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Tracking objects with age

cells have cycles - division is not a Poisson process

molecular aging - mMRBNA polyadenylation

- RBCs marked for removal (~120 days)

age-dependent processes cannot be described using constant rates

|deal theory would:
e keep track of ages
e model organism interactions (e.g., carrying capacity)
e capture stochasticity




Organisms with internal “age”

A classic paradigm to track age in population biology:

- Lieut.-Col. A. G. M’Kendrick, Applications of Mathematics to Medical Problems, Proc.
Edinburgh Math. Soc., 44, 98-130, (1926)

- H. von Foerster, Some remarks on changing populations, in F. Stohlman, ed., The
kinetics of cell proliferation, (1959)

Define:
e p(a,t)da: expected number with age in (a,a + da)

e 5(a): age-dependent birth rate

e 11(a): age-dependent death+emigration-immigration rate




McKendrick-von Foerster Equation

Integral equation derivation:

e N(a,t) = [ p(y,t)dy: number with age in (0, a)
= [T B t)dy: births/time, at ¢, from all particles
= [ u( t)dy: deaths/time of particles in age (0, a)

construct change in number

ih h
N(a+h,t+h)—N(a,t)=/ B(s)ds—/ D(a+ s,t+ s)ds
t 0

take h — 0:




McKendrick-von Foerster Equation

8N[§?,t) i aNa(jt) - /Oa ply,t)dy + pla,t) = B(t) - /Oa u(y)p(y, t)dy

e McKendrick-von Foerster Eq] results from -2-:

WD) | 0D a)pla,

e “boundary condition” arises from setting a = 0:

Ma=mw:[fﬁmwm¢ma

= B(t) (birth rate of age zero particles)

e separately specify initial condition p(a,0) = g(a)




Solution by characteristics

g9(a.0)

N~

\ depends on p

B(t —a) exp — [ u(s)ds|, a<t.




Interactions?

o pla>t,t) =gla—t)exp { fo a—1t-+ h’;n(h’))dh/}
o p(a <t,t) =p(0,t —a)exp [— /Oa pu(h'sn(t — a+h’))dh’]
= B(t —a;n(t —a))exp [— [ p(h/;n(t —a+ R'))dN]

self-consistently solve using n(t) = [ p

e However, McKendrick-von Foerster equations are still deterministic
and do not give probability distributions




Stochastic descriptions

e Master eqn: probability P, (t) of exactly n particles at time ¢:

OPull) _ ) [Py — Pl + (1 — 1)1 (£) Py
ot
— (Bn(t) + pn () Pn + (0 + 1) 41 (€) Pt

ME assumes event times are exponentially distributed.
In the rates o, (t), 6,(t), and u,(t), t = time, not age.

¢ hidden Markov states: requires many states
e age-binning: incompatible with large system-size expansion

e Bellman-Harris branching process: treats general waiting time
distributions but assumes iid — no interactions
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New Kinetic description

- Extend ideas of kinetic theory to higher dimensions
- Interactions affect birth-death rates, but no “collision” terms

- Assume age-ordering of n distinguishable individuals and define

fo(x1, 22,3, ..., Ty t)deides . .. de, = fr, (X t)dX,

probability that at time ¢, there are n distinguishable particles (e.g., by
birth time) with youngest within age (z1, 1 + dx1), the second
youngest within age (x2, x2 + dzs), and so on.




High-dimensional kinetic theory

Next, define an ordered cumulative probability:

n(@n;t) / d:r;1/ dxzsy - - / d:vn_lf day, fro (X1, ..., 20 t),

mn

where a,, = (al,ag, . ,an).

() Is the probability that the youngest has age =, between 0 and a4, the
second youngest has age x, between x; and a5, and so on.
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High-dimensional kinetic theory

Compute the change in Qn(an; t) over a small time increment:

Qn(@, +e;t+e)=Qn(@n;t) + [, J(t')dt". Fore — 0:

aQn (an; t) & aQn (an; t)

1=1

The probability fluxes can be decomposed into components
representing birth () and death (u):

J=(an;t) = Jy (anit) + J, (an;t).

+ represent terms that enter or leave state

= J(a,;t) — J (a,;t).
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Probability fluxes

st = [Can [ / : /a:dxniﬁmafﬂ(xn;t),
J, (an,t)_/O dzq - - /:c

da:j-o-/ dwnz,un i) frn (X3 1),
LTn—1

J—1 —

asg aj41 Gn
J+(a2n,t)=/ dzy - / dﬂ?j"'/ gt 12577, 1(23) fom1 (Xn—1; t),

aj+1 aj+1
an, Z/ daq - - / dacj/ dy/ dzjyq -

| / dzy ,LLn—Fl( )fn—l—l(wla RESE PRI B B ’xn;t)’
Ln—1

where a;,; = (az-, Qijgly ey CLj), xo = 0, and Ap+1 = OQ.
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Kinetic equations: indistinguishable particles

e for n indistinguishable particles, define p, (x1,x2,...,zn;t) = %fn (Xn;t) as prob.

first randomly chosen particle has age in (x1,x1 + dz1), and so on.

o define v,,(a;) = Bn(a;) + jn(a;) and apply =2 i 822 e %;
P f?t )+Z n Z%, a;)pn(@n;t)

j=1

+(n+1) / Unt+1(Y) pn+1(@n, y; t)dy
0

e seta, = 0andtake z2----/--- 52 BCs:

n
n,On(Cll, ceey, Ay = 07 0 0 '7an;t) — Z Bn—l(ai)pn—l(ala X '7&57 0 0 '7a’n;t)
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Equation hierarchies

Reduced dist: fooodakﬂ e foooda,n pn(@n;t) = pq(f) (ax;t)

Integrating Eqgs. for p(a,,;t) over n — k ages and BC overn — k — 1
ages, kinetic equation becomes

ap(‘“’ak, z’“:a““’am (

)Zﬁn 1 az Pn 1(akat)

—k)(n—k—1)
‘|‘(n n / Bn— (k—i_ )(ak7y7t)dy

k: o0
—Zwai)pé’“)(ak;t)—<n—k>/0 v (@)% (ag, y; )
=1
1 > (k+1) 2 el
—|—(’I’L—|— ) 0 Mn+1(y)pn_|_1 (akaya ) Y.

pi") depends on p{"" 1) = equation hierarchy
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Equation hierarchies

Reduced dist: fooodakﬂ e foooda,n pn(@n;t) = pff) (ax;t)

Integrating Eqgs. for p(a,,;t) over n — k ages and BC overn — k — 1
ages, kinetic equation becomes

ap(‘“)ak, z’“:a(k)ak,) (

)Zﬁn 1(a; Pn 1(akat)

—k)(n—k—1)
‘|‘(n n / Bn— (k—i_ )(ak7y7t)dy

k: o0
—Zwai)pé’f)(ak;t)—<n—k>/0 v @)% (ag, v )
=1
1 > (k+1) 2 el
—|—(’I’L—|— ) 0 Mn+1(y)pn_|_1 (akaya ) Y.

*) depends on p" ") = equation hierarchy
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Lowest-order (kK = () equation

apy,) -
i =D | s oll (st

o /O b Bn(y) + 1n (y)] P (y3 1) dy

+(n+1)/ un+1(y)pff+)1(y;t)dy
0

If 5,, and u,, are age-independent,

apy) (t)
ot

— (=181, () = 1(Bn + n) O (8) + (n 4+ Vi1 (1),

=- hierarchy in birth-death master equation
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Expected density

an“) a;t) expected density

Multiply £ = 1 egn by n and summing:

Op(a;t)  Op(a;t) >
Ot v N ;(”—1)@@—1( )pfl)l(a;t)

+Zn_1 n_2/ Bn 1 pn 1(0’ %t)dy

DAL Znn—lf () (0 51

+3 n(n+1) / i1 ()P (0,9 1)y,
n=1 0
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Deterministic limit

EqQ. reduces to|

(a)npit (a;t)

Op(a;t) ('9,0 a;t)
ot Z i

Integrating all but one age in BC and summing over all n:
an(”a—()t = p(a / Ba—1(y)(n — 1)pl2 (y; t)dy

MCK eqn recovered if ;(a) and §(a) are n-independent

n-dependent 5, (a), p,(a) = hierarchy in MCK egn
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Generalization to fission-death process

Branching process = birth + immediate renewal of parent

fission of
asinglet .
V\ :
L@
1] fission of one
S inatwin

] /4/

T:TO
T

birth, fission, and death

Density function needs to consider pairs of particles.

Define densities according to time of birth (TOB): x =t —a;y=t—a’
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Fission: indistinguishable particles

Density for pm,n (Xm;Y,,) = ﬁfm,n(xm; y,,) for m unordered singlets with TOB in
[X, X + dx) and n unordered pairs with TOB in [y, y + dy) obeys:

8,0m,n m n
By, + Pm,n Z [Z Bm,n(aﬂi; CL;) + Mm,n(ai)] =
=i | =i

t
o 1) / I I [ e

™m

m+ 1
+ 2 ( ) > pmo1n41(Xim1, Xig1,m3 Vs %) o —1,n41 (£ — ;)

n =il

where BC’s are pm. n(Xm—1,t;y) = 0 and

5 M
Pm,n(xm;yn—la t) — E me—l,n(xi—laxi—l—l,m;yn—17 xi)ﬁm—l,n(t - xz)
1=1

n

m -+ 1 2
+ ( ) / prmt1,n—1(Xm, 23 ¥ _1)Bm+1,n—1(t — 2)dz
— o
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Fission-death process: reduced distribution

t t
pq(fs f;) (xkz§ yg; t) = / dxm k / dygq,—epm,n(xka x;n—k; y£7 ysz—e; t)

— OO0 — OO0

obeys a double hierarchy

lowest order marginals:

o
E Zmp(l O) ZU,,t m/ dxm 1/ dynpmn( m—1,2; Y3 )
0 _

m,n=0 m,n=

an(o 1) Z / dX / dyn 1pmn mayn 17y7 )

m,n=0 m,n=0
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Fission-death: lowest order closure

f B (@) = B(a) AN (@) = pla),
0X oY

Y = (2Y — X)v(¢t — =), EZ—QYW(??—JJ)
Similarly, boundary conditions become:
t
X(t,t) =0, Y(t,t) = / (X (z,t) +2Y(z,1))v(t — 2)dz = B(t)

Total population density T'(z,t) = X (x,t) + 2Y (x, t) reduces to
McKendrick-von Foerster-like equation:

%_f = —(t — 2)T, T(t,t) = /_ T(z,t)y(t — 2)dz

which can be formally solved...
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Fission model (pure birth)

-1 —
aata e at

')

mean field limit of fission model w/ birth time dist: g(t) =

as a — oo, g(t) — 6(t — 1) (discrete-time Galton-Watson process)
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Table of pros and cons

age- .
Theory stochastic agrz:[zip. stru?:tured rez?)(lav-e g algtﬁi:s budding | fission
POop.

Logistic Eq. X X X X v X X
McKendrick X v v X v v X
Master Eq. v X X X v v v
Bellman-Harris v v X X X X v
Age bins X v v X v X X
Kinetic Theory v v v v v v v
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Spatial dependence - simple diffusion

Define 5., (b.;q,,; t): density for a population containing n randomly
labelled individuals with TOBs b,, and positions q,,

pn(by;q,,;t) is invariant under particle permutations, but relative orders
of b,, and q,, must be preserved: p2(b1, b2; q1,q2;t) = pa(b2, b1;q2,q1;t)

Opn(br;q,,;t 5 - 9
i=1 =1

t
+ (n+1) / dy/ dq" pr+1(bns Y5 Ay @5 ) 1 (t — ¥, 2).
— 00 R

boundary condition

n—1

1
nbn—at; 7t:_ n— bn—7 —7t t_bzaz(s n -~ Y )
prn(bn_1,t;d,,;t) n;:lp 1(bn—1:q,_1:t)B( ¢)0(qn — q;)
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Spatial dependence: formal solution

t
+ (n+1)Un_1/ dy/dz pr+1(Br, Y5y 258 pint1 (¢ — y, 2),
— 00 R

where

n

t
Un(bnaqn7t07t) — €Xp [_ Z/ f}/n(s _ bzan)dS]

i—1 Y to
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Summary & Conclusions

® Developed a new fully stochastic age-structured theory
® Kinetic theory for marginal densities leads to BBGKY hierarchy
® Theory handles both age- and population-dependent processes

® Branching/fission processes requires additional n dimensions:
Pm.n(Xm;Y,,; t) and double hierarchy

® Generalizes McKendrick egn to fission
® Spatial dynamics easily incorporated

®* Many limiting analytic and asymptotic solutions accessible

More details in:
Greenman and Chou, PRE, 93, 012112, (2016)
Chou and Greenman, J. Stat. Phys., 164, 49-76, (2016)
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Kinetic solutions: simplifying cases

e pure death (8 = 0): to = 0, pp(@, —t;0) = p(n) [[;—, 9(a; — t), and
pn(a) = pla):

t e k
pn(@n; 1) = U(@n; 0:6) [ atai—0) 3 (" F)otnk [ [ow=5 [ U(y;o;sm)dyds}
=1 k=0 0

e pure birth (x = 0). Use birth BC and use U (a,,; 0;t) between births:

pn(a'm t) — %Un(afnﬁ by; t)pn—l(an—l — Qp;t — an) Z;-:ll Bn—l(ai — an)-
Assuming 5, (a) = 8(a), chose to > b; and iterate back in time:

k—1
pn(@n;t) =gm(an —t)U am,Ot H Ul(ay; bt Zﬁ(&e—&k)

k m-+1 /=1
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Kinetic equations: solutions

Formally p,,(t — b,,;t) along characteristics starting from initial time ¢y:

pn(an§ t) — (a'm lo; )pn (t - tO) tO)
t 00
(n+1) / Up(a,;t';t) [/ tni1(Y)pnir(@, — (& —1t'), y;t’)dy] dt’,
to 0
in which

Up(a,;t'; —eXp[ Z/vn ts))ds]

U, (@m; to; t')Un(@m; to; t)

is the propagator for any set of m < n individuals from time ¢’ to ¢.

Recursion can be “solved” and simplified in certain limits...
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