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OUTLINE

Introduction

“Brexit” Examples

“Functional Networks” in Neuroscience
Conclusions

Note: Various slides adapted or taken from slides of Bernadette J. Stolz (the first author on most of “my” papers I'll discuss).
Most of the original research | am presenting is her work.
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A Few INTRODUCTORY RESOURCES FOR
TorPOLOGICAL DATA ANALYSIS

Chad Topaz’s awesome introductory article in DSWeb
= https://dsweb.siam.org/The-Magazine/Article/topological-data-analysis
= The most-read DSWeb article of all time

Book: Robert Ghrist, Elementary Applied Topology
= https://www.math.upenn.edu/~ghrist/notes.html

Nina Otter, MAP, Ulrike Tillmann, Peter Grindrod, and Heather A. Harrington, “A Roadmap for
the Computation of Persistent Homology”, submitted, arXiv:1506.08903

Bernadette Stolz [2014], Masters Thesis, University of Oxford, Computational Topology in
Neuroscience

= http://www.math.ucla.edu/~mason/research/Dissertation-stolz2014-Corr.pdf

Chad Giusti, Robert Ghrist, & Danielle S. Bassett [2016], “Two’s Company, Three (or More) is a
Simplex”, Journal of Computational Neuroscience, Vol. 41, No. 1: 1-14

Links to various resources on my Quora answer on TDA
* https://www.quora.com/Applied-Mathematics-What-is-the-background-required-to-study-and-understand-topological-

data-analysis



‘ INTRODUCTION AND MOTIVATION

Algorithmic methods to study high-dimensional data (from point
clouds, networks, etc.) in a quantitative manner

Examine “shape” of data

Persistent homology

* Mathematical formalism for studying topological invariants
" Fast algorithms

" Persistent structures: a way to cope with noise in data

= Allows examination of “higher-order” interactions (beyond pairwise) in
data

* A major reason for my interest in these methods (e.g., for networks)



ToPOLOGICAL DATA ANALYSIS AND
NETWORKS

Typically for weighted networks

In real-world networks, it is hard to extra significant structures (signal) from
insignificant ones (noise).

Sometimes convenient to threshold weights, binarize remaining values, and study
the resulting graph

* Loss of important properties of original graph

Study global network characteristics
* Large-scale network structure, but of a different type from common ones like community structure

= Useful: compare results of TDA approaches to “traditional” network approaches



PersisTENT HoMoLOGY: UNDERLYING IDEA

Idea: Consider a filtration

* For example: filter by the threshold for going from a weighted network to a binary network, and
only keep (binarized) edges of at least that threshold.

Study changes in topological structure along filtration by calculating topological
invariants such as Betti numbers



‘ PERSISTENT HoMoLOGY: UNDERLYING IDEA

OO

1. Construct a sequence of embedded graphs from a weighted network.

2. Define simplicial complexes.



‘ PeErsisTENT HoMmorocy: WEIGHT RANK

CLiQUE FiLtraTiON (WRCF)
(.G. G. PETRI ET AL., PLOS ONE, 2013)

OO

1. Construct a sequence of embedded graphs from a weighted network.

2. Define k-simplices to be the k-cliques present in the graph.



ExAaMPLE: DODECAGON

Dodecagon filtrated by weights (dimension 0) . Dodecagon, weight rank dlique filtration (dimension 0)
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PERSISTENCE LLANDSCAPES

Introduced by P. Bubenik (2015)
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FIG. 5. Visualization of the relationship between barcodes and an average persistence landscape. To obtain a landscape from a barcode, one replaces every bar
of the barcode by a peak, whose height is proportional to the persistence of the bar. In the landscape, we translate all peaks so that they touch the horizontal
axis. The persistence landscape consists of different layers, where the gth layer corresponds to the gth-largest function values in the collection of peak func-
tions. One creates an average of two landscapes by taking the mean over the function values in every layer.
This figure in B. J. Stolz et al., Chaos, 2017



PArT I: THE ToPOLOGICAL “SHAPE” OF
BREXIT

B. J. Stolz, H. A. Harrington, & MAP [2016], “The
Topological “Shape” of Brexit”, arXiv:1610.00752

Brexit Vote (June 2016) -
Percent Vioting to Leave EU °
.0 n Firvce of Lnwan:
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Figure 3: Point clouds based on the 2016 EU referendum voting result in the UK. We show the
coordinates of “leave” districts in blue and the coordinates of “remain” districts in red.




WaArMUP: NETWORK OF EU COUNTRIES

Connect two countries with an edge if they are
considered neighbors via a border (either in
Europe or abroad), a bridge or a tunnel.

The edge weight is the later of the two years
that the two countries joined the EU.

Consider WRCF

EU "pre-Brexit” weight rank clique filtration (dimension 0) EU "post-Brexit” weight rank clique filtration (dimension 0)
EFounding countries
3 First enlargement United Kingdom

Spain & Pomr'mgal
Fourth enlarg ireland
2004




ExamMPLE 2: REFERENDUM VoTING DATA

Construct 2 point clouds o —
= ‘Remain’ point cloud: coordinates of cities in vt Vothg o Lo ) o
. . . . . 5 A T 70.00% or Nore i Face of Laweng 60
voting districts that voted to remain in the EU | . .
= Gibraltar omitted for simplicity -..,MS,, sb

% w Il Urdes 30.00% in Fawvor of Leaving
pap—

* ‘Leave’ point cloud: coordinates of cities in voting

districts that voted to leave the EU il
Construct a Vietoris—Rips filtration -
* Choose a sequence {ry, ..., r,} of increasing it /3’ “
distances Srey Yo ol \,i' ©f o
* In the ith filtration step, we have k-simplices from /it‘wm; Mantitude
unordered (k+1)-tuples with pairwise distance at >l EVorttude .
most r, i Figure 3: Point clouds based on the 2016 EU referendum voting result in the UK. We show the

coordinates of “leave” districts in blue and the coordinates of “remain” districts in red.
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Figure 4: (Top two rows) Barcodes for dimensions 0 and 1 from a Vietoris—Rips filtration on (left)
the leave point cloud and (right) the remain point cloud. (Bottom row) UK referendum voting map
indicating the location of the most persistent loops in the dimension 1 barcodes of the Vietoris—Rips
filtration.




ParT II: FuncTIONAL NETWORKS

B. J. Stolz [2014], Masters Thesis, University of Oxford, Computational Topology in
Neuroscience
* http://www.math.ucla.edu/~mason/research/Dissertation-stolz2014-Corr.pdf

B. J. Stolz, H. A. Harrington, & MAP [2017], “Persistent Homology of Time-
Dependent Functional Networks Constructed from Coupled Time Series”, Chaos,
Vol. 27, No. 4: 047410



PIPELINE

Brain

N
7

Model

Coupled Time Series

In contrast to using “traditiona

methods for studying weighted

networks

\

Topological Tools

Funectional Network

Output

E.g. Coupled Kuramoto oscillators (you thought that you could finally avoid them in this session, didn’t you?)




‘ WHAT 1S A FUNCTIONAL NETWORK?

Functional versus Structural Networks
* Example from neuroscience:

= Structural network: nodes = neurons, edges = synapses

= Functional network: nodes = cortical areas, edges = behavioral similarity (quantified by similarity of time series)
* Example from ordinary differential equations:

= Structural network: nodes = oscillators, edges = coupling between oscillators

= Functional network: nodes = oscillators, edges = behavioral similarity (quantified by similarity of time series)

Functional networks are weighted and fully connected (or almost fully connected)
* We can study them using persistent homology
* Can compare results on large-scale structure to other approaches, such as community structure



do;

dt

ExamprLE: CouPLED KURAMOTO
()SCILLATORS Ky

Imposed structural network

N
1
— w, + N Zl KU Sln(HJ - 0,) fOI’ I — 1, .oy N. [ Kuramoto model| ——
Jj=

f; : phase of oscillator i,

wj: natural frequency

Kij = 0: coupling strength,

N: number of oscillators in the model.

[ Functional network | ¢«——

Pairwise synchrony of oscillators

d’.’j(’) o (160520:(!) - Oj('):b)



‘ BARCODES AND PERSISTENCE LLANDSCAPES

Time Regime 1

0
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Kuramoto weight rank clique filtration (dimension 1 Kuramoto weight rank clique filtration (dimension 1)
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KuramoTo DATA VERSUS NULL MODELS

Simple null model:

* Independently reassign
the order of each
oscillator’s time series
according to a uniform
distribution (i.e., scramble
time independently for
each oscillator)

Fourier null model:

* Generate surrogate data
by scrambling phases in
Fourier space




ExamprLE: FMRI DaTA

Data from D. S. Bassett, N. F. Wymbs, MAP, P. J.
Mucha, J. M. Carlson, & S. T. Grafton [2011],
“Dynamic Reconfiguration of Human Brain

Networks During Learning”, PNAS, Vol. 118, No. 18:

76417646

* Weighted networks from time-series S|m|Iar|ty (wavelet
coherence) of neuronal activity of brain regions during
performance of simple motor task

* In the above paper and follow-ups, we studied things like
community structure and core—periphery structure.

= Using persistent homology gives another way to examine
large-scale (“mesoscale”) network structures

* These data also used in D. S. Bassett, MAP, N. F. Wymbs, S. T.

Grafton, J. M. Carlson, & P. J. Mucha [2013], “Robust

Detection of Dynamic Communities in Networks”, Chaos, Vol.

23, No. 1: 013141

(Source: Bullmore
and Sporns (2009),

Nature Reviews:
186 — 108.)

MRI Imaging Functional Parcellation

Brain regions
Functional Network Functional Connectivity



DIFFERENCES IN DIFFERENT DAYS?

Experimental observations on 3 different days
(20 participants)

Right plot: Average persistence landscapes

Landscape peak shifts to the left in later days

* |.e. they are formed by edges with higher weights,
indicating that there is stronger synchronization
between the associated brain regions

-
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FIG. 10. Visualization of average persistence landscapes for days 1, 2, and 3
of task-based fMRI networks. The distance between the landscape for day 1
and the other two landscapes is larger than that between the landscapes for
days 2 and 3. (The L? distances between them are 5243 between days 1 and
2, 4957 between days 1 and 3, and 3543 between days 2 and 3.) The stan-
dard deviations from the average landscapes are larger than the calculated
distances, so these values need to be interpreted cautiously. We also observe
a shift to the left of the landscape peak during the three days, indicating that
the particularly persistent loops in these networks arise earlier in the filtra-
tion for the later days. In other words, they are formed by edges with higher
edge weights, indicating that there is stronger synchronization between the
associated brain regions.



(CONCLUSIONS

Computing persistent homology can give insights into large-scale structure of networks

* Complements network clustering methods, such as detection of mesoscale features like community
structure and core—periphery structure

* Important: going beyond pairwise interactions in networks

Observation: Sometimes relatively short features (e.g. as visualized in short barcodes)
represent meaningful features. (We saw this in both Kuramoto and fMRI data.)
* E.g. strongly synchronized Kuramoto oscillators within the same community of a structure network

= Contrasts with conventional wisdom: longer (i.e. more persistent) features are supposed to be the signals,
and shorter features are usually construed as noise

Our Brexit example was a toy, but it’s worth looking at that kind of data more seriously
using TDA approaches.

Reminder: If you want to get started on PH, look at our “roadmap” paper: Nina Otter, MAP,
Ulrike Tillmann, Peter Grindrod, and Heather A. Harrington, “A Roadmap for the
Computation of Persistent Homology”, submitted, arXiv:1506.08903



