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Introduction Motivation

Motivation

Phyllotaxis = Observation of regular pattern in the arrangement of leaves on a
stem.

(a) Aeonium (b) Cone (c) Sunflower
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Introduction Motivation

Fibonacci numbers and plants

8 13

8 and 13 are also two consecutive Fibonacci numbers.
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Introduction Motivation

Golden angle and plants

Figure: The angle between two consecutive leaves is ± constant: this is the
divergence angle, which is well approximated by φ≈ 137.5 deg.
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Mathematical models

The principle of Hofmeister

Hofmeister (1868) observed that the new primordia formed at the least
crowded spot.

Turing A. M. (1952) developed reaction-diffusion models to explain
patterns. These models are used in morphogenesis and in phyllotaxis
(Turing,Thornley (1975)).
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Mathematical models

Mathematical models based on the idea of repulsion

Adler I. (1974) used the idea of repulsion in a static model.

Levitov L. (1991) vortex model, using repulsive potentials. Theory based
on hyperbolic geometry, and numerical simulations which show the
emergence of Fibonacci numbers and of the Golden Angle.

Douady S. and Couder Y. (1992) proposed an experiment for the Levitov’s
model. Magnetized ferrofluid droplets fall into a pool of silicone oil. The
droplets are attracted to the edge of the pool and repel one another.
Emergence of spirals.

Kunz M. (1995). Rigorous mathematical study of these experiments using
statistical mechanics. Relations with number theory.

Atela P., Golé C. and Hotton S. (2002) Rigorous mathematical study of a
dynamical system, in the spirit of Levitov and Kunz. Strong use of
hyperbolic geometry and number theory.
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Mathematical models

The plant hormone auxin is the main actor of growth

Figure: from M. Tsiantis and A. Hay, Nature Reviews Genetics 4, 2003

Organ of a plant = leaves, flowers

Initiation of the organ on the top of the stem (meristem).
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The plant hormone auxin The plant hormone auxin

(a) Transversal section. PIN polarization soon after incipient primordium
formation. (b) External view.
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The plant hormone auxin The plant hormone auxin

Auxin accumulates in some cells, creating local hot spots of high auxin
density, which can be seen as pre-patterns
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The plant hormone auxin The plant hormone auxin

Models based on meristem elasticity and on auxin flow

Shipman P. and Newell A. (2005). New framework, more realistic and
more close to biology. Use von Karman equations from elasticity theory to
explain the regular patterns observed in plants.
Jönsson et al. (2006). First model based on experimental facts.
Mathematical model for auxin transport (the plant hormone auxin is
one of the main actors of plant growth).
Smith et al. (2006). Model of active auxin transport, with PIN proteins.
Feugier et al. (2006). Model of auxin transport based on flux, with PIN
proteins.
Stoma et al. (2008). Model of auxin transport based on flux, with PIN
proteins.
Newell A, Shipman P and Sun Z. (2007). Models coupling mechanical and
biochemical effects, based on the models of Jönsson and Smith.
Continuous limit of the model of Jönsson for auxin transport yields p.d.e.
similar to the von Karman equations.
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The plant hormone auxin The auxin flow

I:Polarization of the auxin flow toward primordia
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The plant hormone auxin The auxin flow

II: Self-organization of the vascular system

In a second step, the primordia must evacuate auxin by initiating the formation
of midveins.
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The plant hormone auxin The auxin flow

Auxin molecules and PIN proteins

Polarization of the auxin flow and PIN proteins. 7 kinds of PIN proteins.
Graph of cells (arbitrary).

Localisation of auxin molecules and PIN proteins in two neighbouring cells
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Mathematical models I. Concentration based models

Concentration based model of the auxin flow

ai = auxin concentration in cell i in mol/m3

pi = PIN concentration in cell i

pij = PIN concentration on the membrane of cell i facing cell j (1)

Cell j Cell i Cell k

[PIN] [PIN] [PIN]

[IAA] [IAA] [IAA]

... ...
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Mathematical models I. Concentration based models

Concentrations based models of auxin active transport

Equations of Jönsson et al. and Smith et al. (2006):
dai

dt
= µ−νai + D ∑

k∼i
(ak −ai) + T ∑

k∼i
(ak pki −aipik )

dpij

dt
= κ1aj pi −κ2pij

dpi

dt
= ∑

k∼i
(κ2pik −κ1ak pi) (2)

Cell j Cell i Cell k

[PIN] [PIN] [PIN]

[IAA] [IAA] [IAA]

... ...
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Mathematical models I. Concentration based models

Simplified model, self-organization of the auxin flow

Taking adiabatic limit one obtains

dai

dt
= D ∑

k∼i
(ak −ai) + T ∑

k∼i
(ak Pki −aiPik ) (3)

We will consider a simplified model where

Pki = P
ai

κ + ∑j∼k aj

Auxin molecules present in cell k move to cells i having high auxin
concentrations.
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Mathematical models I. Concentration based models

Simulation from Sahlin et al. (2009), hexagonal lattice with
diffusion, production and degradation
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Mathematical models I. Concentration based models

The concentration-based and the flux models

Figure: From Feller and Mazza, PlosOne 2015
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Mathematical models I. Concentration based models

Flux-based model of auxin transport (canalization)

Figure: From Walker, Farcot, Traas and Godin, PlosOne 2013

The flux from i to j is

Ji→j = γD(ai −aj) + γT (aipij −ajpji)

Comput. biol. group (Fribourg) Self-organization and pattern formation in auxin flow Snowbird May 2017 19 / 39



Mathematical models II. Flux based models

The flux model (simplified model)

dai

dt
= αa−βaai −

1
Vi

∑
j∼i

Si,j (γD(ai −aj) + γA(aiPi,j −ajPj,i))

dPij

dt
= Φ(Ji→j) + ρ0−µPi,j

Φ(x) = Ix>0x2 or Ix>0
xη

K η + xη

Φ is the nonlinear response function, which is increasing and non-negative.
No PIN insertion (Φ(Ji→j) = 0) when the number of incoming auxin molecules
ajpji is larger than the number of outgoing auxin molecules aipij .
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Mathematical models II. Flux based models

Flux-based model of auxin transport (canalization)

Figure: From Walker, Farcot, Traas and Godin, PlosOne 2013
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Mathematical models Two different models

There is no consensus at present time for deciding between these two
models

Should be function of the local nature of PIN proteins.
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Mathematical Analysis

Mathematical analysis

Pattern formation in auxin flux. Feller, C., Gabriel, J-P., Mazza, c. and Yerly F.
Journal of Mathematical Biology (68):879-909, 2014.

Comput. biol. group (Fribourg) Self-organization and pattern formation in auxin flow Snowbird May 2017 23 / 39



Mathematical Analysis Active auxin transport model

Simplified model

dai

dt
= D ∑

k∼i
(ak −ai) + T ∑

k∼i
(ak Pki −aiPik ) (4)

where
Pki = P

ai

κ + ∑j∼k aj
.

This system is conservative, that is,

d∑i ai(t)
dt

≡ 0.
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Mathematical Analysis Mathematical Analysis when D = 0 (pure transport process)

Equilibria when D = 0 (no diffusion)

The o.d.e. of interest is of the form

da
dt

= f (a),

with
fi(a) = ∑

k∼i

(
ak

ai

κ + ∑j∼k aj︸ ︷︷ ︸
=qki(a)

−ai
ak

κ + ∑j∼i aj︸ ︷︷ ︸
=qik (a)

)

The related equilibria solve the equation f (a) = 0, which can be rewritten as

0 = aQ(a),

where Q(a) is the Laplace operator associated with a Markov chain

Q(a)ki = qki and Q(a)kk =−∑
i 6=k

qki .
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Mathematical Analysis Mathematical Analysis when D = 0 (pure transport process)

The equation aQ(a) is in fact stating that

a = π(a),

where π(a) is the invariant measure of the the generator Q(a). Similar
problems in the theory of reinforced random walks (Pemantle(1992) and
various works of Benaïm).
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Mathematical Analysis Mathematical Analysis when D = 0 (pure transport process)

Lemma: When the graph is connected, the Markov chain is reversible and
irreducible, with

π(a) =
( aiNi

Z (a)

)
,

where
Ni(a) = κ + ∑

k∼i
ak ,

and
Z (a) = ∑

i
aiNi(a).

a = π(a) ⇔ ai ≡
aiNi

Z (a)

⇔ Ni does not depend of i.
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Mathematical Analysis Mathematical Analysis when D = 0 (pure transport process)

Let Γ be the adjacency matrix of the graph. Then

Ni independent of i⇔ Γa = c(1, · · · ,1)∗,

for some positive constant c.
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Mathematical Analysis Mathematical Analysis when D = 0 (pure transport process)

General equilibria

ai = 0, i ∈ I, ai > 0, i ∈ Ic, I ⊂ {1, · · · ,L}
induces a sub-graph of connected components gk . For each such component,
let Γk be the related adjacency matrix. Then we look for a such that

Γk a|gk = ck 1|γ.
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Figure: Black dots correspond to cells i for which a∗i = 0. In red: the various
components gk
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Mathematical Analysis Mathematical Analysis when D = 0 (pure transport process)

Stability

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
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One must check that the eigenvalues of the Jacobian matrix Df (a∗) have
negative real parts, where DF is the matrix with entries given by

∂fi
∂aj

.
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Mathematical Analysis Mathematical Analysis when D = 0 (pure transport process)

Stability of the equilibria

For any equilibria a > 0, the Jacobian matrix is

df (a) =
1

N2 diag(a)Γ(cid−diag(a)Γ).

a is stable when
ℜ(λ)≤ 0 ∀λ ∈ Spec(df (a)).
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Mathematical Analysis Mathematical Analysis when D = 0 (pure transport process)

Let Vi be the neighbourhood of i . Using spectral estimates for the spectral gap
of discrete Laplace operators and Dirichlet forms, we have proven the
Proposition: Assume that the graph is connected, of adjacency matrix Γ, and
let a be such that

Γa = c1,

be an equilibrium. a is unstable when there is a path

i0→ i1→ i2→ i3,

such both i2 and i3 avoid i0 and its neighbourhood, that is

ik 6∈ {i0}∪Vi0 , k = 2,3.

b b b b
i0 i1 i2 i3

i0

i1
i2 i3

b b

bb b
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Mathematical Analysis Stability for rectangular grids

Stable equilibrium configurations

On a rectangular grid, the stable equilibrium configurations are formed of
basic building blocks isolated in a background of auxin depleted cells.
These basic configurations are given by

b b b b b b

b

b b b b b

bb

b b b

b

b b b b b
i0 i1 i2 i3

i0

i1
i2 i3

b b

bb b

Figure: (a) All possible subgraphs γ of the two-dimensional grid that can potentially
yield l-stable configurations. (b) Any configuration a > 0 will be unstable on these two
subgraphs of the two-dimensional grid
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Mathematical Analysis Stability for rectangular grids
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Figure: A potentially stable configuration, with some components gk (in red) Such
stable equilibria do not form geometrically regular patterns.
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Mathematical Analysis Stability for rectangular grids

Figure: Simulation of the pure transport process.
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Mathematical Analysis Stability for rectangular grids

Real auxin patterns on a meristem
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Mathematical Analysis Stability for rectangular grids

Stable configurations for small production and degradation

Figure: Stable configurations for small production and degradation rates
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Mathematical Analysis Stability for rectangular grids

Conclusion

The stable equilibria are composed of basic building blocks that are
isolated in a background of auxin depleted cells. For pure transport
processes, the stable equilibria do not exhibit geometrical regularities in
general.

Geometrically regular patterns might be obtained by developing
mathematical models that include auxin flow and meristem elasticity.
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Thank you for your attention !
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