Reentrainment of the Circadian Pacemaker During Jet Lag: East-West Asymmetry and the Effects of North-South Travel

Casey Diekman and Amitabha Bose Department of Mathematical Sciences New Jersey Institute of Technology

SIAM DS

May 22, 2017

Circadian Rhythms and Jet lag

- Central circadian pacemaker coordinates various physiological rhythms so that they peak at the appropriate time of the day
 - sleep-promoting hormone melatonin peaks in the evening
 - wake-promoting hormone cortisol peaks in the morning
- □ Endogenous period of human circadian clock is not exactly 24 hours
 - under normal circumstances, the oscillator is phase-locked or *entrained* to 24-hour environmental cycles
 - daily light-dark (LD) cycle is the strongest entraining signal
- Normal alignment of circadian rhythms with the LD cycle is disrupted after rapid travel across time zones
 - leads to sleep problems, indigestion, and other symptoms collectively known as jet lag
- We study the process of reentrainment to the LD cycle of the destination time zone
 - well-established ODE model of the human circadian pacemaker

Outline

- Construct one-dimensional *entrainment maps* and use them to explain several properties of jet lag
 - Why do most people experience more jet lag after traveling east than west?
 - endogenous period of the traveler's circadian clock
 - daylength is also a factor
 - What trips (crossing how many time zones) will lead to the worst jet lag?
 - trips that put the traveler near the unstable fixed point of an entrainment map
 - Can strictly north-south travel cause jet lag even when no time zones are crossed?
 - yes, due to changes in daylength
- Traveling diplomat problem

Forger - Jewett - Kronauer (FJK) model

- □ fit to experimental data on how light affects human circadian rhythms
 - core body temperature (*C*)
 - auxiliary variable (A)
 - phototransduction pathway through which light drives the circadian system (*n*)

$$\begin{aligned} \frac{dC}{dt} &= \frac{\pi}{12} (A+B) \\ \frac{dA}{dt} &= \frac{\pi}{12} \left(\mu \left(A - \frac{4}{3} A^3 \right) - C \left[\left(\frac{24}{0.99669 \tau_c} \right)^2 + kB \right] \right) \\ \frac{dn}{dt} &= (\alpha [I] f(t) (1-n) - \beta n) \\ B &= G \alpha [I] f(t) (1-n) (1 - 0.4C) (1 - 0.4A), \quad \alpha [I] = \alpha_0 \left[\frac{I}{I_0} \right]^p \end{aligned}$$

- B -- circadian modulation of the oscillator's sensitivity to light
- \Box τ_{c} -- determines the period of the oscillator in constant darkness
- □ *I* -- intensity of light
- μ -- stiffness parameter that is related to the rate of amplitude growth or decay after the oscillator is perturbed off of its limit cycle
- f(t) -- light stimulus

Forger, Jewett, and Kronauer (1999)

$\tau_c = 24.2, N = 12, I = 1000$

DD, LL, and LD limit cycles

Definition of the entrainment map $\Pi(x)$

- \Box return map for initial conditions lying on a Poincaré section \mathcal{P}
 - choose \mathcal{P} at A = 0 with A' < 0
 - assume oscillator has an initial condition that lies on \mathcal{P}
 - let x denote the number of hours since the lights last turned on
 - evolve the trajectory under the flow until it again returns to \mathcal{P} , and call the elapsed time $\rho(x)$
 - the entrainment map Π(x) is defined as the amount of time that has passed since the most recent onset of the lights
 - $\Pi(x) = [x + \rho(x)] \mod 24$, which yields a one-dimensional map

Properties of the entrainment map

is certain generic properties he interval [0,24] onto itself most one point of discontinuity asing at each point of continuity odic in that $\Pi(0^+) = \Pi(24^-)$ ds continuously on the important parameters of interest: τ_c , *N*, *I*

Fixed points of the entrainment map

- a stable fixed point x_s
- an unstable fixed point x_u

¹⁸ ²⁰ ²² ²² ²⁴ the FJK model is the existence of a fixed point of the entrainment map

Dynamics of the entrainment m

- Cobwebbing the entrainment map
 - x_u separates initial conditions that reentrain through phase advance and p

of the FJK model match predictions of the entrainment map

Dependence of $\Pi(x)$ on endogenous period

24

2

10

ation

Dependence of $\Pi(x)$ on daylength

- □ As *N* increases, stable fixed point of map moves to the right
 - implies that as daylength increases phase of entrainment becomes more delayed

Dependence of $\Pi(x)$ on light intensity

□ As *I* increases, concavity of the map increases

24

• implies that higher light intensity reduces amount of time it takes oscillator to reentrain following a phase shift of the LD cycle

Jet lag due to east-west travel

- We computed, via direct simulation, reentrainment times for travelers making trips with all possible arrival times (X = 0 to 24) and number of time zones traveled (Z = -12 to 12)
 - X = 0 corresponds to arrival time of 7 AM
 - Z > 0 corresponds to traveling east
 - Z < 0 corresponds to traveling west

Days to reentrain with typical endogenous period

 $\tau_{c} = 24.2$

N = 12, *I* = 100

Days to reentrain with slow internal clock

 $\tau_{c} = 24.6$ \mathbf{N} -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 13 14 15 16 17 18 19 20 21 Xworst trip: traveling **East** 7 time zones

N = 12, *I* = 100

Days to reentrain with fast internal clock

N = 12, *I* = 100

 $\tau_{c} = 23.4$

worst trip: traveling West 6.5 time zones

N = 12, *I* = 100

17

Worst-case travel depends on endogenous period

- $\tau_c = 24.2$ -- typical clock, worst jet lag is for eastward trips of 10.5 time zones
- **\tau_c = 24.6** slow clock, worst jet lag is for eastward trips of 7 time zones
- **\Box** τ_c = 23.8 -- fast clock, worst jet lag is for westward trips of 10.5 time zones
- $\tau_c = 23.4$ -- even faster clock, worst jet lag for is for westward trips of 6.5 time zones

we can explain these results using entrainment maps

Worst-case travel is determined by location of x_u

x_u also controls mode of reentrainment

- Orthodromic: reentrainment in same direction as the shift in the LD cycle
 - through phase advances after traveling East, or phase delays after traveling West
- Antidromic: reentrainment in opposite direction as the shift in the LD cycle
 - through phase delays after traveling East, or phase advances after traveling West

x_u also controls mode of reentrainment

East-West asymmetry of reentrainment times

East-west asymmetry depends on endogenous period

• Lu, Klein-Cardena, Lee, Girvan, Antonsen, and Ott. Chaos (2016)

East-West asymmetry depends on τ_c

East-West asymmetry also depends on daylength

- Calculated reentrainment times by cobwebbing maps for eastward and westward trips of 10 time zones
 - Colormap: (reentrainment time for Z = -10) (reentrainment time for Z = 10)
 - East is worse, West is worse

East-west asymmetry is generic

- Approximated reentrainment times using first iterate of maps for eastward and westward trips of 6 time zones
 - ODC = orthodromy curve (x_s and x_u exactly 12 hours apart)

Effects of daylength

□ In June, New York City has 15 hours of daylight while Sanitago, Chile has 10 hours

Transequatorial (north-south) travel

OS | SUBMISSION North-south travel can cause jet lag

	Direct simulation			Entrainment map							
	t	t_{ref}	$t_{ref} - t$	x_n	x_{n+1}	$x_s - x_{n+1}$	$\rho(x_n)$	$\sum \rho(x_n)$			
NYC to Santiago	23.776	23.005	-0.772	15	14.780	-0.775	23.780	23.779			
	47.598	47.005	-0.593	14.780	14.622	-0.617	23.842	47.621			
	71.459*	71.005	-0.454	14.622	14.465	-0.460	23.843	71.465**			
Santiago to NYC	24.3444	24.9960	0.6516	17.5	17.841	0.655	24.341	24.341			
	48.5594*	48.9960	0.4366	17.841	18.040	0.456	24.199	48.540**			

Table 1.	Reentrainment	times fo	or southward	and	northward	travel	\mathbf{with}	$\tau_c = 24.2.$
----------	---------------	----------	--------------	-----	-----------	--------	-----------------	------------------

Natural mode of reentrainment is antidromic

Traveling diplomat problem

- Traveling salesman problem involves arranging travel to several locations to minimize total travel distance
- If a diplomat wished to visit a certain number of countries, could they arrange their schedule to minimize the total amount of jet lag?

- NYC \rightarrow Santiago \rightarrow Perth \rightarrow Beijing \rightarrow NYC : 28 days
- NYC \rightarrow Beijing \rightarrow Perth \rightarrow Santiago \rightarrow NYC : 28 days
- NYC \rightarrow Perth \rightarrow Beijing \rightarrow Santiago \rightarrow NYC : 24 days
- NYC \rightarrow Santiago \rightarrow Beijing \rightarrow Perth \rightarrow NYC : 23 days

Summary

Entrainment maps can explain several features of jet lag

- East/West asymmetry depends on both endogenous period and daylength
 - whether endogenous period is > or < 24 hours is not the critical factor
- Unstable fixed point of map separates orthodromic and antidromic reentrainment
- North-south travel can cause significant jet lag

Future Work

- Social jet lag
- Shift work
- Seasonal affective disorder
- Incorporate sleep
- Peripheral oscillators in other organs

Acknowledgements

Collaborators

Amit Bose, NJIT Math

Yong-Ick Kim, NJIT Chemistry

Funding

National Science Foundation

Army Research Office

<u>Reference</u>

Diekman and Bose, Journal of Biological Rhythms, Volume 31, December 2016

Phaseless set

