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Hybrid Discrete/Continuous Pulse Coupled
All to all Network of Oscillators

j=N-1,j=i

dg
n =1- Z f(@)o(t-t,-0)

When the phase of oscillator j reaches 1, it is reset to zero and a pulse is emitted at
time t;. The pulsatile nature of the coupling is indicated by the Dirac delta function.
The pulse reaches the target oscillators after a conduction delay.



Each Cluster with its Internal Conduction Delays
Is a “Black Box” Oscillator for PRC analysis

PRC open loop PRC protocol
o) g(N/n-1) | spike ? input
Pn5 tS tl’ Pn5
I <>I( ..... )-()I ()l
gN/n ?

Three clusters

Two clusters
3 3




Definition of Phase Resetting:
Open Loop with No Feedback

A

-~ 0
(=

_________

40 mV
73
Resetting fn,5()

0.0,
Y A
T j\ 0.0
gr . ’\ I\ I\ I\
(oo P Jos(@)=(ts+tr=F, )/ F, ;

n,(5¢

PRC is parameterized by number of clusters
and by internal conduction delays
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Focus on Monotonically Increasing PRC -> Implies a Discontinuity
Actual Quasi Linear Phase Response Curve (PRC) of a Self-Connected Interneuron
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Existence and Stability Criteria Global Synchrony and Two Cluster Modes
synchrony at k=2: —l<1- f(@)-f(p<l
p=0/P
Exception: withnodelayk=1 -1<(1-/'(0")(1-f'(1") <1
@=0,1

k is the integer number of cycles it takes for the effect of a spike in one neuron
To affect the firing of the same neuron via feedback through the network

Note that f'(1°) is undefined due to the discontinuity,
but the “virtual” infinite negative slope is destabilizing

~1<(1- f@))(1- f (@) <1
@ =05+05f(p,,)+0/ P

Antiphase at k=1:

Positive (in our convention) PRC slopes f'(¢) tend to make the absolute
value of the eigenvalues <1 and therefore ensure stability.

Woodman and Canavier, J Computational Neurosci 2011
Canavier et al., Frontiers in Computational Neuroscience, 2013



Firing Pattern for Splay Mode with Equal Time Lags
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Firing order remains constant if we assume
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Canavier and Tikidji-Hamburyan Physical Review E 95(3):032215, 2017.



Firing Pattern for Splay Mode with Equal Time Lags
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eliminates chaotic solutions
and complex period ones ( eg 2P)
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Existence Criteria for Splay Mode with Equal Time Lags

Use the constraint that all time lags are equal and the definition of the intervals
Using the PRC to write existence criteria in terms of the phase of the last input received

n=2
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Note right hand side is always a line

Canavier and Tikidji-Hamburyan Physical Review E 95(3):032215, 2017.



Generalized Existence Criteria for Splay Mode
with Equal Time Lags

The left hand side can be written in terms of the phase resetting:

800(@,) = (1=, @, )= S s @)

When the right hand side (function of PRC) is equal to the line
on the left hand side , you obtain at the intersection the value
of the phase at the time the last input is received in the cluster mode
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Cluster Analysis for Weak Linear PRC

0.30

0.25

The results for a rather weak PRC are intuitive: phase of last input for n=2 is
around 1/2, for n=3 around 2/3and for n=4 around %. The problem is that
individual clusters cannot synchronize without a small delay.

Canavier and Tikidji-Hamburyan Physical Review E 95(3):032215, 2017.



Cluster Analysis for Strong Linear PRC
A. No delay
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Clusters are pushed to much later phases for a much stronger PRC
but the problem with f’(-1) remains.

Canavier and Tikidji-Hamburyan Physical Review E 95(3):032215, 2017.



Effect of Delay on Cluster Analysis

A. No delay

B. With delay

1 — —
...... discontinuity -..... discontinuity
E L g e
i g3 (p i g3 (p . : N
a 9,(¢) o a 9,(¢) g
K? ; . K? | - : !
\% : : \% " " "
o L (- 'c' . 5
§ 1 § = ": c,' :'
o o | ¢=0/P A
Al i / "' : :
g 'l Q/s\l ':g :.
O X O 1 1 ia 1 [ J :
0 ¢ 1 0 ¢ T rs
!/
:: <
o

Delays serve two functions: first they eliminate the contribution of f'(-1),
allowing within cluster synchrony. Second they can eliminate cluster modes.

Canavier and Tikidji-Hamburyan Physical Review E 95(3):032215, 2017.



Prove lack of existence of two cluster solution
Implies no equal time lag cluster modes exist
Assume PRC saturated and

independent of cluster size: fn,é (¢) = fn—l,é (¢)

thus all clusters no longer have

to be the same size. _ _
Fires next so it has to be the largest

gn,5(¢n-1)=f5(¢n—1)+§{f5((pn-1)_(f5(¢i)} and Q> and 0<f;,5((pi)<1>¢ie[091)

imply  £,5(®) > g,:(®)

If no two cluster equal time lag mode exists then 2p-1< 82.0 (@), €[0,1)
For @<1 then @-D<0  implies ne-1)<2(p-1)

Fornodelay 7n¢—n +l<2¢p-1< gz,o((ﬂ) < gn,o(§0)a§0e[0>1)

PRC function for

_ Line for 2-cluster mode n-cluster mode
Line for n-cluster mode
PRC for 2-cluster mode



No intersection for n=2 implies no line will intersect

A. No delay . B. With delay
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Rewrite inequality including delays
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Firing Pattern for Splay Mode with Unequal Time Lags
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Assume one time lag tl;in the unequal time lags case is shorter
than the time lag tl in the corresponding equal time lag n-cluster mode

% %
From definition of stimulus intervals: ¢1 | < ¢1

tl =ts,—0=tr,+0 ts, —20 =tr,

@ =1-@, +f,s@.)+20/P,,
equal gﬂ:—l — f(gp:_l) = 1 - wl* + 25 /]Dné
unequal ¢;,n—1 - f((ﬂ;,n_l) =1- %*1 +20 /Bw

O < ]Fn',é ((pz) < 19 % E[O, 1) implies ¢2,7l—1 > (lpn—l

Then the phase at which the last input received by one oscillator in the unequal time lags mode
is greater than the phase at which the last input is received in the equal time lag mode.



Contradiction proves that always one time lag in the unequal time
lag mode is always shorter than the lags in the equal time lag mode

1) Assume the stimulus interval for oscillator j is greater in the unequal lag mode.
Then by the same logic of previous slide using stimulus and recovery interval definitions:

Priin1 < Pua

@i~ 0 /Pn’(5 > @ — 0 /Pn,é implies @1 > ¢,  implies

2) Assume all intermediate intervals for oscillator j are greater in the unequal lag mode

@i — P + fn,é (¢ji) > Q@ T fn,é (%‘) implies ¢j,i+1 > @i

Pistn-1 = Yo

provided (pji > @, thus @i = ¢ implies

Therefore if the phase at which the last input is received falls in the discontinuity
for an n-cluster equal time lag mode, at least one last input in any n-cluster unequal

time lag mode will also fall in the discontinuity.




2D Bifurcation Diagram for 300 HH Model Neurons with Inhibitory Coupling
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Existence and Stability Criteria Global Synchrony and Two Cluster Modes
synchrony at k=2: —l<1- f(@)-f(p<l
p=0/P

Exception: with no delay k=1 -1<I1- O )a-17)<l1
@=0,1

Antiphase at k=1: —1<(1—f’((pAP))(1—f'(¢AP))<1
@,p=05+05f(¢,,)+0/P

f(@,)=f(®) (impossible for monotonically
R/ ™ L

unequal time lags at k=1: Increasing PRC)

~1< (1= f(g@ )(1- f (@) <1

Closed form only possible f@)=fA-@ + f(@)+20/P)

for n=2 unequal lags mode

Negative PRC slopes f'(¢p) tend to make the absolute value >1

Woodman and Canavier, J Computational Neurosci 2011
Canavier et al., Frontiers in Computational Neuroscience, 2013



PRC Analysis Explains 1D Bifurcation Diagrams for Weaker Inhibitory Coupling
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PRC Analysis Explains 1D Bifurcation Diagrams for Weaker Inhibitory Coupling
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Bifurcation Diagrams for 300 HH Model Neurons with Inhibitory Coupling
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Note that the results hold
despite:

fn,a (@) = fn-1,5 (@)

Allyouneedis g,,(®) > g, (@)

g (@) =f5<cpn_1>+"2{ﬁs @)~ (@)}
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Sparse Connectivity Introduces lJitter in Two Cluster Mode
(40 each in 300 neuron network)
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Two cluster solution is robust to jitter because the destabilizing discontinuity is not sampled

Tikidji-Hamburyan and Canavier, in preparation



Bifurcation Diagram is Largely Preserved With Sparse Connectivity
(40 each in 300 neuron network)
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Jitter (vertical dashed line) samples the destabilizing discontinuity
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Conclusions

By assuming a monotonically increasing PRC and invariance of
the PRC to cluster size, we can prove that synchrony is
globally attracting if no equal time lag two cluster solution
exists (PRC is everywhere to the left of 2¢-1) for small but
nonzero conduction delays.

The discontinuity due to a monotonically increasing PRC is
destabilizing.

Delays allow the system to avoid the destabilizing effect of
the discontinuity.

The discontinuity can produce a virtual or ghost repeller.
Analysis can be extended to sparse connectivity with caveats.



Stability of Splay Mode
A¢i [k] =@, [k] - ¢i*

Alk]=[Ag, [k],Ap, ,[K],L ,A@,[k], Ag[K]]'
Alk +1] = AATK]

A Lo R S P R B

f -1 0 -7 L 0

A= 5(?{ 1) y 51\£¢ 3) L ’
M M M L l‘f,;,g(%)

f;;,é(¢:-1)‘1 0 0 L 0

If the time lags are unequal, the matrix is different for each distinct value

Achuthan and Canavier J Neurosci. 2009 Apr 22;29(16):5218-33



fn,(s(%a—l) 1 l—f,;,é(wz_z) 0 L 0
L2 20 = R RS YA o I

M M M L M

i ! " b l‘f,;,a((pf)
fz;,é(‘p:-l)‘l 0 0 L 0

The last term in the characteristic equation for this matrix is ]—[(l—f,;,é (cpj;_l-))

which is also the product of the eigenvectors. Clearly, any infinitely large
negative slope will produce an infinitely large product, so one of the eigenvalues
must also be infinitely large and therefore maximally unstable.



