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Patterns with two length scales I

Epstein & Fineberg (2005)

Spatiotemporal chaos: “. . . continually evolving irregular domains of
patterns with differing spatial orientations.”

Arbell & Fineberg (2002)



Patterns with two length scales II

Two-layer Turing (reaction–diffusion)
patterns:

Patterns with different length-scales
(0.46 mm and 0.25 mm) in the two
layers are diffusively coupled

Berenstein et al. (2004)



Two length scales: linear theory I

Consider waves with wavenumbers k = 1 and k = q (q < 1) becoming
unstable, with growth rates µ and ν respectively:

k
σ k = q k = 1

At onset, the pattern U(x, y, t) will contain a combination of
eigenfunctions: Fourier modes eik·x with |k| = q or |k| = 1:

U =
∑
qj

wj(t)eiqj ·x +
∑
kj

zj(t)eikj ·x



Two length scales: linear theory II

From the multitude, focus on one wave from each of the two circles:
z1e

ik1·x and w1e
iq1·x, as well as complex conjugates:

ky

z1z̄1 k1 kx

ky

w1w̄1
q1

and the evolution of the amplitudes z1 and w1 will governed by:

ż1 = µz1, ẇ1 = νw1



Two length scales: nonlinear theory I

Products of waves lead to sums of wave vectors. Expanding in a power
series in the small amplitude of the waves, at second order, there will be
contributions from all possible three-wave interactions. The simplest
interations involve modes at 60◦:
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ż1 = µz1 +Qzhz̄2z̄3, ẇ1 = νw1 +Qwhw̄2w̄3



Two length scales: nonlinear theory II

Two waves on the outer circle can couple to a wave on the inner circle:
k6 + k7 = q1, defining θz = 2 arccos(q/2).
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ż1 = · · ·+Qzw(z4w4 + z5w5), ẇ1 = · · ·+Qzzz6z7



Two length scales: nonlinear theory III

Two waves on the inner circle can couple to a wave on the outer, provided
q ≥ 1

2 : q6 + q7 = k1, defining θw = 2 arccos(1/2q).

ky

z1

w6

w7 θw

kx

ky

z8

z9

w1

w9

w8

ż1 = · · ·+Qwww6w7, ẇ1 = · · ·+Qwz(w8z8 + w9z9)



Two length scales: nonlinear theory IV

Putting it all together: there are 8 modes that couple to each of z1 and
w1:
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ż1 = µz1 +Qzhz̄2z̄3 +Qzw(z4w4 + z5w5) +Qwww6w7,

ẇ1 = νw1 +Qwhw̄2w̄3 +Qzzz6z7 +Qwz(w8z8 + w9z9)



Two length scales: nonlinear theory V

However, each z mode we’ve introduced couples to 8 other modes, and
each w mode we’ve introduced couples to 8 other modes, and so on: an
infinite number of modes can be generated:
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Here, q = 0.66, θz = 141.4◦, θw = 81.5◦.

At cubic order, all modes couple to all other modes.



Two length scales: nonlinear theory VI

kx

ky

For q = 1
2(
√

6−
√

2) = 0.5176 (θz = 150◦, θw = 30◦), these interactions
lead to a finite number of waves, 12 on each circle.

This is the only q for which a finite number of waves will form a closed set
under three-wave interaction in two dimensions, suggesting why 12-fold
quasipatterns are the most common in 2D.



Three-wave interactions I

How to make progress? Pull out one of the basic three-wave interactions,
two outer vectors coupling to an inner:

We illustrate using:

ż1 = µz1 +Qzwz̄2w1 − (3|z1|2 + 6|z2|2 + 6|w1|2)z1
ż2 = µz2 +Qzwz̄1w1 − (6|z1|2 + 3|z2|2 + 6|w1|2)z2
ẇ1 = νw1 +Qzzz1z2 − (6|z1|2 + 6|z2|2 + 3|w1|2)w1

The outcome depends on the product of quadratic coefficients QzwQzz.
Typically (Cf Porter & Silber 2004):

Positive QzwQzz: stable steady stripes, or stable rhombs (mixed z
and w);

Negative QzwQzz: stable steady stripes, or time-dependent
competition between z and w modes.

Same conclusion for any of the three-wave interactions.



Three-wave interactions II
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Positive QzwQzz: stable steady z (red) or w (cyan) stripes, or stable
rhombs (blue), which are mixed z and w.



Three-wave interactions III
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Negative QzwQzz: stable steady z or w stripes, some stable rhombs
(blue), or time-dependent competition between z and w modes (empty
area). (Cf Porter & Silber 2004.)



Three-wave interactions IV

With multiple three-wave interactions, we hypothesise (wth q > 1
2):

We expect to find steady complex patterns or spatiotemporal chaos,
according to the signs of QzwQzz and QwzQzz.

If QzwQzz and QwzQzz are both negative, we expect to see greater
time dependence.

These effects will be more pronounced for larger values of the
products.

With q = 1
2(
√

6−
√

2) = 0.5176 we may find steady or
time-dependent 12-fold quasipatterns, according to the signs of
QzwQzz and QwzQzz.



Coupled Turing I

The Brusselator is a simple example of a Turing (reaction–diffusion)
system:

∂U

∂t
= (B − 1)U +A2V +DU∇2U +

B

A
U2 + 2AUV + U2V,

∂V

∂t
= −BU −A2V +DV∇2V − B

A
U2 − 2AUV − U2V,

where:

U(x, y, t) and V (x, y, t) represent chemical concentrations

A and B are parameters (A = 3 and B = 9)

DU and DV are diffusion constants

Hopf (k = 0) and pitchfork (k 6= 0) instabilities are possible

The usual nontrivial equilibrium has been moved to the origin



Coupled Turing II

Typical Turing pattern: DU = 1.99833 and
DV = 4.50875, 8× 8 box
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Coupled Turing III

Two layer model (Yang et al 2002, Catllá et al 2012):

∂U1

∂t
= (B − 1)U1 +A2V1 +DU1∇2U1 + α(U2 − U1) + NLT,

∂V1

∂t
= −BU1 −A2V1 +DV1∇2V1 + β(V2 − V1) + NLT,

∂U2

∂t
= (B − 1)U2 +A2V2 +DU2∇2U2 + α(U2 − U1) + NLT,

∂V2

∂t
= −BU2 −A2V2 +DV2∇2V2 + β(V2 − V1) + NLT,

U1,2 and V1,2 are concentrations in each layer

Same A and B and nonlinear terms (NLT) as before

The diffusion coefficients are not the same in each layer

The α and β terms couple the two layers



Coupled Turing IV

For q = 0.5176 and for a range of α and β, we solve for the four values
DU1 , DU2 , DV1 and DV2 at the codimension-two point, and compute the
quadratic coefficients Qzz, Qzw, Qww and Qwz:
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QzzQzw<0 QwwQwz<0



Coupled Turing V

α = 1, β = 1.0, µ = −0.0115, ν = 0.0277, 30× 30, DU1 = 1.6108,
DV1 = 4.6687, DU2 = 9.9397, DV2 = 25.4080, QzzQzw > 0,
QwwQwz > 0.



Coupled Turing VI

112× 112.



Coupled Turing VII

α = 5.0, β = 1.0, µ = −0.095, ν = 0.029, 30× 30, QzzQzw < 0,
QwwQwz < 0.



Conclusions

If the ratio of wavenumbers q is between 1
2 and 2, mode interactions

in both directions must be taken in to account.

Most values of q in this range lead to the possibility of generating an
infinite number of interacting waves.

The outcome of the mode interactions will be influenced by the signs
of the quadratic coefficients, with time-dependence (and
spatiotemporal chaos) most likely in the case of (both pairs of)
quadratic coefficients with opposite sign.

These ideas can help find quasipatterns and spatiotemporal chaos in
coupled reaction–diffusion problems (work ongoing).


