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Collective motion occurs




Quantifying group dynamics is a
task suited for data science.

https://youtu.be/q27_|n3h4ka

1 .300 bacteria .
| 4 pieces info./ (frame x bacteria)
. 20 frames / second .
Izys 10 seconds
=" "’. .240,000 pieces of information .

M. Copeland, University of Wisconsin


https://youtu.be/q27Jn3h4kpE
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Dynamics are often assessed via
order parameter time series.
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Dynamics are often assessed via
order parameter time series.
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Study data via topology.

. Computational Homology
T. Kaczynski, K. Mischaikow, and M. Mrozek. (2004)

. Computing persistent homology
A. Zomorodian, G. Carlsson. Disc. & Comp. Geom. (2005)

. Barcodes: The persistent topology of data
R. Ghrist. Bull. Am. Math. Soc. (2008)

. Persistent homology: A Survey
H. Edelsbrunner, J. Harer. Contemp. Math. (2008)

. Topology and Data
G. Carlsson. Bull. Am. Math. Soc. (2009)



Step |:
Envision data as point cloud
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Step 3:
Calculate Betti numbers
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Step 4:
Find persistent homology




Step 4:
Find persistent homology
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Step 5:
Evolve in time

tn <, Mo N =
o © o o o

3 J939weded 9O5UdISISIDd

Time t



Step 5:
Evolve in time
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Order parameter time series

that look similar...
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Random initial cond. for Vicsek
model covers a three-torus.

b =(1,3,3,1,0,...)



...can have drastically different

topological signatures.
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Main points of
this tutorial-style talk:

» Topological data analysis (TDA) is a set of tools
for computing and describing the shape of data ‘/

» TDA of time series aids the classification of ‘/
large data sets arising from collective motion

* Topological time series of collective motion
models have a coherent average
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Main poin
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» Topological data analysis (TD
for computing and describing the shape of data ‘/

« TDA of time series aids the classification of ‘/
large data sets arising from collective motion

* Topological time series of collective motion
models have a coherent average



Do time series of random
processes have average homology!

Vicsek model (naive) average over n = | 000 simulations

bo > 20
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What is the homology of a
random complex?

Topology of random simplicial complexes:
A Survey (Matthew Kahle, preprint, 2014)

THEOREM 4.3. Let o > 0 be fixed, p = n~<,
and X ~ X(n,p). If 1/(k+1) < a<1/k, then

| Bk

as n — Q.



What is the homology of a
random complex with N finite!?

schematic
\: x| std. error

\ (10,000 trials)

\\max(std. error) = 0.001

Proximity Parameter €



Euler characteristic is known
for poisson points in the plane.

On the number of clumps resulting from
the overlap of randomly placed figures in a plane

g 0 A :—_
| Euler characteristic X(€)
(7 parameter curve) -




Dimensional analysis + limiting
behavior + machine learning!?
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List of current solutions

Size | Fit | Solution

3 10684 f(x)=sin(x)
1 10934 f(x)=0.140
5 0678 f(x)=0.833sin(x)

70639 f(x)=%4';)\‘

Quick statistics of solution:

Ready

sin(x)

Name | Train Data | Validation Data |«]
Sample Size 73 62

Fitness -0.691136  -0.684024

R-squared 0.200276  0.199706

Correlation Coeff 0.482256  0.468922

AIC 44 677848 34.731854 —
Mean Squared Error  1.698650 1.589496

Mean Absolute Frror 1 052334 1 032664 LI
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Computer-generated model

provides a reasonable fit.
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Main points of
this tutorial-style talk:

» Topological data analysis (TDA) is a set of tools ‘/
for computing and describing the shape of data

» TDA of time series aids the classification of ‘/
large data sets arising from collective motion

* Topological time series of collective motion
models have a coherent average... what is it! ‘/
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