m Consider

dx = —V/(x)dt + ndW,;

with potential

2 4
VX — X
V(x) = ——
Escape rates ( ) 2
vr<0 v>0
Heteroclinic connection Excitable connection
4 |74
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Mean residence times

Noisy
Networks

m Compute the length of time spent near x = 0 when 7 and

v are small.
- 2 N R € & R S A2
T(v,n) = — exp 5 dy dz.
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Mean residence times with forcing

o m Consider a similar system, now non-autonomous, and

Networks

Claire ‘forcing’ can push the trajectories in a desired direction
Foae around the network.

Escape rates
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Task switching
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Summary

m We can design heteroclinic and excitable networks to
embed any specified graph in phase space.

m We can adjust noise parameters to fit mean residence
times.

m Switching probabilities, residence time distributions,
anisotropic noise....
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