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Overview:motivations

Aim of the talk

large time dynamics of systems of a large number N of interacting units

@ Well known: large number of interacting units = PDE limit, when
N — oo and on a finite time horizon

@ Is this PDE limit relevant for the large time dynamics of the finite NV
system? There is a clash behind the double appearance of large in the
key sentence of this page

@ In order to be concrete: focus on the limited set-up of interacting
oscillators

@ | will talk of (some sort of) mean field interactions:

@ exceptional results have been obtained with interactions of local type

@ but the mean field case allows to tackle a much larger spectrum of
phenomenologies (phase transitions, pattern formations,...)

o local interactions are often not the most natural from the modeling
viewpoint, notably in life sciences
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Focus on interacting rotator — Kuramoto model

N
1
dgj(t) = widt + & ; Ji i (0;(t) — pi(t)) dt + o dw;(t) (SD)

for j =1,2,..., N, where

Q@ o > 0and {w;(-)};=12... are lID standard Brownian motions
(dynamical noise, with law P)

e JIJ() . — —K;J sin(-), K;'J' :j’ 0
@ w; are real numbers often chosen randomly as a sequence of

independent identically distributed random variables (disorder, with
law P)

The ¢j(t) are actually angles (— ¢j(t)mod(27) € S) so {¥;(-)}j=1...N
may/should be viewed as a diffusion process on a manifold (degenerate if
o = 0) and: w; natural frequencies
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table of contents

N
1 .
dyj(t) = wjdt — N E Kijsin(pj(t) — i(t)) dt + odw;(t)

=1

@ Basic (stochastic) case: 0 =1, Kij = K, wj = w (hence w =0 by a
change of variables). This a statistical mechanics model: mean field
plane rotators or mean field XY model

@ stochastic Kuramoto model: prototype model for synchronization
phenomena

@ Inhomogeneous graph interaction
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table of contents

N
1 .
(1@:J'(f) = Wj dt — N ,,_E : Kf-j sin ({fﬂj(f) — a‘,:‘;(t)) dt + admg-(t)

@ Basic (stochastic) case: 0 =1, Kij = K, wj = w (hence w =0 by a
change of variables). This a statistical mechanics model: mean field
plane rotators or mean field XY model

@ stochastic Kuramoto model: prototype model for synchronization
phenomena

@ Inhomogeneous graph interaction
For each of the items the scheme is:
@ N — oo limit for t € [0, T|, T arbitrary but fixed
@ Analysis of the case T = T(N), with limy_o T(N) = ¢

Fundamental symmetry

The model is rotation invariant.
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Basic stochastic case: mean field XY model

Kij =K, wj=0(and 0 =1):

@ [ he model has a unique invariant probability with a smooth density
(with respect to the unifom measure on SV) and, for every initial
condition, the law of the system converges to this invariant measure

@ T he density of the invariant probability is proportional to

K N
exp | - Z cos(w; — ;)
Ii=1
Note that the rotation invariance is inherited by the invariant
measure.
@ The stationary dynamics is stochastically reversible, that is the law of
{¢t}eelo, 7] coincides with the law of {1 _¢}eclo,7]-
Q@ A reversible model is an equilibrium statistical mechanics model and a
world of tools opens (at the expense of a richer phenomenology).
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About representing ¢

N
1
= =3 J(e(t) - eilt) de+odwi(t) (D)
=1
Useful tool for N large: the empirical measure

1
vn (dO) = WZ (1) ()
=1
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About representing ¢

N
dy;(t Z (9i(t) — @i(t)) dt + o dw;(t) (SD)
Useful tool for N large: the empirical measure

1
vn +(dO) = NZ , (6)(d0)
=1
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The empirical measure and the N — oo limit

We start with

dipj(t) = 7 D sin (5(t) = i(1)) dt + o dwy(2) (SD)

If iMoo vn0( d0) = po(0) 6 then limp_ss0 vn ¢(d0) = pe(6) A0

ope(0) = ;f)gpr((v') — Iy [pe(0)(J * pe)(0)]  win J(-) = —K'sin(-)  (FP)

Important observations

@ No time rescaling

@ T he result holds for t finite, to be precise we can consider
vn.. € CO([0, T]; M1), M1 space of probability measures with weak
convergence, and the convergence is in this space (soft approach).

@ (FP) inherits the rotation symmetry: p.(- + 1)) solves (FP) too
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A word about these N — oo limits

General fact for mean field models

The evolution equation for the empirical measure is, for finite N, the
(weak form of the) N — oo PDE, plus ( if & > 0 ) a stochastic term
whose quadratic variation vanishes as N — oc.

G.G. (Paris Diderot and LPMA) SIAM DS 2017 - Snowbird, Utah 8 /20




The empirical measure and the N — oo limit

We start with

dpj(t) = —= ) sin(pj(t) — @i(t)) dt + o dw;(t) (SD)

If iMoo vn0( d0) = po(0) 6 then limp_ss0 vn ¢(d0) = pe(6) dO

Ope(0) = %f’)gpr(()') — 9 [pe(0)(J % pe)(0)] wim J(-) = —Ksin(-)  (FP)

Important observations

@ No time rescaling

@ T he result holds for t finite, to be precise we can consider
vn.. € CO([0, T]; M1), M1 space of probability measures with weak
convergence, and the convergence is in this space (soft approach).

@ (FP) inherits the rotation symmetry: p;(- + ) solves (FP) too
@ The limit PDE result holds also for 0 = 0
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A word about these N — oo limits

General fact for mean field models

The evolution equation for the empirical measure is, for finite N, the
(weak form of the) N — oo PDE, plus ( if ¢ > 0 ) a stochastic term
whose quadratic variation vanishes as N — oo. No mystery: just
differentiate (in t) [ h(0)vn (d0) = % Zﬁ__l h(pj(t)) and the weak form
of the PDE appears.

Consequences:

Q@ If 0 =0 the PDE limit is therefore just the fact that (FP) is

well-posed for initial data that are probability measures (Neunzert,
Dobrushin 70s)

@ If o > 0 the argument is slightly more involved (Oelschlager 80s)

Different approach (o > 0): propagation of chaos (Kac, McKean, and
many others).
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Long time behavior of the PDE

Two important facts for the (FP) PDE (¢ > 0)

0.2
Depe(0) = ?ngr(ﬁ) — 9 [pe(0)(J * pt)(0)] (FP)

@ Statmech: (FP) is the gradient flow of a free energy functional
Q All stationary solutions are up to rotation invariance

q(6) o< exp(2Kr cos(f)). with r = W(2Kr) and v(.) explicit with w'(0) = 1/2
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O n the FOk ker_ Pla an P DE [Bertini, G., Pakdaman 2010], [G., Pakdaman, Pellegrin 2012]

For K > 1 the stable manifold
Mo :={q(- +¥) =: qu(-) : ¥ € S}

attracts everything, except the stationary unstable profile z%r and whatever
Is attracted to it, that is

U= {p ; ] p(6) exp(i6) df 0}

S
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Long time behavior of the PDE

Two important facts for the (FP) PDE (¢ > 0)
2
o

3 3§pr(6’) — 9 [pe(0)(J * pt)(0)] (FP)

c‘?rpt(9) —

@ Statmech: (FP) is the gradient flow of a free energy functional
Q All stationary solutions are up to rotation invariance

q(6) o< exp(2Kr cos(f)). with r = W(2Kr) and v(.) explicit with w'(0) = 1/2
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O n the FOk ke - Pla an P DE [Bertini, G., Pakdaman 2010], [G., Pakdaman, Pellegrin 2012]
For K > 1 the stable manifold
Mo = {q(- +v¥) =: qy(-) : ¥ €S}
attracts everything, except the stationary unstable profile 2% and whatever
Is attracted to it, that is
U i= {p : ] p(#)exp(if)dh = O}
S
- MD [ i
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0 g 0 7
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N=1000. K =2. 6 =1

000 time unite
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0.0
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N=1000. K =2. g =1

015 time units
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N = 1000, K = 2, 0 = 1, but much faster

000 time units
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N = 1000, K =2, 0 = 1, but much faster

67710 time units
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N = 1000, K =2, 0 = 1, but much faster

000 time units
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Theorem (Bertini, G, Poquet (PTRF 2014), Dahms (2002))

Set (w.l.o.g.) o =1 and choose a positive constant ¢ and a probability
density po(-) € U, so lim¢_oo pt(:) = qu,(+). If for every £ > 0

im P (|luno— poll_y <€) =1

N— oo
SE =1
=)

where =y := C./N and B is adapted to the processes T+ w;(TN),

Jj=1.....N, and converges to a standard Brownian motion for N — oc.
Moreover

then for every € > 0

lim IP( sup
N— oo re

HN,7N — Qy+Dyx BN
[en 7]

1

D K = with lg(-) the modified Bessel function of first kind and 0 order

V1 (lo(2Kr))~? ..
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The stochastic Kuramoto model

The Kuramoto model is the mean field XY model with natural frequencies:

N
K .
dpj(t) = wjdt — N E : sin (pj(t) — wi(t)) dt + dw;(t)
=
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The stochastic Kuramoto model

The Kuramoto model is the mean field XY model with natural frequencies:

N
K .
dpj(t) = wjdt — N E : sin (pj(t) — wi(t)) dt + dw;(t)
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The stochastic Kuramoto model

The Kuramoto model is the mean field XY model with natural frequencies:

N
K .
dpj(t) = wjdt — N ;:1 sin (pj(t) — i(t)) dt + dw;(t)

Major difference: the natural frequencies break the reversibility.

Nevertheless, the model is mean field and the evolution can be written in
terms of the empirical measure

N
vn.e(df, dw) = %Z (Fﬁ.(r).b_r.j(dﬁ, dw)

J

and the FP PDE limit follows from the same proceudure as in the
reversible case, but statistical mechanics structure is no longer ayailable!
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The stochastic Kuramoto model

For every 6§ € S and every w in the support of the law u of wy

0ipe(8,) = SLp(6) = O (pr(e.w)(u * pu(6) + )

(S u), (6 // 0 — 0\ u(6,w) db p( dw)

[Kuramoto 1975],... , [Dai Pra, den Hollander 1996, Lucon 2011]

PDE is substantially more complex than the reversible case, but all
stationary measures can be written if 1 is symmetric in a way that is
formally equivalent to the reversible case, but the fixed point problem is

considerably harder.

Nevertheless one can go very far when the support of 1« is discrete and in
[—4, 0], for  small [Lugcon and Poquet AIHP 2017]: PDE validity breaks
down on time scale v/N .

G.G. (Paris Diderot and LPMA) SIAM DS 2017 - Snowbird, Utah 16 / 20




1.5

G.G. (Paris Diderot and LPMA) SIAM DS 2017 - Snowbird, Utah 17 / 20



N =700 (/700 =26.45..., K=5,0=1

T — 49.9 w = +1 I
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N =700 (v/700 =26.45..., K=5,0=1
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The inhomogeneous graph case

Just one example from [Delattre, G., Lugon JSP2016]

N
1 .
dpj(t) = Bl — 15 3 Kijsin (5(t) — i(2) dt + o dwy(t)
=1

with K;; = K¢ j and {&;j}1<ij<n an adjacency matrix:
§&i€{0,1} and & ;=1 if and only if i —> j
Call d; = ZJ- ¢ij of the degree of / and assume that

lim sup -
5 ey
N j=1..N 2

=10 Example: {&; ;}; ; IID random variable of mean 1/2

&
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The inhomogeneous graph case

Nevertheless the propagation of chaos argument works and one can show
that if {¢j(0)};=1...n are independent and identically distributed with
density po(€) (strong hypothesis on initial condition!)
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The inhomogeneous graph case

Just one example from [Delattre, G., Lugon JSP2016]

N
dgj(t) = Bl — 3 Kijsin(5(t) — oi(t)) dt + o dw(2)
=1

with K;; = K¢ j and {&;j}1<ij<n an adjacency matrix:
§j€40,1} and & ;=1 ifandonly if i —
Call d; = ZJ- ¢ij of the degree of / and assume that

lim  sup 43
N j=1..N 2

= Example: {&; ;}; ; IID random variable of mean 1/2

@ Seems awfully close to the mean field case with K replaced by K /2

@ Cannot write the evolution via empirical measure
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The inhomogeneous graph case

Nevertheless the propagation of chaos argument works and one can show
that if {¢j(0)};=1...n are independent and identically distributed with
density po(#) (strong hypothesis on initial condition!) then the empirical
measure converges as N — oo (in the same sense as before, that is for

t € [0, T]) to the solution of

0.2

9pe(0) = Z-53pe(0) — 00 [pe(0)(J * po)(6) (FP)
with J(-) = —(K /2)sin(-). Other versions of this result in [Bhamidi,

Budhiraja, Wu], [Chiba, Medvedev], just to mention mathematical results

| do not know how to push this result beyond times O(log N). But this is
not necessarily bad because the result is VERY troublesome!

One very troublesome example: N even, & ; = 1 if and only if
i,ye{l,....N/2} or i,je{N/2+1,...,N}

In the sense of chaos propagation a system made of two disconnected K

mean field systems is indistinguishable from a K /2 mean field system!
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Sum-up and conclusions

@ | have presented some systems of many interacting units (oscillators)
and addressed the issue of how faithfully the PDE that emerges in the
N — oo limit captures the behavior of the finite N system.

@ We have seen that on suitable time scales stochastic effects become
macroscopic. For stochastic systems this is not surprising (Large
Deviations!), but the deviations we presented happen on a much
shorter time scale than the exp(c/N) scale of Large Deviations.
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The inhomogeneous graph case

Nevertheless the propagation of chaos argument works and one can show
that if {¢j(0)};=1....n are independent and identically distributed with
density po(#) (strong hypothesis on initial condition!) then the empirical
measure converges as N — oo (in the same sense as before, that is for
t € [0, T]) to the solution of

2

aPt(Q) == ?5§Pt(9) — Oy [pr(ﬁ)(J * Pt)(é’])] (FP)

with J(-) = —(K/2)sin(-). Other versions of this result in [Bhamidi,
Budhiraja, Wu], [Chiba, Medvedev], just to mention mathematical results

| do not know how to push this result beyond times O(log ). But this is
not necessarily bad because the result is VERY troublesome!

One very troublesome example: N even, §;; = 1 if and only if
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mean field systems is indistinguishable from a K /2 mean field system!
G.G. (Paris Diderot and LPMA) SIAM DS 2017 - Snowbird, Utah 19 / 20




1.5 f

17 f 20
. s sk B Tl -I-i L.ITHII'&

VIA) SIAM DS 2017 — Snowbird,

ST Iy = 2 S - I.-i [ F] [.ﬂ.‘L‘]'!.L I| g |

G.G. (Parns Diderot ant )



1.5 f

17 f 20
. s sk B Tl -I-i L.ITHII'&

VIA) SIAM DS 2017 - Snowbird,

ST Iy = 2 S - I.-i [ F] [.ﬂ.‘L‘]'!.L I| g |

G.G. (Parns Diderot ant )



Theorem (Bertini, G, Poquet (PTRF 2014), Dahms (2002))

Set (w.l.o.g.) o =1 and choose a positive constant ¢ and a probability
density po(:) € U, so lim¢_oo pe(-) = qu,(+). If for every £ > 0

im P (|luno—poll_y <) =1

N—oc
<e|] =1
—1

where sy = C./N and BN is adapted to the processes T+ w;(TN),

Jr=llicn s N, and converges to a standard Brownian motion for N — oo.
Moreover

then for every £ > 0

lim ]F’( sup
N— oo re

HN. 7N — q*i;*g—k Dk B;ﬂ."':
{EN.Tf]

_ ] 1
J/1— (lo(2Kr))™2
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N = 1000, K = 2, 0 = 1, but much faster

000 time units
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On the FOk ke - Pla an P DE [Bertini, G., Pakdaman 2010], [G., Pakdaman, Pellegrin 2012]

For K > 1 the stable manifold
Mo == {q(- +v) =2 qy(-) : ¥ €S}

attracts everything, except the stationary unstable profile 2% and whatever
Is attracted to it, that is

U= {p ; ] p(6) exp(i6) df 0}

S
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Long time behavior of the PDE

Two important facts for the (FP) PDE (¢ > 0)
2
o

3 3§pr(6’) — 9 [pe(0)(J * pt)(0)] (FP)

c‘?rpt(9) —

@ Statmech: (FP) is the gradient flow of a free energy functional
Q All stationary solutions are up to rotation invariance

q(6) o< exp(2Kr cos(f)). with r = W(2Kr) and v(.) explicit with w'(0) = 1/2
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O n the FOk ker_ Pla an P DE [Bertini, G., Pakdaman 2010], [G., Pakdaman, Pellegrin 2012]

For K > 1 the stable manifold
M{} L {q( - L“) — QL() ; "i,';’.r - S}

attracts everything, except the stationary unstable profile 2% and whatever
Is attracted to it, that is

U= {p ; ] p(6) exp(i6) df o}

S

Po Poo
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N = oo (Fokker-Planck), K =2, 0 =1

IT=0.007T0
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N=1000, K =2, 6=1
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Theorem (Bertini, G, Poquet (PTRF 2014), Dahms (2002))

Set (w.l.o.g.) o =1 and choose a positive constant ¢ and a probability
density po(-) € U, so limi_o0 pt(:) = qu,(+). If for every = > 0

im P ([luno— poll_, <) =1

N— oo
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The stochastic Kuramoto model

The Kuramoto model is the mean field XY model with natural frequencies:

N
K
d{pj(t) = Wj dt — N Z L]../J(t pi(t)) dt + {-luw(t)

Major difference: the natural frequencies break the reversibility.

Nevertheless, the model is mean field and the evolution can be written in
terms of the empirical measure

N
1
vn.e(df, dw) = NZ (19 dw)

and the FP PDE limit follows from the same proceudure as in the
reversible case, but statistical mechanics structure is no longer available!
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The stochastic Kuramoto model

For every 6/ € S and every w in the support of the law u of wy

0p(0.) = S0P (0) - aa(pr(e @)% pi)(0) + )

(S u), (0 // 0 — 0\ u(6,w) db p( dw)

[Kuramoto 1975],... , [Dai Pra, den Hollander 1996, Lucon 2011]

PDE is substantially more complex than the reversible case, but all
stationary measures can be written if y is symmetric in a way that is
formally equivalent to the reversible case, but the fixed point problem is
considerably harder.

Nevertheless one can go very far when the support of 11 is discrete and in

[—4, 0], for 0 small [Lucon and Poquet AIHP 2017]: PDE validity breaks
down on time scale v/N
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The inhomogeneous graph case

Just one example from [Delattre, G., Lugon JSP2016]

N
1 .
dgi(t) = Bt — 1 3 Kijsin(5(2) — oi(t)) dt + o dw(1)
=1
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