Reentrainment of the Circadian Pacemaker During Jet Lag: East-West Asymmetry and the Effects of North-South Travel

Casey Diekman and Amitabha Bose
Department of Mathematical Sciences
New Jersey Institute of Technology

May 22, 2017

Circadian Rhythms and Jet lag

- Central circadian pacemaker coordinates various physiological rhythms so that they peak at the appropriate time of the day
- sleep-promoting hormone melatonin peaks in the evening
- wake-promoting hormone cortisol peaks in the morning
- Endogenous period of human circadian clock is not exactly 24 hours
- under normal circumstances, the oscillator is phase-locked or entrained to 24-hour environmental cycles
- daily light-dark (LD) cycle is the strongest entraining signal
- Normal alignment of circadian rhythms with the LD cycle is disrupted after rapid travel across time zones
- leads to sleep problems, indigestion, and other symptoms collectively known as jet lag
- We study the process of reentrainment to the LD cycle of the destination time zone
- well-established ODE model of the human circadian pacemaker

Outline

- Construct one-dimensional entrainment maps and use them to explain several properties of jet lag
- Why do most people experience more jet lag after traveling east than west?
- endogenous period of the traveler's circadian clock
- daylength is also a factor
- What trips (crossing how many time zones) will lead to the worst jet lag?
- trips that put the traveler near the unstable fixed point of an entrainment map
- Can strictly north-south travel cause jet lag even when no time zones are crossed?
- yes, due to changes in daylength
- Traveling diplomat problem

Forger - Jewett - Kronauer (FJK) model

- fit to experimental data on how light affects human circadian rhythms
- core body temperature (C)
- auxiliary variable (A)
- phototransduction pathway through which light drives the circadian system (n)

$$
\begin{aligned}
\frac{d C}{d t} & =\frac{\pi}{12}(A+B) \\
\frac{d A}{d t} & =\frac{\pi}{12}\left(\mu\left(A-\frac{4}{3} A^{3}\right)-C\left[\left(\frac{24}{0.99669 \tau_{c}}\right)^{2}+k B\right]\right) \\
\frac{d n}{d t} & =(\alpha[I] f(t)(1-n)-\beta n) \\
B & =G \alpha[I] f(t)(1-n)(1-0.4 C)(1-0.4 A), \quad \alpha[I]=\alpha_{0}\left[\frac{I}{I_{0}}\right]^{p}
\end{aligned}
$$

- B -- circadian modulation of the oscillator's sensitivity to light
- τ_{c}-- determines the period of the oscillator in constant darkness
- I-- intensity of light
- μ-- stiffness parameter that is related to the rate of amplitude growth or decay after the oscillator is perturbed off of its limit cycle
- $f(t)$-- light stimulus

DD, LL, and LD limit cycles

$\tau_{c}=24.2, N=12, I=1000$

DD

-- DD - $\mathrm{LL}-\mathrm{LD}$ (dark) — LD (light)

Definition of the entrainment map $\Pi(x)$

- return map for initial conditions lying on a Poincaré section \mathcal{P}
- choose \mathcal{P} at $A=0$ with $A^{\prime}<0$
- assume oscillator has an initial condition that lies on \mathcal{P}
- let x denote the number of hours since the lights last turned on
- evolve the trajectory under the flow until it again returns to \mathcal{P}, and call the elapsed time $\rho(x)$
- the entrainment map $\Pi(x)$ is defined as the amount of time that has passed since the most recent onset of the lights
- $\quad \Pi(x)=[x+\rho(x)]$ mod 24 , which yields a one-dimensional map

Properties of the entrainment map

- the map has certain generic properties
- it maps the interval $[0,24]$ onto itself
- it has at most one point of discontinuity
- it is increasing at each point of continuity
- it is periodic in that $\Pi\left(0^{+}\right)=\Pi\left(24^{-}\right)$
- it depends continuously on the important parameters of interest: τ_{c}, N, I

Fixed points of the entrainment map

- a fixed point x^{*} of the entrainment map satisfies $\Pi\left(x^{*}\right)=x^{*}$
- corresponds to the trajectory leaving $\mathcal{P} x^{*}$ hours after the lights turned on, and then returning to \mathcal{P} exactly 24 hours later when the lights have again most recently turned on x^{*} hours ago
- the fixed point is stable if $\left|\Pi^{\prime}\left(x^{*}\right)\right|<1$ and unstable otherwise
- a stable fixed point x_{s}
- an unstable fixed point x_{u}
- a necessary, but not sufficient, condition for the existence of a periodic solution of the FJK model is the existence of a fixed point of the entrainment map

Dynamics of the entrainment map

- Cobwebbing the entrainment map
- x_{u} separates initial conditions that reentrain through phase advance and phase delay

- Direct simulations of the FJK model match predictions of the entrainment map

Dependence of $\Pi(x)$ on endogenous period

- as τ_{c} increases, $\Pi(x)$ shifts up and to the left
- x_{s} moves to the right and x_{u} moves to the left
- as τ_{c} decreases the fixed points move in the opposite manner
- when τ_{c} becomes large or small enough, the fixed points merge at a saddle-node bifurcation
- implies loss of entrainment

Dependence of $\Pi(x)$ on daylength

- As N increases, stable fixed point of map moves to the right
- implies that as daylength increases phase of entrainment becomes more delayed

Dependence of $\Pi(x)$ on light intensity

- As I increases, concavity of the map increases
- implies that higher light intensity reduces amount of time it takes oscillator to reentrain following a phase shift of the LD cycle

Jet lag due to east-west travel

- We computed, via direct simulation, reentrainment times for travelers making trips with all possible arrival times ($X=0$ to 24) and number of time zones traveled ($Z=-12$ to 12)
- $X=0$ corresponds to arrival time of 7 AM
- Z > 0 corresponds to traveling east
- $Z<0$ corresponds to traveling west

Days to reentrain with typical endogenous period

$$
N=12, I=100
$$

worst trip: traveling East 10.5 time zones

Days to reentrain with slow internal clock

$$
N=12, I=100
$$

worst trip: traveling East 7 time zones

Days to reentrain with fast internal clock

$$
\tau_{c}=23.8
$$

$$
N=12, I=100
$$

Days to reentrain with even faster internal clock

$$
\tau_{c}=23.4
$$

$$
N=12, I=100
$$

worst trip: traveling West 6.5 time zones

Worst-case travel depends on endogenous period

- $\tau_{c}=24.2$-- typical clock, worst jet lag is for eastward trips of 10.5 time zones
- $\boldsymbol{\tau}_{\boldsymbol{c}}=24.6$-- slow clock, worst jet lag is for eastward trips of 7 time zones
- $\tau_{c}=23.8$-- fast clock, worst jet lag is for westward trips of 10.5 time zones
- $\tau_{c}=23.4$-- even faster clock, worst jet lag for is for westward trips of 6.5 time zones
we can explain these results using entrainment maps

Worst-case travel is determined by location of x_{u}

x_{u} also controls mode of reentrainment

- Orthodromic: reentrainment in same direction as the shift in the LD cycle
- through phase advances after traveling East, or phase delays after traveling West
- Antidromic: reentrainment in opposite direction as the shift in the LD cycle
- through phase delays after traveling East, or phase advances after traveling West

x_{u} also controls mode of reentrainment

East-West asymmetry of reentrainment times

- East-west asymmetry depends on endogenous period
- Lu, Klein-Cardena, Lee, Girvan, Antonsen, and Ott. Chaos (2016)

East-West asymmetry depends on τ_{c}

East-West asymmetry also depends on daylength

- Calculated reentrainment times by cobwebbing maps for eastward and westward trips of 10 time zones
- Colormap: (reentrainment time for $Z=-10$) - (reentrainment time for $Z=10$)
- East is worse, West is worse

NPC = neutral period curve
ADC = antidromy curve

East-west asymmetry is generic

- Approximated reentrainment times using first iterate of maps for eastward and westward trips of 6 time zones
- ODC $=$ orthodromy curve (x_{s} and x_{u} exactly 12 hours apart)

Effects of daylength

- In June, New York City has 15 hours of daylight while Sanitago, Chile has 10 hours

Transequatorial (north-south) travel

NYC to Santiago

Santiago to NYC

North-south travel can cause jet lag

	Direct simulation				Entrainment map				
t	$t_{\text {ref }}$	$t_{\text {ref }}-t$	x_{n}	x_{n+1}	$x_{s}-x_{n+1}$	$\rho\left(x_{n}\right)$	$\sum \rho\left(x_{n}\right)$		
NYC to Santiago	23.776	23.005	-0.772	15	14.780	-0.775	23.780	23.779	
	47.598	47.005	-0.593	14.780	14.622	-0.617	23.842	47.621	
	71.459^{*}	71.005	-0.454	14.622	14.465	-0.460	23.843	$71.465^{* *}$	
Santiago to NYC	24.3444	24.9960	0.6516	17.5	17.841	0.655	24.341	24.341	
	48.5594^{*}	48.9960	0.4366	17.841	18.040	0.456	24.199	$48.540^{* *}$	

Table 1. Reentrainment times for southward and northward travel with $\tau_{c}=24.2$.

Natural mode of reentrainment is antidromic

Transmeridian + transequatorial travel

Traveling diplomat problem

- Traveling salesman problem involves arranging travel to several locations to minimize total travel distance
- If a diplomat wished to visit a certain number of countries, could they arrange their schedule to minimize the total amount of jet lag?
- NYC \rightarrow Santiago \rightarrow Perth \rightarrow Beijing \rightarrow NYC: 28 days
- NYC \rightarrow Beijing \rightarrow Perth \rightarrow Santiago \rightarrow NYC: 28 days
- NYC \rightarrow Perth \rightarrow Beijing \rightarrow Santiago \rightarrow NYC : 24 days
- NYC \rightarrow Santiago \rightarrow Beijing \rightarrow Perth \rightarrow NYC : 23 days

Summary

- Entrainment maps can explain several features of jet lag
- East/West asymmetry depends on both endogenous period and daylength
- whether endogenous period is $>$ or <24 hours is not the critical factor
- Unstable fixed point of map separates orthodromic and antidromic reentrainment
- North-south travel can cause significant jet lag
- Future Work
- Social jet lag
- Shift work
- Seasonal affective disorder
- Incorporate sleep
- Peripheral oscillators in other organs

Acknowledgements

Collaborators

Amit Bose, NJIT Math
Yong-Ick Kim, NJIT Chemistry

Funding

National Science Foundation
Army Research Office

Reference

Diekman and Bose, Journal of Biological Rhythms, Volume 31, December 2016

Phaseless set

A

Phaseless set

D

E

