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r Plan today

* Decision support
* Resilience
* Flow-kick systems
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What can be controlled?
Sources of uncertainty?
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» of what to what?”
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From Metaphor to Measurement:
Resilience of What to What?

Steve Carpenter,'* Brian Walker,” ]. Marty Anderies,” and Nick Abel?

"Center for Limnology, 680 North Park Street, University of Wisconsin, Madison, Wisconsin 53706, USA; and “CSIRO Sustainable
Ecosystems, GPO Box 284, Canberra, ACT, 2615 Australia

“Resilience is the magnitude of disturbance that can be tolerated
before a socioecological system moves to a different region of state
space controlled by a different set of processes.”
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“Resilience is the magnitude of disturbance that can be tolerated
before a socioecological system moves to a different region of state
space controlled by a different set of processes.”



1t is Resilience?

Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.



Slippery qualitative idea:
The ability of a system to absorb change and disturbance

"What is Resilience?

while maintaining its basic structure and function.

Examples:

A city “disturbed” by hurricane or other disaster.

A building disturbed by earthquake,

An ecosystem disturbed by water, fire, grazers,
diseases, invasives, nutrients or weather extremes.
Agriculture disturbed by pests, climate, economics.
Fishery disturbed by harvesting.

The climate system disturbed by life.
Human medicine and psychology.
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- What is Resilience?

Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

~ \

State & dynamics Property of the
of the system system.
e.g. Ocean Specific species Functional genetic
plankton in the plankton properties of the
community community plankton community.
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- Single large disturbance

Slippery qualitative idea:

The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

Example: city “disturbed” by hurricane or other disaster

Building “disaster resilience” is
about building mechanisms for
rapid transient dynamics along
‘desirable’ route back to functional
- or even ‘improved’ - city.

e.g. minimizing disease outbreaks,
protecting water supply, etc.
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Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

Example: Fishery subject to harvesting

dP/dt dP/dt
Logistic Allee Effect
P < >
C
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Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

Example: Fishery subject to harvesting

dP/dt Population flows toward C
Logistic Harvest ‘kicks’ pop’n down
Population flows for time t




umulating small disturbances
Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

Example: Fishery subject to harvesting

dP/dt Population flows toward C
Logistic Harvest ‘kicks’ pop’n down
Population flows for time t
Another harvesting kick
etc....
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dP/dt to this level of harvesting?
Logistic

i.e. Do transient flow and
kick balance?
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Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

Example: Fishery subject to harvesting

Is stock population resilient

dP/dt to this level of harvesting?
Logistic

i.e. Do transient flow and
kick balance?

Or does kick frequency
overwhelm the flow?




lating small disturbances

Slippery qualitative idea: Is stock population resilient
The ability of a system to abjto this level of harvesting?
while maintaining its basic s{i.e. Do transient flow and
kick balance?

Or does kick frequency
overwhelm the flow?

Example: Fishery subject to

dP/dt dP/dt

Logistic a Allee Effect
P — P < —
—> C —> C



lating small disturbances

Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

Example: Fishery subject to harvesting

Social value:

If transient flow and kick
balance, do we like where
they balance?

dP/dt
Logistic

e.g. bioeconomics,

" C tragedy of the commons, etc
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Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

Example: Management of invasive species

Social value:

dP/dt
/ How do we limit invasion?

Logistic




ting small disturbances

Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

Example: Management of invasive species

Social value:

dP/dt
/ How do we limit invasion?

Logistic

Suggests a different preferred
balance between transient
flow and kick than for fishery




‘urbance as the norm

Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

Example: Ecosystem disturbed by fire, disease, grazers,
weather...

e.g. Forest:
Without fire, Y outcompetes X

Y?
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weather...
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Without fire, Y outcompetes X
Kick:

Fire destroys Y & promotes X
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Fire disturbance promotes

biodiversity, via transient

dynamics



Disturbance as the norm

Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

Example: Ecosystem disturbed by fire, disease, grazers,
weather...

S m ial value:

What is “enough”
biodiversity? or
ecosystem services?

Y.?

e, Y outcompetes X

roys Y & promotes X

- Fire disturbance promotes

biodiversity, via transient

& & ———— X dynamics




Irbance as the norm

Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

Example: Dryland ecosystem disturbed by water.

Makes up 40% of Earth’s land
Home to 30% of human population

Social value: Can the land feed the people?
i.e. is there enough vegetation to support the people?
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at is Resilience?

Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

~ \

State & dynamics Property of the
of the system system.
X f(X)
Pre-image f1(P) Social value
o . , preference
May or may not coincide with basins of <ot P

attraction, or bifurcation thresholds
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Given:
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Start with 2-D linear example
for illustration
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-kick dynamics

Given:

System of ODE’s dx/dt=F(x)
Flow ¢,(x)

Flow time t

Kick vector k

Define flow-kick map:
G(x) = @ (x) + k

Lot
o
——

-

Injtial Point (2,1)

Equilibrium of Flow

i



-kick dynamics

Given:

System of ODE’s dx/dt=F(x)
Flow ¢,(x)

Flow time t

Kick vector k

Define flow-kick map:
G(x) = @ (x) + k

lterate...

Lt
w
——

Equilibrium of Flow

&



m -kick dynamics

3 Y = —

Given: [ .
System of ODE’s dx/dt=F(x) o /Eq""'b""m of Fléy-K-ck

Flow @,(x) : |
(p i
y 1"-"‘
t ‘(“1! {99 _ |
r ,‘;i"; “
H q"i‘j;‘ I T 9o
‘J If \I‘ / / ¥ I;\
K Jl '// ¢

Flow time T
Kick vector k

Define flow-kick map:
G(x) = @,(x) + k

lterate...

Equilibrium of Flow
ﬁ Il 1
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Given:

System of ODE’s dx/dt=F(x)
Flow ¢,(x)

Flow time t

Kick vector k

Define flow-kick map:
G(x) = @ (x) + k

lterate...

Brings focus to:
1) Transient dynamics

~
o
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/ Equilibrium of Flow-Kick

Equilibrium of Flow

a

2) ‘Value’ we assign to new location in state space




kick dynamics

Given:

System of ODFE’s dx /dl'= F(X ) i - Equilibrium of Flow-Kick System
Flow ¢,(x) \ /

Flow time t i "

Kick vector k

Define flow-kick map:
G(x) = @.(x) + k

lterate...

Brings focus to:
1) Transient dynamics
2) ‘Value’ we assign to new location in state space
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Given: | /. #
System of ODE’s dx/dt=F(x) | ¥ // |
Flow ¢@,(x) B
Flow time T | ‘?A/ /
Kick vector k ¥ 852
4

Define flow-kick map: i
G(x) = @ (x) + k

A
lterate... | /

Theorem: If Fis linear
1) There is a unique flow-kick equilibrium.
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Given:

System of ODE’s dx/dt=F(x)
Flow ¢,(x)

Flow time t

Kick vector k

4 |

Define flow-kick map: | N N
G(x) = @ (x) + k ekt £ 4
Iterate...

Theorem: If Fis linear
1) There is a unique flow-kick equilibrium.
Choice of (t, k) can put the flow-kick equilibrium anywhere.



Given: |
System of ODE’s dx/dt=F(x) |

Flow ¢,(x) |

F I OW ti m e T 11 S —— SN

Kick vector k 1l

Define flow-kick map:

G(X) - (PT(X) + k .

Iterate...

Theorem: If Fis linear
1) There is a unique flow-kick equilibrium.
Choice of (t, k) can put the flow-kick equilibrium anywhere.
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v-kick dynamics

Given: | &
System of ODE’s dx/dt=F(x) | _ ( F
Flow (Pt(X) | ‘& // .
Flow time t &
Kick vector k T b - }
Define flow-kick map: // -

A <
Iterate... | / \

Theorem: If Fis linear
1) There is a unique flow-kick equilibrium.
2) Flow dynamics are translated to the flow-kick equilibrium.



Given: |
System of ODE’s dx/dt=F(x) | \
Flow @y(x)
Flow time t

Kick vector k

Proof of 2:
G(x) = pofx) + k L~
DG/xzD(pr/x-'LDk/x o p / \ |
=D (pr/ 0 | / \\ |
% 3 3 2 ] ] i 2 3 K

Theorem: If Fis linear
1) There is a unique flow-kick equilibrium.
2) Flow dynamics are translated to the flow-kick equilibrium.



Given: |
System of ODE’s dx/dt=F(x) | \
Flow @y(x)
Flow time t

Kick vector k

Proof of 2:

G(x) = .(x) + k

DG/X= D(pr/x+ Dk/x o / \ ‘
X D(Pr/() B /// \ ]

Not true for | | ~ |

Theorem: If F il nonlinear F
1) There is a unique flow-kick equilibrium.
2) Flow dynamics are translated to the flow-kick equilibrium.




e <a-Volterra competition
G(x) = @ (x) + k
/7] ‘Pt(x) 7 4 M ( Ty) k 1) — 0y, kz)

1 /lSourcel—0 (/.




otka-Volterra competition
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G(x) = @ (x) + k
A OX) | (4, k) | (T2 K

| /|sourcef—

AL { 1 -
/ \ 0 Sink Gz .
E("': i t
1 2 3

Flow-Kick Equilibrium Y(*
DG/, =Deg,/,
= Closest linear approximation to ¢, at x




. Lotka-Volterra competition
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G(x) = @, (x) + k
- (pt(X) ) : (Tll kl) ' . (TZ/ kZ)
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_ Flow-Kick Equilibrium Y*
DG/, =Deg,/,

= Closest linear approximation to ¢, at x
Use variational equation to calculate De,/,
(Like calculating Liapunov exponents)
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G(X) = (pt(x) + k Flow-Kick Equilibrium X* Variational equation:
? Use DF|, along flow to
DG|, =D X
= Dol calculate De.|,

Flow




G(x) = @ (x) + k
DG|, = Deg,|,

ow-kick dynamics

Flow-Kick Equilibrium Y*
[

Kick

Flow

Variational equation:

Use DF|, along flow to
calculate Deo.|,

Dynamical classification of DF]|,

O Sink

= Saddle
®m Saddle
= Source




G(x) = @ (x) + k
DG|, = Deg,|,

low-kick dynamics

Flow-Kick Equilibrium Y*
[

Kick

Flow

Variational equation:

Use DF|, along flow to
calculate Do_|,

Dynamical classification of DF]|,

O Sink

= Saddle
®m Saddle
= Source
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m Source
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m Flow time 7 =0.5
m Kick kK = (—0.0330, —0.0330)
m Saddle at X* = (1.5,1.5)
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m Flow time 7 = 0.5
m Kick kK =(0.2122,0.2122)
m Sink at X* = (3.5,3.5)
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Trace-Determinant of Jacobian
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m Flow time 7 =1
m Kick kK = (0.288,0.288)
m Sink at X* =(3.2,3.2)

1
36

3.7

g

dynamics

Trace-Determinant of Jacobian
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m Flow time 7 =2
m Kick kK = (0.491,0.491)
m Saddle at X* = (3.2,3.2)
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Example: Fishery subject to harvesting

dP/dt
Logistic

Same ideas as 2-d:
Choice of (T, k) can put a flow-

kick equilibrium anywhere in
basin.

dP/dt=F(P) with flow ¢,(P)
Flow time t, kick k

Flow-kick map:
G(P) = @(P) + k



silience boundary

Example: Fishery subject to harvesting

dP/dt
Logistic

dP/dt=F(P) with flow ¢,(P)
Flow time t, kick k

Flow-kick map:
G(P) = @,(P) + k

Flow-kick

L)

escape to -oo

_ gl

A wilcie

5

~

(D

fa
v I TUVVTINIC

(& sourc

T

Resilience boundary
= flow-kick saddle-node
bifurcation curve
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1a rvesting stFategy

Example: Fishery subject to harvesting

dP/dt
Logistic

O

dP/dt=F(P) with flow ¢,(P)
Flow time t, kick k

Flow-kick map:
G(P) = @,(P) + k



astic harvesting strategy

Example: Fishery subject to harvesting
dP/dt

Logistic
,,./ \ 2 / / L

L)

/'/
/
/

«— 0 ® 0— P
/ C\ 0

=
dP/dt=F(P) with flow ¢,(P)

Flow time T, kick k What if T and k are chosen

stochastically from a

Flow-kick map: bounded domain, D?

G(P) = @(P) + k



stic harvesting strategy

Example: Fishery subject to harvesting

dP/dt
Logistic / \ P
E(D)
e oo P
Set E(D) of flow-kick T
equilibria for fixed (t,k) What if t and k are chosen
strategies from D stochastically from a

bounded domain, D?
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Example: Fishery subject to harvesting

dP/dt
Logistic o P
/
e
E(D)
< P
/ C\ 0
Set E(D) of flow-kick T
equilibria for fixed (t,k) What if t and k are chosen
strategies from D stochastically from a
Stochastic flow-kick bounded domain, D?

trajectory approaches E(D)
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at is Resilience?

Slippery qualitative idea:
The ability of a system to absorb change and disturbance
while maintaining its basic structure and function.

~ \

State & dynamics Property of the
of the system system.
X f(X)
Pre-image f1(P) Social value
o . , preference
May or may not coincide with basins of <ot P

attraction, or bifurcation thresholds



stic harvesting strategy f

Example: Fishery subject to harvesting

dP/dt
Logistic P
/
f e
E(D)
< P
— 0
p
Set E(D) Not so simple
equilibria in 2-d... hat if Tand k are chosen
strategies stochastically from a
Stochastic flow-kICK bounded domain, D?

trajectory approaches E(D)



A flow-kick framework for exploring
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