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Main points of 
this tutorial-style talk:

• Topological data analysis (TDA) is a set of tools 
for computing and describing the shape of data

• TDA of time series aids the classification of 
large data sets arising from collective motion

• Topological time series of collective motion 
models have a coherent average



Collective motion occurs 
across the natural world.



300 bacteria
4 pieces info. / (frame x bacteria)
20 frames / second
10 seconds
240,000 pieces of information

https://youtu.be/q27Jn3h4kpE

Quantifying group dynamics is a 
task suited for data science.

M. Copeland, University of Wisconsin

https://youtu.be/q27Jn3h4kpE


Vicsek’s seminal model describes 
self-driven, interacting particles.

http://youtu.be/jphRZV3oC
aI
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Dynamics are often assessed via 
order parameter time series.

Alignment order parameter:
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Dynamics are often assessed via 
order parameter time series.
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Study data via topology.

1. Computational Homology 
T. Kaczynski, K. Mischaikow, and  M. Mrozek. (2004)

2. Computing persistent homology
A. Zomorodian, G. Carlsson. Disc. & Comp. Geom. (2005)

3. Barcodes: The persistent topology of data
R. Ghrist. Bull. Am. Math. Soc. (2008)

4. Persistent homology: A Survey
H. Edelsbrunner, J. Harer. Contemp. Math. (2008)

5. Topology and Data
G. Carlsson. Bull. Am. Math. Soc. (2009)



Step 1:
Envision data as point cloud



Vietoris-Rips Complex

Step 2:
Build simplicial complex
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Step 3:
Calculate Betti numbers

b0 = 4
b1 = 1
b2 = 0
b3 = 0
etc.





Step 4:
Find persistent homology



Step 4:
Find persistent homology
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Step 5:
Evolve in time
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Step 5:
Evolve in time

0.5

0.4

0.3

0.2

0.1

0

1 2 3 4 5 6 7 8

Contour 
Realization
Of
Computed
K-dim. hole
Evolution in the  
Rips complexPe

rs
is

te
nc

e 
pa

ra
m

et
er

 ε
MS78
Topological Data Analysis of Time 
Series from Dynamical Systems
8:30-8:55 Topological Data Analysis of Stochastic Collective Motion
Chad M. Topaz, Williams College, USA

9:00-9:25 Combinatorial Approx. and Discrete-Time Dynamics
Sarah Day, College of William & Mary, USA

9:30-9:55 Classification of Pattern-Forming Systems Using Persistence 
Rachel Neville and Patrick Shipman, Colorado State University, USA 

10:00-10:25 Witness Complexes for Time Series Analysis
Nicole Sanderson, University of Colorado, USA



OPEN    ACCESS  Freely available online PLOS O N E

Locust Dynamics: Behavioral Phase Change and
Swarming
Chad M. Topaz1*, Maria R. D’Orsogna2, Leah Edelstein-Keshet3, Andrew J. Bernoff4

1 Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, Minnesota, United States of America, 2 Department of Mathematics,

California State University at Northridge, Los Angeles, California, United States of America, 3 Department of Mathematics, University of British Columbia, Vancouver, British

Columbia, Canada, 4 Department of Mathematics, Harvey Mudd College, Claremont, California, United States of America

Abstract

Locusts exhibit two interconvertible behavioral phases, solitarious and gregarious. While solitarious individuals are repelled
from other locusts, gregarious insects are attracted to conspecifics and can form large aggregations such as marching
hopper bands. Numerous biological experiments at the individual level have shown how crowding biases conversion
towards the gregarious form. To understand the formation of marching locust hopper bands, we study phase change at the
collective level, and in a quantitative framework. Specifically, we construct a partial integrodifferential equation model
incorporating the interplay between phase change and spatial movement at the individual level in order to predict the
dynamics of hopper band formation at the population level. Stability analysis of our model reveals conditions for an
outbreak, characterized by a large scale transition to the gregarious phase. A model reduction enables quantification of the
temporal dynamics of each phase, of the proportion of the population that will eventually gregarize, and of the time scale
for this to occur. Numerical simulations provide descriptions of the aggregation’s structure and reveal transiently traveling
clumps of gregarious insects. Our predictions of aggregation and mass gregarization suggest several possible future
biological experiments.
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Introduction

Outbreaks of locusts such as Schistocerca gregaria, Locusta migratoria,
and Chortoceites terminifera regularly afflict vast areas of Northern
Africa, the Middle East, Asia, and Australia. Depending on
climate and vegetation conditions, billions of voracious locusts
aggregate into destructive swarms that span areas up to a thousand
square kilometers. A flying locust swarm can travel a few hundred
kilometers per day, stripping most of the vegetation in its path
[1–4]. A recent locust plague in West Africa (2003–2005) severely
disrupted agriculture, destroying $2.5 billion in crops destined for
both subsistence and export. Despite control efforts totalling
$400 million, loss rates exceeded 50% in certain regions [5,6].
These numbers alone attest to the urgency of finding better ways
to predict, manage, and control locust outbreaks.

Between outbreaks, locusts are mainly antisocial creatures who live
in arid regions, laying eggs in breeding grounds lush with vegetation.
Resource abundance may, on occasion, support numerous hatchings,
leading to a high population density. Overcrowding at resource sites
promotes transition to a social state in a self-reinforcing process. The
social locust nymphs may display mass migration behavior. Within
the newly formed group, individuals cohere via sensory communi-
cation, whether visual, chemical, and/or mechanical [3]. Outbreaks
may be exacerbated in periods of drought, when large numbers of
locusts congregate on the same breeding or feeding grounds [7–9].

Locusts are phase polyphenic: while sharing the same genotype,
individuals may display different phenotypes [10,11] that incor-
porate variations in morphology [12], coloration [13], reproduc-
tive features [14] and, significantly, behavior [15,16]. An
individual can change from a solitarious state (preferring isolation)
to a gregarious one (seeking conspecifics). Behavioral state is plastic
[3,11,15] and strongly dependent on local population density: in
sparse surroundings, a gregarious locust transitions to the
solitarious state [15] and vice versa in crowded environments.
These phase transitions are called solitarization and gregarization.
Gregarization dominates when large numbers of locusts gather at
the same site, potentially leading to a destructive outbreak [8,9].

Locust gregarization may be induced by visual, olfactory, or
tactile cues. For the desert locust Schistocerca gregaria, the most
potent stimulus is tactile: repetitive stroking of the femora of hind
legs [15–17] functions as a crowding indicator. Mechanosensory
stimulation of leg nerves leads to serotonin cascades in the
metathoracic ganglion, and initiates gregarious behavior [16–18].
Gregarization can be induced by rubbing a locust’s hind leg for 5 s
per minute during a period of 4 hr [17]. Cessation of physical
contact leads to solitarization after 4 hr, though the degree of
solitarization achieved during that time depends on the individ-
ual’s ancestry.

Experiments and models have shed much light on how group
alignment [19–22] and group motion [23,24] depend on group
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Abstract
We apply tools from topological data analysis to two mathematical models inspired by bio-
logical aggregations such as bird flocks, fish schools, and insect swarms. Our data consists
of numerical simulation output from the models of Vicsek and D'Orsogna. These models are
dynamical systems describing the movement of agents who interact via alignment, attrac-
tion, and/or repulsion. Each simulation time frame is a point cloud in position-velocity space.
We analyze the topological structure of these point clouds, interpreting the persistent ho-
mology by calculating the first few Betti numbers. These Betti numbers count connected
components, topological circles, and trapped volumes present in the data. To interpret our
results, we introduce a visualization that displays Betti numbers over simulation time and to-
pological persistence scale. We compare our topological results to order parameters typi-
cally used to quantify the global behavior of aggregations, such as polarization and angular
momentum. The topological calculations reveal events and structure not captured by the
order parameters.

Introduction
Biological aggregations are groups of organisms such as fish schools, bird flocks, insect swarms,
and mammal herds [1–3]. Social interactions between members can play a crucial role in the
formation and behavior of these groups [4–6]. Social interactions are behaviors like attraction,
repulsion, and alignment, which are activated when one organism senses another via sight,
sound, smell, touch, or perhaps some combination of senses [7]. Aggregations take on a vast
array of morphologies: advancing fronts of running wildebeest, branched dendritic structures
of bacteria, tornado-like vortices of swimming anchovy, and much more. Beyond serving as ex-
amples of emergent pattern formation, organisms moving in groups can affect resource con-
sumption, disease transmission, and at the longest spatiotemporal scales, evolution itself [8].
Beyond the realm of biology, the understanding of biological aggregations has inspired applica-
tions from computer algorithms to robotic self-assembly [9].

Quantitative understanding of aggregations has been developed in part through mathemati-
cal modeling. Modeling of aggregations dates back (at least) to the 1950s with the seminal work
of [10], which describes the motion of individual fish as particles obeying Newton’s law. The
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Order parameter time series 
that look similar…
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Random initial cond. for Vicsek 
model covers a three-torus.
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…can have drastically different 
topological signatures.
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Do time series of random 
processes have average homology?
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What is the homology of a 
random complex?

Topology of random simplicial complexes:  
A Survey (Matthew Kahle, preprint, 2014)



What is the homology of a 
random complex with N finite?
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(10,000 trials)
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Euler characteristic is known 
for poisson points in the plane.

On the number of clumps resulting from  
the overlap of randomly placed figures in a plane

(A.M. Kellerer, J. Appl. Prob., 1983)

A. M. KELLERER 

between 0 and rr and their mean value is 7r/2. With Equation (2.4) one obtains 
therefore the last contribution to the mean total curvature of dl: 

(3.5) C4 = n27r/2 = exp(- T)sSA. 

From the sum of the four terms and with X, = c, /2r one obtains the main result. 
The mean Euler characteristic of I, i.e., the mean number of clumps minus 
entrapped voids in F is 

, = exp(- )(A(XA + sS/27T)- A As2/4rr - X)+ X 
(3.6) (3.6) =exp(- )(T(xA/a + sS/2ra) - 2As2/4ra - X)+ X. 

In cases of pragmatic importance one will usually have simply connected laminae 
and a simply connected field of view, i.e., X = 1 = X. 

It is of interest that common image-analysis systems determine, in their 
counting mode, the number of clumps minus entrapped voids, rather than the 
number of clumps. With the additional automatic determination of the area, a/, 
and the contour length, s,, the Poisson intensity, A, can therefore be estimated 
from Equations (2.1), (2.2) and (3.6), even if a and s are unknown. Knowledge of 
the mean Euler characteristic of the laminae is required; but in most applications 
one will have laminae homeomorphic to a disc, i.e. X 1. 

No corresponding formulae exist for the numbers of clumps and voids, 
separately. Their derivation requires Monte Carlo computations. Figure 2 gives 
numerical results that correspond to Figure 1. A rectangular field of view with 
side lengths 2 and 3 is assumed and random discs are generated with radii ]0, 0.41 
uniformly distributed. Xi from Equation (3.6), i.e., the mean number of clumps 
minus voids, is represented by the solid curve. The dots with standard errors are 

10 - 

Wuj -T r~ \ + voids 
5 , 

Z clumps 

clumps - voids - 

-5 I i I I 
0 1 2 3 4 5 6 

NOMINAL COVERAGE 

Figure 2. The curve gives as a function of nominal coverage, 4, the mean number of clumps minus 
voids, X, for the process exemplified in Figure 1. The points and standard errors are results for the 
mean number of clumps (U), the mean number of voids (0), and the mean number of clumps minus 

voids (*) obtained by 100 or more Monte-Carlo simulations each for different values of V 

130 

The overlap of randomly placed figures in a plane 129 

One can now compute the mean total curvature c, on aI and thus obtain Xi, 
i.e. the mean number of clumps minus enclosed voids. Figure 1 illustrates the 
situation by a realization of a Poisson process where discs of varying radii 
intersect a rectangular field of view. The uncovered boundary of the field of view 
is indicated by the broken line; the intersection, I, is marked by shading. There 
are nine clumps and one void in this example. 

CI is the sum of four terms cl to C4. The first term cl is the contribution on 
uncovered boundaries of laminae 

(3.2) cl = s,l27rxs = exp(- T)27rxAA. 

The second term is the contribution on the covered part of dF. The probability of 
a differential line element on dF to be covered is independent of its curvature, 
i.e., the mean curvature on the covered part of dF is equal to the mean curvature 
on dF. The total curvature on dF is 27rX, where X is the Euler characteristic of 
F. Therefore 

(3.3) C2 = S22rTX/S = (1 - exp( - T))27rX. 
The third contribution is from uncovered crossings between boundaries of 
laminae in F. The probability of the crossings to be uncovered is independent of 
their aperture angles, and the mean turning angle of the uncovered crossings is 
therefore equal to - r/2, i.e. the mean turning angle of all crossings under the 
condition of isotropy. Accordingly one has with Equation (2.3): 

(3.4) C3 = - n,7r/2 = -exp(- T)AA 2s2/2. 

Analogous considerations apply to the angles formed in the uncovered intersec- 
tions of boundaries of laminae with dF, except that the possible angles vary 

Figure 1. Poisson process in the plane with discs of radius uniformly dist-ibuted between 0 and 0.4. 
The field of view, F, is taken to be a rectangle of side lengths 2 and 3; its boundary is indicated by the 
broken line. The intersection, I = U n F, of the discs with F is represented by the shaded areas. This 
particular random event has been obtained with nominal coverage T = 0.6; there are nine clumps 

(shaded areas) and one void (enclosed blank area) 

Euler characteristic χ(ε) 
(7 parameter curve)

(analytical result)



Dimensional analysis + limiting 
behavior + machine learning?

f(0,N) = 1 lim
ε→∞

f(ε/L,N) = 0

χ(ε;N, L) = 1+ (N− 1)f(ε/L,N)

Eureqa
see SIAM DS15 Plenary
“Automating Discovery”

by Hod Lipson



0

300

Proximity Parameter ε0 5

χ(ε)
N = 300  
L = 25
n = 104

Computer-generated model 
provides a reasonable fit.

1+ (N− 1)e−αε2P(ε)
P(ε) = 1+ a1ε+ . . .

MSE 0.001 for P3



Main points of 
this tutorial-style talk:

✓

✓

• Topological data analysis (TDA) is a set of tools 
for computing and describing the shape of data

• TDA of time series aids the classification of 
large data sets arising from collective motion

• Topological time series of collective motion 
models have a coherent average… what is it? ✓
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Agent-based model of zebrafish stripes  
(Volkening & Sandstede 2015)

Agent-based model of locust hopper bands  
(Bernoff, Devore, Jones, Zhang & Topaz 2017)
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Diffusive signaling problems in chemoreception  
(Bernoff & Lindsay 2017)
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