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Grain boundaries of the Swift-Hohenberg equation

∂ψ

∂t
= Rψ − (1 +∇2)2ψ − ψ3

The Swift-Hohenberg (SH) equation is a canonical
pattern-forming model.

It admits a family of roll pattern solutions.

We are interested in a particular class of defects, grain
boundaries, which separate regions of roll patterns with
different orientation.
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Grain boundaries of the Swift-Hohenberg equation

Existence near threshold for translation-invariant cores was
proved for all angles between roll patterns.

A full numerical study of grain boundaries, including those
without translation-invariant cores, was recently performed.
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Grain boundaries of the Swift-Hohenberg equation

It has been known for
many years that grain
boundaries of the SH
equation undergo a core
instability when the
angle α exceeds a
critical value (or when
ky is smaller than some
threshold value).

Right: Numerical simulations of
SH with R = 1.

N. Ercolani, R. Indik, A.C. Newell, & T. Passot, Global Description of Patterns Far
From Onset: A Case Study, Physica D 184, 127-140 (2003).
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Grain boundaries of the Swift-Hohenberg equation

This instability provides a paradigm to understand the connection
between defects and phase.

To this end, we turn to numerical simulations of the
Swift-Hohenberg equation.

The use of a pseudo-spectral code with periodic boundary
conditions makes it easy to find the amplitude of each pattern
on each side of the grain boundary.

One can then view each grain boundary as a heteroclinic
connection between the two asymptotic patterns, thereby
setting the stage for a description in terms of spatial
dynamics.

It is also possible to estimate the phase of the solution and
therefore connect to the phase diffusion equation.
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Numerical simulations of SH grain boundaries

The simulation box has size Lx = 2π/k1, where
k1 =

√
1− µ2, 0 < µ < 1, and Ly ' 1000.

The initial conditions consist of two regions of rolls of
wavevector ~k+ = (k1, µ) and ~k− = (k1,−µ), separated by two
straight lines parallel to the x-axis.

Long-time solutions of the simulation are (for all practical
purposes) stationary.
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Grain boundaries of the Swift-Hohenberg equation

Pattern for µ = 0.2 as a function of x and y
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Grain boundaries of the Swift-Hohenberg equation

Envelope of ’zig’ pattern as a function of x and y
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Grain boundaries of the Swift-Hohenberg equation

Envelope of ’zag’ pattern as a function of x and y
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Grain boundaries of the Swift-Hohenberg equation

Envelope of both patterns as a function of x and y , showing two heteroclinic orbits
corresponding to two grain boundaries
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Numerical simulations of SH grain boundaries

As the parameter µ increases, two dislocations appear per period
at the core of the grain boundary.

Solutions at t = 20, 000 (left two panels) and t = 10, 000 (right 2 panels). The
vertical extent of each picture corresponds to 60 units of length (recall Ly ' 1000).

Similar results were recently obtained in D.J.B. Lloyd & A. Scheel, Continuation and
Bifurcation of Grain Boundaries in the Swift-Hohenberg Equation, SIAM J. Appl.
Dyn. Sys. 16, 252-293 (2017).
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Numerical simulations of SH grain boundaries

Our numerical investigations suggest that the appearance of
dislocations in a grain boundary is linked to a symmetry breaking
bifurcation that alters translational invariance along its core.
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Solutions at t = 20, 000 (left two panels) and t = 10, 000 (right 2 panels).

As µ increases, the profiles lose translational invariance along the
x-direction.
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The phase structure of grain boundaries

These simulations may be used to document changes in the
phase structure of grain boundaries as the angle of inclination
of the rolls is varied.

Taking the Hilbert transform of a grain boundary solution u of
SH in a direction parallel to its core, leads to a complex field z
such that <(z) = u.

We define the phase θ of the solution by z = |z | exp(iθ).

For small values of µ, the component ky of ~k = ∇θ
perpendicular to the grain boundary changes direction by
vanishing at the core of the defect.
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The phase structure of grain boundaries

As µ increases, ky develops a “jump” on each side of the
grain boundary.

The x-dependence of the phase θ along the “jump” shows

regions where θ is constant,

alternating with regions where θ is linear and θy is constant.

Together, these suggest mixed boundary conditions for the phase
at the core of a grain boundary.
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The phase structure of grain boundaries

Hopefully by now I have convinced you that these dislocations
are related to changes in the phase structure of the pattern.

When dislocations are present, maxima of θy “jump” across
the core of the grain boundary.

The boundary conditions on each side of the core are mixed:
regions of constant θ alternate with regions where θy is
constant.

So it is natural to ask whether one sees similar behaviors in
the corresponding phase diffusion equation, which is what we
will now turn to.

Far from threshold, the phase of SH roll solutions is formally
described by the Regularized Cross-Newell equation (RCN).
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Grain boundary solutions of the phase diffusion equation

∂θ

∂t
= −∇ ·

(
2~k(1− k2) + ∆~k

)
, ~k = ∇θ (RCN)

Far from threshold, i.e. for R = O(1), roll patterns are well
described by the regularized Cross-Newell equation (RCN).

Since RCN is variational, it is reasonable to ask whether the
the birth of defects at the core of grain boundaries may be
understood by analysing minimizers of the RCN energy as µ is
increased.

Grain boundaries of the SH equation correspond to exact
self-dual (“knee”) solutions of RCN.
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Grain boundary solutions of the phase diffusion equation

∂θ

∂t
= −∇ ·

(
2~k(1− k2) + ∆~k

)
, ~k = ∇θ (RCN)

Self-dual solutions of RCN are such that ∆θ = ±(1− |∇θ|2).

ERCN =

∫
Ω

[
(∆θ)2 + (1− |∇θ|2)2

]
dΩ

They can be expressed in terms of their boundary data, θy (x),
at the core of the grain boundary.

We can prove that self-dual knee solutions of RCN are
minimizers of the RCN energy, regardless of the value of µ, if
we demand that phase gradients be vector fields.

Joceline Lega The Phase Structure of Grain Boundaries



Grain boundary solutions of the phase diffusion equation

∂θ

∂t
= −∇ ·

(
2~k(1− k2) + ∆~k

)
, ~k = ∇θ (RCN)

It is however known that if this requirement is relaxed, there
exist solutions of lower energy as µ is increased.

In that case, RCN solutions resembling bifurcated grain
boundaries were numerically obtained by imposing mixed
boundary conditions at the core of the defect.

These solutions are expected to only deviate from self-duality
near the core of each dislocation.
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Grain boundary solutions of SH revisited

For small values of µ, grain boundary solutions of SH have a
phase that behaves like self-dual solutions of RCN.

As µ increases, the phase moves away from self-duality near
the core of the grain boundary.

At the same time, it develops large y -derivatives that “jump”
across the grain boundary, with regions of constant phase θ
alternating with regions of constant θy along the jump.
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Phase structure of SH Grain boundaries

Profile of θ and θy on one side of the “jump” as a function of x
superimposed on the grain boundary solution.
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Summary and open questions

There is ample numerical evidence that large phase derivatives
lead to defect formation.

The mixed boundary conditions found from the numerical
simulations of SH are slightly different from those used to find
minimizing solutions of RCN.

→ Does this suggest solutions of RCN that have lower energy
than the solutions found so far?

Solutions of SH are smooth and the phase extracted from
these solutions is regular at the core of the grain boundary.

→ Is it legitimate to assume that solutions of RCN represent the
“large scale” behavior of the phase of SH solutions?

If so, it may be possible to bridge the gap between RCN and
SH grain boundaries.

Joceline Lega The Phase Structure of Grain Boundaries



Roadmap

Analyze the stability of grain boundaries in SH near and far
from threshold.

In particular, “knee” solutions of SH should become unstable
as µ gets close to 1.

Identify candidate minimizers of RCN

Use the boundary data suggested by SH simulations to define
self-dual solutions of RCN, and estimate their energy.

Alternatively, seek non self-dual solutions of RCN that closely
approximate these new numerical solutions.

The level of regularity of RCN grain boundaries would describe
how a pattern-forming system leaves its phase approximation.
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The Swift-Hohenberg equation

The Swift-Hohenberg (SH) equation

∂ψ

∂t
= Rψ − (1 +∇2)2ψ − ψ3

is a canonical pattern-forming model.

It is variational

∂ψ

∂t
= −δESH

δψ
where ESH =

∫
Ω
eSH dΩ

and

eSH = −R

2
ψ2 +

1

2

(
(1 +∇2)ψ

)2
+
ψ4

4
.

J. Swift & P.C. Hohenberg, Hydrodynamic fluctuations at the convective instability,
Phys. Rev. A 15, 319-328 (1977).

Back
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Roll solutions of the Swift-Hohenberg equation

For R > 0 small and |k | & 1, the SH equation possesses a stable
family of stationary roll solutions of the form

ψ0(x , y) = ψ0(θ)

= a1(k) cos(θ(x , y)) +O(ε3/2),

θ(x , y) = k cos(α) x + k sin(α) y , α ∈ R

with ε = |R − (k2 − 1)2|. Back

- A. Mielke, A new approach to sideband-instabilities using the principle of reduced
instability, in Nonlinear Dynamics and Pattern Formation in the Natural Environment
(eds.: A. Doelman, A. van Harten) Longman UK, 206-222 (1995).

- G. Schneider, Diffusive Stability of Spatial Periodic Solutions of the Swift-Hohenberg
Equation, Comm. Math. Phys. 178, 679-702 (1996).

- A. Mielke, Instability and stability of rolls in the Swift-Hohenberg equation, Comm.
Math. Phys. 189, 829-853 (1997).

- H. Uecker, Diffusive stability of rolls in the two-dimensional real and complex
Swift-Hohenberg equation, Comm. PDE 24, 2109-2146 (1999).
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Grain boundaries of the Swift-Hohenberg equation

For R > 0 small enough, the SH equation possesses a family
of grain boundary solutions in the form of one-dimensional
heteroclinic orbits. These solutions have envelopes that are
translationally invariant along the core of the grain boundary.

They connect roll patterns with asymptotic phases of the form
θ1(x , y) and θ2(x , y) such that

θ1(x , y) = k1x + k2y , θ2(x , y) = k1x − k2y ,

k1 = cos(α), k2 = sin(α),

and are parametrized by the angle α. Back

- M. Haragus & A. Scheel, Grain boundaries in the Swift-Hohenberg equation,
European J. Appl. Math. 23, 737-759 (2012).

- A. Scheel & Q. Wu, Small-amplitude grain boundaries of arbitrary angle in the
Swift-Hohenberg equation, Z. Angew. Math. Mech. 94, 203-232 (2014).

- D.J.B. Lloyd & A. Scheel, Continuation and Bifurcation of Grain Boundaries in the
Swift-Hohenberg Equation, SIAM J. Appl. Dyn. Sys. 16, 252-293 (2017).
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The regularized Cross-Newell equation

τ(k2)
∂θ

∂t
= −∇ ·

(
~kB(k2) + ∆~k

)
, ~k = ∇θ (RCN)

Formally derived from SH by means of a multiple scales expansion,
assuming ψ(x , y) ' ψ0(Θ/ε) and

Θ = εθ, X = εx , Y = εy , T = ε2t, ε << 1.

For k2 near 1, τ(k2) ' 1, B(k2) ' 2(1− k2), and RCN becomes

∂θ

∂t
= −∇ ·

(
2~k(1− k2) + ∆~k

)
, ~k = ∇θ

= −1

2

δERCN
δθ

, ERCN =

∫
Ω

[
(∆θ)2 + (1− |∇θ|2)2

]
dΩ

- M.C. Cross & A.C. Newell, Convection patterns large aspect ratio systems, Physica
D 10, 299-328 (1984).
- N.M. Ercolani, R. Indik, A.C. Newell & T. Passot, The Geometry of the Phase
Diffusion Equation, J. Nonlinear Sci. 10, 223-274 (2000).

Back
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Knee solutions of the regularized Cross-Newell equation

The regularized Cross-Newell equation

∂θ

∂t
= −∇ ·

(
2~k(1− k2) + ∆~k

)
, ~k = ∇θ

admits exact solutions

θ(x , y) =
√

1− µ2 x − log (2 cosh(µy))

that correspond to grain boundaries when looking at level sets of
the phase θ, or for instance at cos(θ).

Back
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Knee solutions of the regularized Cross-Newell equation

Knee solutions of RCN are minimizers of the RCN energy
ERCN in the space F of functions θ(x , y) such that

θ ∈ H2(Ω), Ω = [0,P]× [−L, L], P = π/
√

1− µ2;

θ(x + P, y) = θ(x , y), ∀y ∈ [−L, L];

θx =
√

1− µ2, θy = ±µ tanh(µL), at y = ±L,

that is for functions whose gradients are vector fields.

In agreement with the above nonlinear result, the second
variation of ERCN is positive for all modal perturbations that
satisfy the boundary conditions.

Joint work with N. Ercolani and N. Kamburov Back
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Grain boundaries of the regularized Cross-Newell equation

Numerical minimizers of
the RCN energy with
mixed Dirichlet-
Neumann boundary
conditions along the core
of the grain boundary
also show the existence
of a symmetry-breaking
bifurcation.

Right: Numerical solutions of
the RCN equation.

N.M. Ercolani & S.C. Venkataramani, A Variational Theory for Point Defects in
Patterns, J. Nonlinear Sci. 19, 267-300 (2009).

Back
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Mixed Dirichlet-Neumann boundary conditions

Solutions are such that

θ(x , 0) = 0 for 0 ≤ x ≤ al ,

θy (x , 0) = 0 for al ≤ x < l ,

where θ(x , y)− k1x is periodic in x
with period l for each y ≥ 0, and
0 ≤ a ≤ 1.

Back

N.M. Ercolani & S.C. Venkataramani, A Variational Theory for Point Defects in
Patterns, J. Nonlinear Sci. 19, 267-300 (2009).
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Knee solutions of the regularized Cross-Newell equation

Consider the following vector function of ~k = (f , g)

~S(~k) = 2

(∫
(1− k2) df ,−

∫
(1− k2) dg

)
.

Show that for ~k = ∇θ, i.e. f = θx , g = θy , θxy = θyx ,∫
Ω

(
−∇ · ~S(∇θ) + 4 det(Hess(θ))

)
dΩ ≤ ERCN(θ).

Note that the left-hand side of the above only depends on the
boundary conditions satisfied by functions in F and conclude
that all θ ∈ F (such that ∇θ is globally defined as a vector
field on Ω) satisfy

M≡ 4Pµ3

(
tanh(µL)− 1

3
tanh3(µL)

)
≤ ERCN(θ).

Evaluate ERCN on the knee solution θ0 and note that
ERCN(θ0) =M.

Back
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Phase gradient of SH Grain boundaries - small µ’s

For small values of µ the
phase behaves like a
“knee” solution.

Right: Phase as a function of x
and y
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Phase gradient of SH Grain boundaries - small µ’s

For small values of µ the
phase behaves like a
“knee” solution.

Right: Phase gradient
superimposed on grain
boundary

Back
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Phase gradient of SH Grain boundaries - large µ’s

For large values of µ the
y -derivative of the phase
gets very large on each
sides of the grain
boudary.

Right: Phase as a function of x
and y
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Phase gradient of SH Grain boundaries - large µ’s

For large values of µ the
y -derivative of the phase
gets very large on each
sides of the grain
boudary.

Right: Phase gradient
superimposed on grain
boundary
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Phase structure of SH Grain boundaries - jump in θy

Profile of θy at x = Lx/2 as a function of y , for different values of µ.

The grain boundary is located at y = 0. Back
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Phase structure of SH Grain boundaries

Profile of θ on one side of the “jump” as a function of x , for different

values of µ. Back
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Phase structure of SH Grain boundaries

Profile of θy on one side of the “jump” as a function of x , for different

values of µ. Back
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Phase structure of SH Grain boundaries

Profile of θ and θy on one side of the “jump” as a function of x

superimposed on the grain boundary solution. Back
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Phase structure of SH Grain boundaries - self-duality

Deviation from self-duality of the phase of SH grain boundaries:

SD = ||(∆θ)2 − (1− |∇θ|2)2||∞. Back
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Phase structure of SH Grain boundaries - self-duality

Deviation from self-duality of the phase of SH grain boundaries:

SD = |(∆θ)2 − (1− |∇θ|2)2|. Back
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