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Sampled Dynamics:




Topology of finite sets..

The

are
pond
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General set:

Pro
mo A :=cl A\ A is closed.

H(A) := H(cl A, mo A)



Combinatorial Vectors and Multivectors:s

A multivector is a convex V C X.

V is regular if H(clV, mo V')

/\&ﬁx

V is critical if H(clV,moV)




Combinatorial multivector fieldss
A multivector field is a partition V of X into multivectors.
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V-digraph:
e \ertices: elements of X
e An edge from x to y:
— explicit: if dima < dimy and y € [x]
— implicit: if dima > dimy and y € mo|x]
— implicit critical: if dimz > dimvy, y € 2| and |2] is critical

The multivalued map IIy, : X = X assigns to 2 all endpoints of edges origi-
nating from .



Solutions and pathss

A partial map v : Z—e—X isa solution of V if it is a walk in the V-digraph,
that is:

v(2+1) € Iy(y(7)) for i, + 1 € dom .




Isolating blocks.

A solution v : Z — cl N is an internal tangency to NV if
for some n; < no < ns we have v(ny).v(ny) € N but
1 2 3 /(n1), (N3

v(n2) € N.

A convex set /N is an isolating block if it admits no internal
tangencies.



Isolated invariant sets

Sol(x, A) :={p:Z — A asolution s.t. o(0) =2 }.
wA={reX|[r]CAand Iy € [x]: Sol(y,A) # @}

Aset S C X is V-invariant if Inv.S = S.

A set S C X is an isolated invariant set if S = Inv NV for an
isolating block V.

Theorem. Let S C X be invariant. Then, S is an isolated
invariant set if and only if .S is convex.



Conley index i

Theorem.
e Every isolated invariant set S is its own isolating block.

e If N and M are isolating blocks for S, then H"(N) and
H"(M) are isomorphic.

The Conley index of S is the homology H"(/N) for any isolating
block NV of S.



Attractors and repellers 1

Theorem. The following conditions are equivalent:

(i) A is an attractor,
(i) A is isolated invariant and closed in S.

Theorem. The following conditions are equivalent:
(i) R is a repeller,
(i) R is isolated invariant and open in S.



Morse decompositions
Morse-Conley graph and Morse inequalities .

Theorem. Given a Morse decomposition M
{ M, |t € P} of an isolated invariant set S' we have

= p(t) = ps() + (1+)(t)

for some non-negative polynomial ¢. In particular,

>, rank H (M,.) > rank H; (X).
=7



Refinements. s
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Multivector field construction. s




Conflict resolution. 1




Reverse van der Pol equationsx




Persistence of Morse decompositions

Let 'R denote the familv of stronelv connected components of (7. The Morse
Consider a sequence (V;)!, of multivector fields on X. We have the sequence

(X.Ty,)— (X, Ty,ap,) — (X, Ty,)—

- (X TVn—lﬁVn> _ﬁ (X TVn) ’
Proposition. Each Morse set M 1s a connected component ot

The persistence of (V)" is the zig-zag persistence of
H(X.Ty,)—H(X. Tyny,)—H(X. Ty,)—
—H(X. Ty, v, —HX.Ty,).

is co KX, T) i={{wo, 2y, ap} [ <wipr }
Theorem. (M. C. McCord, 1966) For every finite 7{;, topo-

logical space the map
7 KX, T)| 32— min|z| € X,

Is continuous and a weak homotopy equivalence.
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From large to small flattening
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From large to small flattening
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From large to small flattening
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From large to small flattening
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From large to small flattening
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From large to small flattening




Attracting periodic orbit in 3D «




Attracting periodic orbit in 3D 2




Attracting periodic orbit in 3D
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Attracting periodic orbit in 3Dz
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Attracting periodic orbit in 3D




Relation to classical theory »

Theorem. (B. Batko, T. Kaczynski, MM, Th. Wanner)

There exists an usc, acyclic valued, homotopic to identity, mul-
tivalued map F' : X = X and a Morse decomposition M
{M,|pe P} of the induced multivalued dynamical system
such that for any convex [ in P the Conley indexes of M([)

and M (1) coincide.
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Thank you for your attention!















