Random Long Time Dynamics for Large Systems of Interacting Oscillators

Giambattista Giacomin

Université Paris Diderot and Laboratoire Probabilités et Modèles Aléatoires (LPMA)

May 22nd 2017

Overview: motivations

Aim of the talk

large time dynamics of systems of a large number N of interacting units

- Well known: large number of interacting units \Longrightarrow PDE limit, when $N \to \infty$ and on a finite time horizon
- Is this PDE limit relevant for the large time dynamics of the finite N system? There is a clash behind the double appearance of large in the key sentence of this page
- In order to be concrete: focus on the limited set-up of interacting oscillators
- I will talk of (some sort of) mean field interactions:
 - exceptional results have been obtained with interactions of local type
 - but the mean field case allows to tackle a much larger spectrum of phenomenologies (phase transitions, pattern formations,...)
 - local interactions are often not the most natural from the modeling viewpoint, notably in life sciences

Focus on interacting rotator - Kuramoto model

$$d\varphi_j(t) = \omega_j dt + \frac{1}{N} \sum_{i=1}^N J_{i,j} (\varphi_j(t) - \varphi_i(t)) dt + \sigma dw_j(t)$$
 (SD)

for $j = 1, 2, \dots, N$, where

- $\sigma \geq 0$ and $\{w_j(\cdot)\}_{j=1,2,...}$ are IID standard Brownian motions (dynamical noise, with law **P**)
- $J_{i,j}(\cdot) := -K_{i,j}\sin(\cdot), \ K_{i,j} \geq 0$
- ω_j are real numbers often chosen randomly as a sequence of independent identically distributed random variables (*disorder*, with law \mathbb{P})

The $\varphi_j(t)$ are actually angles $(\to \varphi_j(t) \bmod (2\pi) \in \mathbb{S})$ so $\{\varphi_j(\cdot)\}_{j=1,...,N}$ may/should be viewed as a diffusion process on a manifold (degenerate if $\sigma = 0$) and: ω_j natural frequencies

table of contents

$$\mathrm{d}\varphi_j(t) = \omega_j\,\mathrm{d}t - \frac{1}{N}\sum_{i=1}^N K_{i,j}\sin\left(\varphi_j(t) - \varphi_i(t)\right)\,\mathrm{d}t + \sigma\,\mathrm{d}w_j(t)$$

- Basic (stochastic) case: $\sigma = 1$, $K_{i,j} = K$, $\omega_j = \omega$ (hence $\omega = 0$ by a change of variables). This a statistical mechanics model: mean field plane rotators or mean field XY model
- stochastic Kuramoto model: prototype model for synchronization phenomena
- Inhomogeneous graph interaction

table of contents

$$\mathrm{d}\varphi_j(t) = \omega_j \, \mathrm{d}t - \frac{1}{N} \sum_{i=1}^N K_{i,j} \sin(\varphi_j(t) - \varphi_i(t)) \, \mathrm{d}t + \sigma \, \mathrm{d}w_j(t)$$

- Basic (stochastic) case: $\sigma = 1$, $K_{i,j} = K$, $\omega_j = \omega$ (hence $\omega = 0$ by a change of variables). This a statistical mechanics model: mean field plane rotators or mean field XY model
- stochastic Kuramoto model: prototype model for synchronization phenomena
- Inhomogeneous graph interaction

For each of the items the scheme is:

- $N \to \infty$ limit for $t \in [0, T]$, T arbitrary but fixed
- Analysis of the case T = T(N), with $\lim_{N\to\infty} T(N) = \infty$

Fundamental symmetry

The model is rotation invariant.

Basic stochastic case: mean field XY model

$$K_{i,j}=K$$
, $\omega_j\equiv 0$ (and $\sigma=1$):

- The model has a unique invariant probability with a smooth density (with respect to the unifom measure on \mathbb{S}^N) and, for every initial condition, the law of the system converges to this invariant measure
- The density of the invariant probability is proportional to

$$\exp\left(\frac{K}{N}\sum_{i,j=1}^{N}\cos(\varphi_i-\varphi_j)\right)$$

Note that the rotation invariance is inherited by the invariant measure.

- The stationary dynamics is stochastically reversible, that is the law of $\{\varphi_t\}_{t\in[0,T]}$ coincides with the law of $\{\varphi_{T-t}\}_{t\in[0,T]}$.
- A reversible model is an equilibrium statistical mechanics model and a world of tools opens (at the expense of a richer phenomenology).

About representing φ

$$d\varphi_j(t) = \frac{1}{N} \sum_{i=1}^N J(\varphi_j(t) - \varphi_i(t)) dt + \sigma dw_j(t)$$
 (SD)

Useful tool for N large: the empirical measure

$$u_{N,t}(d\theta) = \frac{1}{N} \sum_{j=1}^{N} \delta_{\varphi_j(t)}(d\theta)$$

About representing φ

$$d\varphi_j(t) = \frac{1}{N} \sum_{i=1}^N J(\varphi_j(t) - \varphi_i(t)) dt + \sigma dw_j(t)$$
 (SD)

Useful tool for N large: the empirical measure

$$u_{N,t}(d\theta) = \frac{1}{N} \sum_{j=1}^{N} \delta_{\varphi_j(t)}(d\theta)$$

The empirical measure and the $N \to \infty$ limit

We start with

$$d\varphi_j(t) = -\frac{K}{N} \sum_{i=1}^{N} \sin(\varphi_j(t) - \varphi_i(t)) dt + \sigma dw_j(t)$$
 (SD)

If $\lim_{N\to\infty} \nu_{N,0}(d\theta) = p_0(\theta) d\theta$ then $\lim_{N\to\infty} \nu_{N,t}(d\theta) = p_t(\theta) d\theta$

$$\partial p_t(\theta) = \frac{\sigma^2}{2} \partial_{\theta}^2 p_t(\theta) - \partial_{\theta} \left[p_t(\theta) (J * p_t)(\theta) \right] \quad _{\text{with }} J(\cdot) = -K \sin(\cdot) \quad \text{(FP)}$$

Important observations

- No time rescaling
- The result holds for t finite, to be precise we can consider
 ν_{N,·} ∈ C⁰([0, T]; M₁), M₁ space of probability measures with weak
 convergence, and the convergence is in this space (soft approach).
- (FP) inherits the rotation symmetry: $p_t(\cdot + \psi)$ solves (FP) too

A word about these $N \to \infty$ limits

General fact for mean field models

The evolution equation for the empirical measure is, for finite N, the (weak form of the) $N \to \infty$ PDE, plus (if $\sigma > 0$) a stochastic term whose quadratic variation vanishes as $N \to \infty$.

The empirical measure and the $N \to \infty$ limit

We start with

$$d\varphi_j(t) = -\frac{K}{N} \sum_{i=1}^{N} \sin(\varphi_j(t) - \varphi_i(t)) dt + \sigma dw_j(t)$$
 (SD)

If $\lim_{N\to\infty} \nu_{N,0}(d\theta) = p_0(\theta) d\theta$ then $\lim_{N\to\infty} \nu_{N,t}(d\theta) = p_t(\theta) d\theta$

$$\partial p_t(\theta) = \frac{\sigma^2}{2} \partial_{\theta}^2 p_t(\theta) - \partial_{\theta} \left[p_t(\theta) (J * p_t)(\theta) \right] \quad _{\text{with }} J(\cdot) = -K \sin(\cdot) \quad \text{(FP)}$$

Important observations

- No time rescaling
- The result holds for t finite, to be precise we can consider
 ν_{N,·} ∈ C⁰([0, T]; M₁), M₁ space of probability measures with weak
 convergence, and the convergence is in this space (soft approach).
- (FP) inherits the rotation symmetry: $p_t(\cdot + \psi)$ solves (FP) too
- The limit PDE result holds also for $\sigma = 0$

A word about these $N \to \infty$ limits

General fact for mean field models

The evolution equation for the empirical measure is, for finite N, the (weak form of the) $N \to \infty$ PDE, plus (if $\sigma > 0$) a stochastic term whose quadratic variation vanishes as $N \to \infty$. No mystery: just differentiate (in t) $\int h(\theta)\nu_{N,t}(d\theta) = \frac{1}{N}\sum_{j=1}^{N}h(\varphi_{j}(t))$ and the weak form of the PDE appears.

Consequences:

- If $\sigma = 0$ the PDE limit is therefore just the fact that (FP) is well-posed for initial data that are probability measures (Neunzert, Dobrushin 70s)
- ② If $\sigma > 0$ the argument is slightly more involved (Oelschläger 80s)

Different approach ($\sigma \geq 0$): propagation of chaos (Kac, McKean, and many others).

Long time behavior of the PDE

Two important facts for the (FP) PDE ($\sigma > 0$)

$$\partial_t p_t(\theta) = \frac{\sigma^2}{2} \partial_{\theta}^2 p_t(\theta) - \partial_{\theta} \left[p_t(\theta) (J * p_t)(\theta) \right]$$
 (FP)

- Statmech: (FP) is the gradient flow of a free energy functional
- All stationary solutions are up to rotation invariance

$$q(\theta) \propto \exp(2Kr\cos(\theta))$$
, with $r = \Psi(2Kr)$ and $\Psi(\cdot)$ explicit with $\Psi'(0) = 1/2$

On the Fokker-Planck PDE

[Bertini, G., Pakdaman 2010], [G., Pakdaman, Pellegrin 2012]

For K > 1 the stable manifold

$$M_0 := \{q(\cdot + \psi) =: q_{\psi}(\cdot) : \psi \in \mathbb{S}\}$$

attracts everything, except the stationary unstable profile $\frac{1}{2\pi}$ and whatever is attracted to it, that is

$$U := \left\{ p : \int_{\mathbb{S}} p(\theta) \exp(i\theta) d\theta = 0 \right\}$$

Long time behavior of the PDE

Two important facts for the (FP) PDE ($\sigma > 0$)

$$\partial_t p_t(\theta) = \frac{\sigma^2}{2} \partial_{\theta}^2 p_t(\theta) - \partial_{\theta} \left[p_t(\theta) (J * p_t)(\theta) \right]$$
 (FP)

- Statmech: (FP) is the gradient flow of a free energy functional
- All stationary solutions are up to rotation invariance

$$q(\theta) \propto \exp(2Kr\cos(\theta))$$
, with $r = \Psi(2Kr)$ and $\Psi(\cdot)$ explicit with $\Psi'(0) = 1/2$

For K > 1 the stable manifold

$$M_0 := \{q(\cdot + \psi) =: q_{\psi}(\cdot) : \psi \in \mathbb{S}\}$$

attracts everything, except the stationary unstable profile $\frac{1}{2\pi}$ and whatever is attracted to it, that is

$$U := \left\{ p : \int_{\mathbb{S}} p(\theta) \exp(i\theta) d\theta = 0 \right\}$$

For K > 1 the stable manifold

$$M_0 := \{q(\cdot + \psi) =: q_{\psi}(\cdot) : \psi \in \mathbb{S}\}$$

attracts everything, except the stationary unstable profile $\frac{1}{2\pi}$ and whatever is attracted to it, that is

$$U := \left\{ p : \int_{\mathbb{S}} p(\theta) \exp(i\theta) d\theta = 0 \right\}$$

$$N = 1000$$
, $K = 2$, $\sigma = 1$

N = 1000, K = 2, $\sigma = 1$

N = 1000, K = 2, $\sigma = 1$, but much faster

N = 1000, K = 2, $\sigma = 1$, but much faster

N=1000, K=2, $\sigma=1$, but much faster

Theorem (Bertini, G, Poquet (PTRF 2014), Dahms (2002))

Set (w.l.o.g.) $\sigma=1$ and choose a positive constant τ_f and a probability density $p_0(\cdot) \notin U$, so $\lim_{t\to\infty} p_t(\cdot) = q_{\psi_0}(\cdot)$. If for every $\varepsilon>0$

$$\lim_{N\to\infty} \mathbb{P}\left(\left\|\mu_{N,0} - p_0\right\|_{-1} \le \varepsilon\right) = 1$$

then for every $\varepsilon > 0$

$$\lim_{N \to \infty} \mathbb{P} \left(\sup_{\tau \in [\varepsilon_N, \tau_f]} \left\| \mu_{N, \tau N} - q_{\psi_0 + D_K B_\tau^N} \right\|_{-1} \le \varepsilon \right) \, = \, 1$$

where $\varepsilon_N := C_\varepsilon/N$ and B_\cdot^N is adapted to the processes $\tau \mapsto w_j(\tau N)$, j = 1, ..., N, and converges to a standard Brownian motion for $N \to \infty$. Moreover

$$D_K := \frac{1}{\sqrt{1 - (I_0(2Kr))^{-2}}}$$

with Io(·) the modified Bessel function of first kind and 0 order

k

The Kuramoto model is the mean field XY model with natural frequencies:

$$\mathrm{d}\varphi_j(t) = \omega_j\,\mathrm{d}t - \frac{K}{N}\sum_{i=1}^N \sin\left(\varphi_j(t) - \varphi_i(t)\right)\,\mathrm{d}t + \mathrm{d}w_j(t)$$

The Kuramoto model is the mean field XY model with natural frequencies:

$$\mathrm{d}\varphi_j(t) = \omega_j\,\mathrm{d}t - \frac{K}{N}\sum_{i=1}^N \sin\left(\varphi_j(t) - \varphi_i(t)\right)\,\mathrm{d}t + \mathrm{d}w_j(t)$$

The Kuramoto model is the mean field XY model with natural frequencies:

$$\mathrm{d}\varphi_j(t) = \omega_j\,\mathrm{d}t - \frac{K}{N}\sum_{i=1}^N \sin\left(\varphi_j(t) - \varphi_i(t)\right)\,\mathrm{d}t + \mathrm{d}w_j(t)$$

Major difference: the natural frequencies break the reversibility.

Nevertheless, the model is mean field and the evolution can be written in terms of the empirical measure

$$\nu_{N,t}(d\theta, d\omega) = \frac{1}{N} \sum_{j=1}^{N} \delta_{\varphi_j(t),\omega_j}(d\theta, d\omega)$$

and the FP PDE limit follows from the same proceudure as in the reversible case, but statistical mechanics structure is no longer available!

For every $\theta \in \mathbb{S}$ and every ω in the support of the law μ of ω_1

$$\partial_t p_t(\theta, \omega) = \frac{1}{2} \Delta p_t(\theta, \omega) - \partial_\theta \Big(p_t(\theta, \omega) (\langle J * p_t \rangle_\mu(\theta) + \omega) \Big)$$

$$\langle J * u \rangle_{\mu}(\theta) = \int_{\mathbb{R}} \int_{\mathbb{S}} J(\theta - \theta') u(\theta', \omega) d\theta \, \mu(d\omega)$$

[Kuramoto 1975],..., [Dai Pra, den Hollander 1996, Luçon 2011]

PDE is substantially more complex than the reversible case, but all stationary measures can be written if μ is symmetric in a way that is formally equivalent to the reversible case, but the fixed point problem is considerably harder.

Nevertheless one can go very far when the support of μ is discrete and in $[-\delta, \delta]$, for δ small [Luçon and Poquet AIHP 2017]: PDE validity breaks down on time scale \sqrt{N}

$$N = 700 \ (\sqrt{700} = 26.45 \dots, K = 5, \sigma = 1$$

$$N = 700 \ (\sqrt{700} = 26.45 \dots, K = 5, \sigma = 1)$$

$$N = 700 \ (\sqrt{700} = 26.45 \dots, K = 5, \sigma = 1)$$

$$N = 700 \ (\sqrt{700} = 26.45 \dots, K = 5, \sigma = 1$$

$$N = 700 \ (\sqrt{700} = 26.45 \dots, K = 5, \sigma = 1)$$

Just one example from [Delattre, G., Luçon JSP2016]

$$\mathrm{d} arphi_j(t) = i \mathcal{F}_{i=1}^{N} \mathcal{K}_{i,j} \sin \left(\varphi_j(t) - \varphi_i(t) \right) \mathrm{d} t + \sigma \, \mathrm{d} w_j(t)$$

with $K_{i,j} = K\xi_{i,j}$ and $\{\xi_{i,j}\}_{1 \leq i,j \leq N}$ an adjacency matrix:

$$\xi_{i,j} \in \{0,1\}$$
 and $\xi_{i,j} = 1$ if and only if $i \longrightarrow j$

Call $d_i = \sum_j \xi_{i,j}$ of the degree of i and assume that

$$\lim_{N} \sup_{i=1,...,N} \left| \frac{d_i}{N} - \frac{1}{2} \right| = 0$$
 Example: $\{\xi_{i,j}\}_{i,j}$ IID random variable of mean $1/2$

Nevertheless the propagation of chaos argument works and one can show that if $\{\varphi_j(0)\}_{j=1,...,N}$ are independent and identically distributed with density $p_0(\theta)$ (strong hypothesis on initial condition!)

0

Just one example from [Delattre, G., Luçon JSP2016]

$$\mathrm{d} arphi_j(t) = i \mathcal{F} \mathcal{A} t - \frac{1}{N} \sum_{i=1}^N K_{i,j} \sin \left(\varphi_j(t) - \varphi_i(t) \right) \, \mathrm{d} t + \sigma \, \mathrm{d} w_j(t)$$

with $K_{i,j} = K\xi_{i,j}$ and $\{\xi_{i,j}\}_{1 \leq i,j \leq N}$ an adjacency matrix:

$$\xi_{i,j} \in \{0,1\}$$
 and $\xi_{i,j} = 1$ if and only if $i \longrightarrow j$

Call $d_i = \sum_j \xi_{i,j}$ of the degree of i and assume that

$$\lim_{N} \sup_{i=1,...,N} \left| \frac{d_i}{N} - \frac{1}{2} \right| = 0$$
 Example: $\{\xi_{i,j}\}_{i,j}$ IID random variable of mean $1/2$

- lacktriangle Seems awfully close to the mean field case with K replaced by K/2
- Cannot write the evolution via empirical measure

Nevertheless the propagation of chaos argument works and one can show that if $\{\varphi_j(0)\}_{j=1,...,N}$ are independent and identically distributed with density $p_0(\theta)$ (strong hypothesis on initial condition!) then the empirical measure converges as $N \to \infty$ (in the same sense as before, that is for $t \in [0,T]$) to the solution of

$$\partial p_t(\theta) = \frac{\sigma^2}{2} \partial_{\theta}^2 p_t(\theta) - \partial_{\theta} \left[p_t(\theta) (J * p_t)(\theta) \right] \tag{FP}$$

with $J(\cdot) = -(K/2)\sin(\cdot)$. Other versions of this result in [Bhamidi, Budhiraja, Wu], [Chiba, Medvedev], just to mention mathematical results

I do not know how to push this result beyond times $O(\log N)$. But this is not necessarily bad because the result is VERY troublesome!

One very troublesome example: N even, $\xi_{i,j} = 1$ if and only if

$$i, j \in \{1, \dots, N/2\}$$
 or $i, j \in \{N/2 + 1, \dots, N\}$

In the sense of chaos propagation a system made of two disconnected K mean field systems is indistinguishable from a K/2 mean field system!

Sum-up and conclusions

- I have presented some systems of many interacting units (oscillators) and addressed the issue of how faithfully the PDE that emerges in the $N \to \infty$ limit captures the behavior of the finite N system.
- We have seen that on suitable time scales stochastic effects become macroscopic. For stochastic systems this is not surprising (Large Deviations!), but the deviations we presented happen on a much shorter time scale than the exp(cN) scale of Large Deviations.

Ò

The inhomogeneous graph case

Nevertheless the propagation of chaos argument works and one can show that if $\{\varphi_j(0)\}_{j=1,...,N}$ are independent and identically distributed with density $p_0(\theta)$ (strong hypothesis on initial condition!) then the empirical measure converges as $N \to \infty$ (in the same sense as before, that is for $t \in [0,T]$) to the solution of

$$\partial p_t(\theta) = \frac{\sigma^2}{2} \partial_{\theta}^2 p_t(\theta) - \partial_{\theta} \left[p_t(\theta) (J * p_t)(\theta) \right] \tag{FP}$$

with $J(\cdot) = -(K/2)\sin(\cdot)$. Other versions of this result in [Bhamidi, Budhiraja, Wu], [Chiba, Medvedev], just to mention mathematical results

I do not know how to push this result beyond times $O(\log N)$. But this is not necessarily bad because the result is VERY troublesome!

One very troublesome example: N even, $\xi_{i,j} = 1$ if and only if

$$i, j \in \{1, \dots, N/2\}$$
 or $i, j \in \{N/2 + 1, \dots, N\}$

In the sense of chaos propagation a system made of two disconnected K mean field systems is indistinguishable from a K/2 mean field system!

$$N = 700 \ (\sqrt{700} = 26.45 \dots, K = 5, \sigma = 1)$$

$$N = 700 \ (\sqrt{700} = 26.45 \dots, K = 5, \sigma = 1)$$

Theorem (Bertini, G, Poquet (PTRF 2014), Dahms (2002))

Set (w.l.o.g.) $\sigma=1$ and choose a positive constant τ_f and a probability density $p_0(\cdot) \notin U$, so $\lim_{t\to\infty} p_t(\cdot) = q_{\psi_0}(\cdot)$. If for every $\varepsilon>0$

$$\lim_{N\to\infty} \mathbb{P}\left(\left\|\mu_{N,0} - p_0\right\|_{-1} \le \varepsilon\right) = 1$$

then for every $\varepsilon > 0$

$$\lim_{N \to \infty} \mathbb{P} \left(\sup_{\tau \in [\varepsilon_N, \tau_f]} \left\| \mu_{N, \tau N} - q_{\psi_0 + D_K B_\tau^N} \right\|_{-1} \le \varepsilon \right) \, = \, 1$$

where $\varepsilon_N := C_{\varepsilon}/N$ and B_{\cdot}^N is adapted to the processes $\tau \mapsto w_j(\tau N)$, j = 1, ..., N, and converges to a standard Brownian motion for $N \to \infty$. Moreover

$$D_{K} := \frac{{}^{\circ} 1}{\sqrt{1 - (I_{0}(2Kr))^{-2}}}$$

with I₀(·) the modified Bessel function of first kind and 0 order

N=1000, K=2, $\sigma=1$, but much faster

On the Fokker-Planck PDE

[Bertini, G., Pakdaman 2010], [G., Pakdaman, Pellegrin 2012]

For K > 1 the stable manifold

$$M_0 := \{q(\cdot + \psi) =: q_{\psi}(\cdot) : \psi \in \mathbb{S}\}$$

attracts everything, except the stationary unstable profile $\frac{1}{2\pi}$ and whatever is attracted to it, that is

$$U := \left\{ p : \int_{\mathbb{S}} p(\theta) \exp(i\theta) d\theta = 0 \right\}$$

0

Long time behavior of the PDE

Two important facts for the (FP) PDE ($\sigma > 0$)

$$\partial_t p_t(\theta) = \frac{\sigma^2}{2} \partial_{\theta}^2 p_t(\theta) - \partial_{\theta} \left[p_t(\theta) (J * p_t)(\theta) \right] \tag{FP}$$

- Statmech: (FP) is the gradient flow of a free energy functional
- All stationary solutions are up to rotation invariance

$$q(\theta) \propto \exp(2Kr\cos(\theta))$$
, with $r = \Psi(2Kr)$ and $\Psi(\cdot)$ explicit with $\Psi'(0) = 1/2$

For K > 1 the stable manifold

$$M_0 := \{q(\cdot + \psi) =: q_{\psi}(\cdot) : \psi \in \mathbb{S}\}$$

attracts everything, except the stationary unstable profile $\frac{1}{2\pi}$ and whatever is attracted to it, that is

$$U := \left\{ p : \int_{\mathbb{S}} p(\theta) \exp(i\theta) d\theta = 0 \right\}$$

$$N=\infty$$
 (Fokker-Planck), $K=2$, $\sigma=1$

$$N = 1000$$
, $K = 2$, $\sigma = 1$

Theorem (Bertini, G, Poquet (PTRF 2014), Dahms (2002))

Set (w.l.o.g.) $\sigma=1$ and choose a positive constant τ_f and a probability density $p_0(\cdot) \notin U$, so $\lim_{t\to\infty} p_t(\cdot) = q_{\psi_0}(\cdot)$. If for every $\varepsilon > 0$

$$\lim_{N\to\infty} \mathbb{P}\left(\left\|\mu_{N,0} - p_0\right\|_{-1} \le \varepsilon\right) = 1$$

The stochastic Kuramoto model

The Kuramoto model is the mean field XY model with natural frequencies:

$$d\varphi_j(t) = \omega_j dt - \frac{K}{N} \sum_{i=1}^N \sin(\varphi_j(t) - \varphi_i(t)) dt + dw_j(t)$$

Major difference: the natural frequencies break the reversibility.

Nevertheless, the model is mean field and the evolution can be written in terms of the empirical measure

$$\nu_{N,t}(d\theta, d\omega) = \frac{1}{N} \sum_{j=1}^{N} \delta_{\varphi_j(t),\omega_j}(d\theta, d\omega)$$

and the FP PDE limit follows from the same proceudure as in the reversible case, but statistical mechanics structure is no longer available!

The stochastic Kuramoto model

For every $\theta \in \mathbb{S}$ and every ω in the support of the law μ of ω_1

$$\partial_t p_t(\theta, \omega) = \frac{1}{2} \Delta p_t(\theta, \omega) - \partial_\theta \Big(p_t(\theta, \omega) (\langle J * p_t \rangle_\mu(\theta) + \omega) \Big)$$

$$\langle J * u \rangle_{\mu}(\theta) = \int_{\mathbb{R}} \int_{\mathbb{S}} J(\theta - \theta') u(\theta', \omega) d\theta \, \mu(d\omega)$$

[Kuramoto 1975],..., [Dai Pra, den Hollander 1996, Luçon 2011]

PDE is substantially more complex than the reversible case, but all stationary measures can be written if μ is symmetric in a way that is formally equivalent to the reversible case, but the fixed point problem is considerably harder.

Nevertheless one can go very far when the support of μ is discrete and in $[-\delta, \delta]$, for δ small [Luçon and Poquet AIHP 2017]: PDE validity breaks down on time scale \sqrt{N}

The inhomogeneous graph case

Just one example from [Delattre, G., Luçon JSP2016]

$$\mathrm{d}\varphi_j(t) = \omega_j \mathrm{d}t - \frac{1}{N} \sum_{i=1}^N K_{i,j} \sin(\varphi_j(t) - \varphi_i(t)) \, \mathrm{d}t + \sigma \, \mathrm{d}w_j(t)$$

$$N = 700 \ (\sqrt{700} = 26.45 \dots, K = 5, \sigma = 1$$

$$N = 700 \ (\sqrt{700} = 26.45 \dots, K = 5, \sigma = 1)$$

