Time-Dependent Spatiotemporal Chaos in
 Pattern-Forming Systems with Two Length Scales

Alastair Rucklidge
School of Mathematics University of Leeds, Leeds LS2 9JT, UK

With Priya Subramanian and Jennifer Castelino (Leeds), Daniel Ratliff (Surrey) and Chad Topaz (Macalester College \rightarrow Williams College)
Building on earlier work with Anne Skeldon (Surrey) and Mary Silber (Chicago), and with special thanks to Edgar Knobloch (Berkeley)

R., Silber \& Skeldon (2012), Phys. Rev. Lett., 108074504 Catllá, McNamara \& Topaz (2012), Phys. Rev. E, 85026215

Patterns with two length scales I

Epstein \& Fineberg (2005)
Spatiotemporal chaos: ". . . continually evolving irregular domains of patterns with differing spatial orientations."

Patterns with two length scales II

Two-layer Turing (reaction-diffusion) patterns:

Patterns with different length-scales (0.46 mm and 0.25 mm) in the two layers are diffusively coupled

Two length scales: linear theory I

Consider waves with wavenumbers $k=1$ and $k=q(q<1)$ becoming unstable, with growth rates μ and ν respectively:

At onset, the pattern $U(x, y, t)$ will contain a combination of eigenfunctions: Fourier modes $e^{i \boldsymbol{k} \cdot \boldsymbol{x}}$ with $|\boldsymbol{k}|=q$ or $|\boldsymbol{k}|=1$:

$$
U=\sum_{\boldsymbol{q}_{j}} w_{j}(t) e^{i \boldsymbol{q}_{j} \cdot \boldsymbol{x}}+\sum_{\boldsymbol{k}_{j}} z_{j}(t) e^{i \boldsymbol{k}_{j} \cdot \boldsymbol{x}}
$$

Two length scales: linear theory II

From the multitude, focus on one wave from each of the two circles: $z_{1} e^{i k_{1} \cdot \boldsymbol{x}}$ and $w_{1} e^{i \boldsymbol{q}_{1} \cdot \boldsymbol{x}}$, as well as complex conjugates:

and the evolution of the amplitudes z_{1} and w_{1} will governed by:

$$
\dot{z}_{1}=\mu z_{1}, \quad \dot{w}_{1}=\nu w_{1}
$$

Two length scales: nonlinear theory I

Products of waves lead to sums of wave vectors. Expanding in a power series in the small amplitude of the waves, at second order, there will be contributions from all possible three-wave interactions. The simplest interations involve modes at 60° :

$$
\dot{z}_{1}=\mu z_{1}+Q_{z h} \bar{z}_{2} \bar{z}_{3},
$$

$$
\dot{w}_{1}=\nu w_{1}+Q_{w h} \bar{w}_{2} \bar{w}_{3}
$$

Two length scales: nonlinear theory II

Two waves on the outer circle can couple to a wave on the inner circle: $\boldsymbol{k}_{6}+\boldsymbol{k}_{7}=\boldsymbol{q}_{1}$, defining $\theta_{z}=2 \arccos (q / 2)$.

Two length scales: nonlinear theory III

Two waves on the inner circle can couple to a wave on the outer, provided $q \geq \frac{1}{2}: \boldsymbol{q}_{6}+\boldsymbol{q}_{7}=\boldsymbol{k}_{1}$, defining $\theta_{w}=2 \arccos (1 / 2 q)$.

Two length scales: nonlinear theory IV

Putting it all together: there are 8 modes that couple to each of z_{1} and w_{1} :

$$
\begin{aligned}
& \dot{z}_{1}=\mu z_{1}+Q_{z h} \bar{z}_{2} \bar{z}_{3}+Q_{z w}\left(z_{4} w_{4}+z_{5} w_{5}\right)+Q_{w w} w_{6} w_{7}, \\
& \dot{w}_{1}=\nu w_{1}+Q_{w h} \bar{w}_{2} \bar{w}_{3}+Q_{z z} z_{6} z_{7}+Q_{w z}\left(w_{8} z_{8}+w_{9} z_{9}\right)
\end{aligned}
$$

Two length scales: nonlinear theory V

However, each z mode we've introduced couples to 8 other modes, and each w mode we've introduced couples to 8 other modes, and so on: an infinite number of modes can be generated:

Here, $q=0.66, \theta_{z}=141.4^{\circ}, \theta_{w}=81.5^{\circ}$.
At cubic order, all modes couple to all other modes.

Two length scales: nonlinear theory VI

For $q=\frac{1}{2}(\sqrt{6}-\sqrt{2})=0.5176\left(\theta_{z}=150^{\circ}, \theta_{w}=30^{\circ}\right)$, these interactions lead to a finite number of waves, 12 on each circle.

This is the only q for which a finite number of waves will form a closed set under three-wave interaction in two dimensions, suggesting why 12 -fold quasipatterns are the most common in 2D.

Three-wave interactions I

How to make progress? Pull out one of the basic three-wave interactions, two outer vectors coupling to an inner:
We illustrate using:

$$
\begin{aligned}
\dot{z}_{1} & =\mu z_{1}+Q_{z w} \bar{z}_{2} w_{1}-\left(3\left|z_{1}\right|^{2}+6\left|z_{2}\right|^{2}+6\left|w_{1}\right|^{2}\right) z_{1} \\
\dot{z}_{2} & =\mu z_{2}+Q_{z w} \bar{z}_{1} w_{1}-\left(6\left|z_{1}\right|^{2}+3\left|z_{2}\right|^{2}+6\left|w_{1}\right|^{2}\right) z_{2} \\
\dot{w}_{1} & =\nu w_{1}+Q_{z z} z_{1} z_{2}-\left(6\left|z_{1}\right|^{2}+6\left|z_{2}\right|^{2}+3\left|w_{1}\right|^{2}\right) w_{1}
\end{aligned}
$$

The outcome depends on the product of quadratic coefficients $Q_{z w} Q_{z z}$. Typically (Cf Porter \& Silber 2004):

- Positive $Q_{z w} Q_{z z}$: stable steady stripes, or stable rhombs (mixed z and w);
- Negative $Q_{z w} Q_{z z}$: stable steady stripes, or time-dependent competition between z and w modes.
- Same conclusion for any of the three-wave interactions.

Three-wave interactions II

Positive $Q_{z w} Q_{z z}$: stable steady z (red) or w (cyan) stripes, or stable rhombs (blue), which are mixed z and w.

Three-wave interactions III

Negative $Q_{z w} Q_{z z}$: stable steady z or w stripes, some stable rhombs (blue), or time-dependent competition between z and w modes (empty area). (Cf Porter \& Silber 2004.)

Three-wave interactions IV

With multiple three-wave interactions, we hypothesise (wth $q>\frac{1}{2}$):

- We expect to find steady complex patterns or spatiotemporal chaos, according to the signs of $Q_{z w} Q_{z z}$ and $Q_{w z} Q_{z z}$.
- If $Q_{z w} Q_{z z}$ and $Q_{w z} Q_{z z}$ are both negative, we expect to see greater time dependence.
- These effects will be more pronounced for larger values of the products.
- With $q=\frac{1}{2}(\sqrt{6}-\sqrt{2})=0.5176$ we may find steady or time-dependent 12 -fold quasipatterns, according to the signs of $Q_{z w} Q_{z z}$ and $Q_{w z} Q_{z z}$.

Coupled Turing I

The Brusselator is a simple example of a Turing (reaction-diffusion) system:

$$
\begin{gathered}
\frac{\partial U}{\partial t}=(B-1) U+A^{2} V+D_{U} \nabla^{2} U+\frac{B}{A} U^{2}+2 A U V+U^{2} V, \\
\frac{\partial V}{\partial t}=-B U-A^{2} V+D_{V} \nabla^{2} V-\frac{B}{A} U^{2}-2 A U V-U^{2} V
\end{gathered}
$$

where:

- $U(x, y, t)$ and $V(x, y, t)$ represent chemical concentrations
- A and B are parameters $(A=3$ and $B=9)$
- D_{U} and D_{V} are diffusion constants
- Hopf $(k=0)$ and pitchfork $(k \neq 0)$ instabilities are possible
- The usual nontrivial equilibrium has been moved to the origin

Coupled Turing II

Typical Turing pattern: $D_{U}=1.99833$ and $D_{V}=4.50875,8 \times 8$ box

Coupled Turing III

Two layer model (Yang et al 2002, Catllá et al 2012):

$$
\begin{gathered}
\frac{\partial U_{1}}{\partial t}=(B-1) U_{1}+A^{2} V_{1}+D_{U_{1}} \nabla^{2} U_{1}+\alpha\left(U_{2}-U_{1}\right)+\mathrm{NLT} \\
\frac{\partial V_{1}}{\partial t}=-B U_{1}-A^{2} V_{1}+D_{V_{1}} \nabla^{2} V_{1}+\beta\left(V_{2}-V_{1}\right)+\mathrm{NLT} \\
\frac{\partial U_{2}}{\partial t}=(B-1) U_{2}+A^{2} V_{2}+D_{U_{2}} \nabla^{2} U_{2}+\alpha\left(U_{2}-U_{1}\right)+\mathrm{NLT} \\
\frac{\partial V_{2}}{\partial t}=-B U_{2}-A^{2} V_{2}+D_{V_{2}} \nabla^{2} V_{2}+\beta\left(V_{2}-V_{1}\right)+\mathrm{NLT}
\end{gathered}
$$

- $U_{1,2}$ and $V_{1,2}$ are concentrations in each layer
- Same A and B and nonlinear terms (NLT) as before
- The diffusion coefficients are not the same in each layer
- The α and β terms couple the two layers

Coupled Turing IV

For $q=0.5176$ and for a range of α and β, we solve for the four values $D_{U_{1}}, D_{U_{2}}, D_{V_{1}}$ and $D_{V_{2}}$ at the codimension-two point, and compute the quadratic coefficients $Q_{z z}, Q_{z w}, Q_{w w}$ and $Q_{w z}$:

Coupled Turing V

$\alpha=1, \beta=1.0, \mu=-0.0115, \nu=0.0277,30 \times 30, D_{U_{1}}=1.6108$, $D_{V_{1}}=4.6687, D_{U_{2}}=9.9397, D_{V_{2}}=25.4080, Q_{z z} Q_{z w}>0$, $Q_{w w} Q_{w z}>0$.

Coupled Turing VI

112×112.

Coupled Turing VII

u1 in Real Space at Time $=1000$ s

u1 in Spectral Space at Time $=1000$ s

$\alpha=5.0, \beta=1.0, \mu=-0.095, \nu=0.029,30 \times 30, Q_{z z} Q_{z w}<0$,
$Q_{w w} Q_{w z}<0$.

Conclusions

- If the ratio of wavenumbers q is between $\frac{1}{2}$ and 2 , mode interactions in both directions must be taken in to account.
- Most values of q in this range lead to the possibility of generating an infinite number of interacting waves.
- The outcome of the mode interactions will be influenced by the signs of the quadratic coefficients, with time-dependence (and spatiotemporal chaos) most likely in the case of (both pairs of) quadratic coefficients with opposite sign.
- These ideas can help find quasipatterns and spatiotemporal chaos in coupled reaction-diffusion problems (work ongoing).

