#### 2017 SIAM Conference on Dynamical Systems Topological Data Analysis of Time Series from Dynamical Systems Snowbird, 23rd May 2017

## The Conley Index for Sampled Dynamical Systems



Marian Mrozek

Jagiellonian University, Kraków, Poland

#### Based on research in collaboration with:

B. Batko, T. Dey, M. Juda, T. Kaczynski, T. Kapela, J. Kubica and Th. Wanner

# **Sampled Dynamics 3**



#### Topology of finite sets. 4

-- --



$$H^{\kappa}(A) := H(\operatorname{cl} A, \operatorname{mo} A)$$

#### Combinatorial Vectors and Multivectors 5

A multivector is a convex  $V \subset X$ .







V is regular if  $H(\operatorname{cl} V, \operatorname{mo} V) = 0$ .







V is critical if  $H(\operatorname{cl} V, \operatorname{mo} V) \neq 0$ .

#### Combinatorial multivector fields 6

A multivector field is a partition  $\mathcal{V}$  of X into multivectors.



#### ${\mathcal V}$ -digraph:

- Vertices: elements of X
- An edge from x to y:
  - explicit: if  $\dim x < \dim y$  and  $y \in [x]$
  - implicit: if  $\dim x > \dim y$  and  $y \in \operatorname{mo}[x]$
  - implicit critical: if  $\dim x \geqslant \dim y$ ,  $y \in [x]$  and [x] is critical

The multivalued map  $\Pi_{\mathcal{V}}: X \rightrightarrows X$  assigns to x all endpoints of edges originating from x.

#### Solutions and paths 8

A partial map  $\gamma: \mathbb{Z} \longrightarrow X$  is a solution of  $\mathcal{V}$  if it is a walk in the  $\mathcal{V}$ -digraph, that is:

$$\gamma(i+1) \in \Pi_{\mathcal{V}}(\gamma(i)) \text{ for } i, i+1 \in \text{dom } \gamma.$$



#### Isolating blocks 9

A solution  $\gamma: \mathbb{Z} \to \operatorname{cl} N$  is an internal tangency to N if for some  $n_1 < n_2 < n_3$  we have  $\gamma(n_1), \gamma(n_3) \in N$  but  $\gamma(n_2) \notin N$ .





A convex set N is an isolating block if it admits no internal tangencies.

#### **Isolated invariant sets 10**

 $\operatorname{Sol}(x,A) := \{ \ \varrho : \mathbb{Z} \to A \text{ a solution s.t. } \varrho(0) = x \ \}.$  Inv  $A := \{ \ x \in X \mid [x] \subset A \text{ and } \exists y \in [x] : \operatorname{Sol}(y,A) \neq \varnothing \ \}$ 

A set  $S \subset X$  is  $\mathcal{V}$ -invariant if  $\operatorname{Inv} S = S$ .



A set  $S \subset X$  is an isolated invariant set if  $S = \operatorname{Inv} N$  for an isolating block N.

**Theorem.** Let  $S \subset X$  be invariant. Then, S is an isolated invariant set if and only if S is convex.

#### Conley index 11

#### Theorem.

- $\bullet$  Every isolated invariant set S is its own isolating block.
- ullet If N and M are isolating blocks for S, then  $H^{\kappa}(N)$  and  $H^{\kappa}(M)$  are isomorphic.



The Conley index of S is the homology  $H^{\kappa}(N)$  for any isolating block N of S.

#### Attractors and repellers 12



**Theorem.** The following conditions are equivalent:

- (i) A is an attractor,
- (ii) A is isolated invariant and closed in S.

**Theorem.** The following conditions are equivalent:

- (i) R is a repeller,
- (ii) R is isolated invariant and open in S.

# Morse decompositions Morse-Conley graph and Morse inequalities 14



**Theorem.** Given a Morse decomposition  $M = \{ M_{\iota} \mid \iota \in P \}$  of an isolated invariant set S we have

$$\sum_{\iota \in P} p_{M_{\iota}}(t) = p_{S}(t) + (1+t)q(t)$$

for some non-negative polynomial q. In particular,

$$\sum_{r \in P} \operatorname{rank} H_k^{\kappa}(M_r) \geqslant \operatorname{rank} H_k^{\kappa}(X).$$

#### Refinements. 15



 $\mathcal{V} \sqsubset \mathcal{W} : \Leftrightarrow \forall V \in \mathcal{V} \exists W \in \mathcal{W} : V \subset W$ 

## Multivector field construction. 18



## Conflict resolution. 19





# Reverse van der Pol equations 20



#### Persistence of Morse decompositions 21

Let  $\mathcal{R}$  denote the family of strongly connected components of  $G_{\mathcal{V}}$ . The Morse Consider a sequence  $(\mathcal{V}_i)_{i=0}^n$  of multivector fields on X. We have the sequence

$$(X, \mathcal{T}_{\mathcal{V}_1}) \longleftarrow (X, \mathcal{T}_{\mathcal{V}_1 \bar{\cap} \mathcal{V}_2}) \longrightarrow (X, \mathcal{T}_{\mathcal{V}_2}) \longleftarrow \dots$$

$$\ldots \longleftarrow (X, \mathcal{T}_{\mathcal{V}_{n-1} \bar{\cap} \mathcal{V}_n}) \longrightarrow (X, \mathcal{T}_{\mathcal{V}_n}).$$

**Proposition.** Each Morse set M is a connected component of

The persistence of  $(\mathcal{V}_i)_{i=0}^n$  is the zig-zag persistence of

$$H(X, \mathcal{T}_{\mathcal{V}_1}) \longleftarrow H(X, \mathcal{T}_{\mathcal{V}_1 \bar{\cap} \mathcal{V}_2}) \longrightarrow H(X, \mathcal{T}_{\mathcal{V}_2}) \longleftarrow \dots$$

$$\dots \longleftarrow H(X, \mathcal{T}_{\mathcal{V}_{n-1} \bar{\cap} \mathcal{V}_n}) \longrightarrow H(X, \mathcal{T}_{\mathcal{V}_n}).$$

is co 
$$\mathcal{K}(X,\mathcal{T}) := \{ \{x_0, x_1, \dots x_k\} \mid x_i \leqslant x_{i+1} \}$$

**Theorem.** (M. C. McCord, 1966) For every finite  $T_0$  topological space the map

$$\mu_{(X,\mathcal{T})}: |\mathcal{K}(X,\mathcal{T})| \ni x \mapsto \min |x| \in X,$$

is continuous and a weak homotopy equivalence.













## Attracting periodic orbit in 3D<sub>24</sub>



# Attracting periodic orbit in 3D 25



## Attracting periodic orbit in 3D<sub>25</sub>



# Attracting periodic orbit in $3D_{25}$



# Attracting periodic orbit in 3D<sub>25</sub>



#### Relation to classical theory 25





**Theorem.** (B. Batko, T. Kaczynski, MM, Th. Wanner) There exists an usc, acyclic valued, homotopic to identity, multivalued map  $F:X \rightrightarrows X$  and a Morse decomposition  $M=\{M_p \mid p \in P\}$  of the induced multivalued dynamical system such that for any convex I in P the Conley indexes of  $\mathcal{M}(I)$  and M(I) coincide.

#### References 27

- T. KACZYNSKI, M. MROZEK, AND TH. WANNER, Towards a Formal Tie Between Combinatorial and Classical Vector Field Dynamics, *Journal of Computational Dynamics* (2016).
- M. MROZEK, Conley-Morse-Forman theory for combinatorial multivector fields on Lefschetz complexes, *Foundations of Computational Mathematics* ( **2017**).
- B. Batko, T. Kaczynski, M. Mrozek, and Th. Wanner, Towards a Formal Tie Between Combinatorial and Classical Vector Field Dynamics. Part II, in preparation.
- T. Dey, M. Juda, T. Kapela, J. Kubica, M. Mrozek, Persistent Homology of Morse Decompositions in Combinatorial Dynamics, in preparation.

Thank you for your attention!